Multiple imputation for recovering missing values when data cannot be shared

Robert Thiesmeier

Stata Biostatistics and Epidemiology Symposium, February 20, 2025

Karolinska Institutet, Stockholm, Sweden

- Missing values in distributed data networks
- How does mi impute from work?
- Applied example
- Central assumptions and next steps

Distributed Data Networks

Medical research increasingly relies on large-scale collaborations making use of multi-site studies

- Enhances precision and can enable greater clinical granularity
- Improves generalizability, making findings applicable to diverse populations

Distributed data networks (i.e., federated analysis):

- have become the norm due to regulatory, administrative, and time constraints
- use qualitative harmonization ("common data models") and meta-analysis to avoid sharing individual-level data

- Collaborative research often faces inconsistent variable recording across sites
- Sporadically missing data: Occurs at a single site in one or more variables
- Systematically missing data: Some sites may have 100% missing data on key variables, while others have recorded them

Sporadically missing data

 Systematically missing data

 X1
 X2
 X3
 X4
 X6
 X6

 V
 V
 V
 V
 V
 P1

 V
 V
 V
 V
 V
 P2

 V
 V
 V
 V
 V
 P3

 V
 V
 V
 V
 V
 P4

 V
 V
 V
 V
 V
 P4

Current approaches include:

Excluding sites without the data, reducing power and generalizability (complete case analysis)

2 Ignoring missing data and meta-analyze, risking biased inferences (e.g., confounder omission, or reduced predictive accuracy)

Other approaches include quantitative bias analysis or likelihood-based approaches (e.g., bivariate meta-analysis)

- Ideally, we would like to be able to recover missing data by leveraging existing information from other sites involved in the network
- When individual-level data cannot be shared between sites, common multiple imputation strategies fail (no observations)
- We have proposed a "cross-site" imputation strategy that avoids the need to pool individual-level data and relies instead on sending regression coefficients across sites

Framework for multiple imputation

The command **mi impute from** facilitates the imputation of variables by using external data

- Users have to specify a prediction model at sites with observed data on the systematically missing variable
- At the receiving site, mi_impute_from_get facilitates the convergence of shared files (.txt or .xls) to be used with mi impute from
- If multiple files are input, a weighted average of regression coefficients is taken

Current models that are supported include logit, mlogit, and qreg

Missing values in distributed data networks

- How does mi impute from work?
- Applied example
- Central assumptions and next steps

Identify study site(s) with observed data

Consider a distributed data network with five contributing sites and a continuous variable z_i that is 100% missing at site E

Fit a prediction model at study site(s) with observed data on the systematically missing variable

At site C, estimate *p*-quantile regression model for the continuous variable z_i conditionally on a set of predictors \mathbf{w}_i

$$\hat{Q}_{z_i|\mathbf{w}_i}(p)\& = \mathbf{w}_i \mathbf{f}(p) \quad p \in \{0.01, 0.02, \dots, 0.99\}$$
(1)

If multiple studies have information on z_i , we can fit the same prediction model at multiple sites

In Stata: Fit a prediction model at study site(s) with observed data on the systematically missing variable

- Fit a model using <code>qreg</code> at site with observed values on <code>z</code> (e.g., site C) using <code>y x a c d</code> as independent variables
- Export coefficients and their variances into a transportable file (e.g., txt) (let us call the two files siteC_b.txt and siteC_v.txt)
- Send files to site with missing data (i.e., site E)

We denote $z_i^{(m)}$ as the *m*-th imputation of a missing value in z_i . At site E:

- I Draw a random value U_i from a continuous uniform distribution $\mathcal{U}(0,1)$.
- **2** Compute the weighted average of the F and F + 1 conditional predicted quantiles and assign:

$$z_i^{(m)} = (1 - \operatorname{mod}) \cdot \hat{Q}_{z_i | \mathbf{w}_i}(F) + \operatorname{mod} \cdot \hat{Q}_{z_i | \mathbf{w}_i}(F+1)$$
(2)

where $F = \lfloor U_i \% \rfloor$ and $\text{mod} = U_i \% - \lfloor U \% \rfloor$

Robert Thiesmeier

In Stata: Impute the systematically missing variable

- Set up MI environment
 - mi set wide mi register imputed z

· Import coefficients and their variances

mat ib = r(get_ib)
mat iV = r(get_iV)

Impute z multiple times

mi impute from z . add(10) b(ib) v(iV) imodel(greg) External imputation using greg Imputations = 10 User method from = babbs 10 Imputed: m=1 through m=10 updated = 0 Observations per m Variable | Complete Incomplete Imputed Total ------0 6437 6437 6437 7 | _____ (Complete + Incomplete = Total; Imputed is the minimum across m of the number of filled-in observations.)

Robert Thiesmeier

Missing values in distributed data networks

How does mi impute from work?

Applied example

• Central assumptions and next steps

Robert Thiesmeier

Maternal Antidepressants and Offspring neurodevelopmental disorders (NDD)

- We want to study the effect of maternal antidepressant use in pregnancy on offspring risk of neurodevelopmental disorders (NDD) (ASD, ADHD, or ID)
- We need to control for a potential confounder: Parental history of psychiatric diagnosis
- Hospital 4 and 5 never recorded data on parental psychiatric history and individual data *cannot be shared data* between sites

	Hospital 1	Hospital 2	Hospital 3	Hospital 4	Hospital 5
	(N=136,893)	(N=72,227)	(N=164,687)	(N=52,219)	(N=43, 362)
Exposure (%)	3,091 (2.3)	1,568(2.2)	4,590(2.9)	1,588(3.1)	1,028~(2.5)
Confounder (%)	46,667(34.1)	22,462(31.1)	48,411 (29.4)	$\mathbf{N}\mathbf{A}$	NA
Outcome (%)	13,577 (9.9)	4,244(5.9)	13,143 (8.0)	4,317 (8.3)	3,819 (8.8)

Maternal Antidepressants and Offspring NDD's

Robert Thiesmeier

Missing values in distributed data networks

How does mi impute from work?

Applied example

Central assumptions and next steps

- Measurement assumption: the variable we predict with observed data measures the same concept of the target variable we wish to impute (e.g., same measurement scale)
- **2** Transportability assumption: the association between the auxiliaries and the imputation target are transferable across sites. In other words, there is a "common truth" to all sites, and each site represents a sample from that

Multivariate missing data

Robert Thiesmeier

Final Notes

Multiple imputation for systematically missing values fails when individual-level data cannot be pooled. Cross-site imputation recovers missing variables without pooling data

The mi impute from command:

- can be used within the existing multiple imputation framework in Stata
- allows to import .txt and .xls files
- allows the use of logistic, multinomial logistic, and quantile regression for the imputation model
- has help documentation and a preprint

Future work may aim to:

- facilitate the use of more imputation commands
- integrate multivariate imputation

Robert Thiesmeier

robert.thiesmeier@ki.se

https://github.com/robertthiesmeier

Acknowledgements

Nicola Orsini, Matteo Bottai, Scott Hofer (Karolinska Institutet, Sweden) Viktor Ahlqvist (Aarhus University, Denmark) Paul Madley-Dowd (University of Bristol, UK) Sabina Murphy, Andrea Bellavia (Harvard University, USA)

- Thiesmeier R, Bottai M, Orsini N. Systematically missing data in distributed research networks: multiple imputation when data cannot be pooled. *Journal of Statistical Computation and Simulation*, 2024
- 2 Thiesmeier R, Bottai M, Orsini N. Imputing missing data with external data. Preprint, 2024
- 3 Thiesmeier R, Madley-Dowd P, Orsini N, Ahlqvist V. Cross-site imputation for recovering variables without individual pooled data. *Preprint*, 2024

Robert Thiesmeier