*! ddml v1.4.4 *! last edited: 30aug2024 *! authors: aa/ms program define _ddml_overlap version 16 syntax , [ /// mname(name) /// replist(numlist integer min=1) /// list of resamples pslist(namelist) /// list of propensity scores excl resample n(integer 0) /// number of points (default = N) kernel(name) /// default = triangle lopt0(string) /// line options for d=0 lopt1(string) /// line options for d=1 title(string) /// title for combined graph subtitle(string) /// subtitle for combined graph name(string) /// name of combined graph; can include ", replace" *] // blank eqn - declare this way so that it's a struct and not transmorphic tempname eqn mata: `eqn' = init_eStruct() mata: st_local("model",`mname'.model) mata: st_local("crossfitted",strofreal(`mname'.crossfitted)) // flag for crossfitting results available mata: st_local("nreps",strofreal(`mname'.nreps)) mata: st_local("nameY",`mname'.nameY) mata: st_local("nameD",invtokens(`mname'.nameD)) mata: st_local("nameZ",invtokens((`mname'.nameZ))) local numeqnD : word count `nameD' local numeqnZ : word count `nameZ' if "`model'"~="interactive" & "`model'"~="interactiveiv" { di as err "error - overlap supported only for interactive or interactiveiv (LATE) models" exit 198 } if "`model'"=="interactive" & `numeqnD'>1 { di as err "error - only one treatment variable currently supported in interactive model" exit 198 } if `crossfitted'==0 { di as err "error - model not crossfitted" exit 198 } // default title if "`title'"=="" & "`model'"=="interactive" { local title "Propensity scores by treatment group" } else if "`title'"=="" { local title "Propensity scores by assignment group" } // default replist, graph subtitle if "`replist'"=="" { local replist 1/`nreps' if `nreps'>1 & "`subtitle'"=="" { local subtitle "all crossfit samples" } } else if "`subtitle'"=="" { local subtitle "reps=`replist'" } // default list of propensity scores (prefixes) if "`pslist'"=="" { // eqn has info about learners if "`model'"=="interactive" { mata: `eqn' = (`mname'.eqnAA).get("`nameD'") } else { mata: `eqn' = (`mname'.eqnAA).get("`nameZ'") } mata: st_local("pslist",invtokens(`eqn'.vtlist)) } // labels for propensity scores if "`model'"=="interactive" { local vlab0 "D=0" local vlab1 "D=1" } else { local vlab0 "Z=0" local vlab1 "Z=1" } // default number of points if `n'==0 { qui count if `mname'_sample local n=r(N) } // default kernel if "`kernel'"=="" { local kernel triangle } // default line options if "`lopt0'"=="" { local lopt0 lpattern(solid) lcolor(navy) } if "`lopt1'"=="" { local lopt1 lpattern(shortdash) lcolor(dkorange) } // loop through propensity scores foreach dtilde in `pslist' { // gname is individual dtilde graph local gname `dtilde' // reset gcmd local local gcmd // loop through resamples foreach r of numlist `replist' { tempvar x0`r' x1`r' ps0`r' ps1`r' ps`r' qui gen `ps`r'' = `dtilde'_`r' kdensity `ps`r'' if `nameD'==0, kernel(`kernel') n(`n') nograph gen(`x0`r'' `ps0`r'') kdensity `ps`r'' if `nameD'==1, kernel(`kernel') n(`n') nograph gen(`x1`r'' `ps1`r'') local gcmd `gcmd' /// (line `ps0`r'' `x0`r'', `lopt0') /// (line `ps1`r'' `x1`r'', `lopt1') } label var `ps01' "`vlab0'" label var `ps11' "`vlab1'" twoway `gcmd', /// title("`dtilde'") /// xtitle("Propensity score") /// ytitle("Density") /// legend(order(1 2)) /// nodraw /// name(`gname', replace) } graph combine `pslist', title("`title'") subtitle("`subtitle'") name(`name') // drop separate graphs cap graph drop `pslist' end