* biastest.ado program define biastest version 18.0 syntax varlist(min=2) [if] [in], m1(string) [m1ops(string)] m2(string) [m2ops(string)] // Separate dependent and independent variables local depvar : word 1 of `varlist' local indepvars : list varlist - depvar // Display dependent and independent variables to the user di as text "Dependent variable: `depvar'" di as text "Independent variables: `indepvars'" di as text "Model 1 Estimation Results" // Run the first regression model (M1) and store results `m1' `depvar' `indepvars' `if' `in', `m1ops' matrix b_m1 = e(b) // Coefficients from the first model matrix V_m1 = e(V) // Variance-covariance matrix from the first model scalar df_m1 = e(df_r) // Degrees of freedom from the first model // Display results for the second model di as text "Model 2 Estimation Results" // Run the second regression model (M2) and store results `m2' `depvar' `indepvars' `if' `in', `m2ops' matrix b_m2 = e(b) // Coefficients from the second model matrix V_m2 = e(V) // Variance-covariance matrix from the second model // Get the number of independent variables local numvars : word count `indepvars' // Determine the maximum length of variable names for formatting local maxvarlen = 0 foreach var of local indepvars { local varlen = length("`var'") if `varlen' > `maxvarlen' { local maxvarlen = `varlen' } } // Define column widths based on the maximum variable name length local col1_width = `maxvarlen' + 2 // Column for variable names local col2_width = 10 // Column for Model1 coefficients local col3_width = 10 // Column for Model2 coefficients local col4_width = 10 // Column for differences local col5_width = 10 // Column for t-statistics local col6_width = 10 // Column for p-values // Calculate the total width of the table local total_width = `col1_width' + `col2_width' + `col3_width' + `col4_width' + `col5_width' + `col6_width' + 10 // Display the header for the individual bias test di as text "Variable Bias Test:" di as text "H0: The parameters are equal" di as text _dup(`total_width') "-" di as text _col(2) "Variables" _col(`=`col1_width'+4') "|" /// _col(`=`col1_width'+4') " Model 1 " _col(`=`col1_width'+`col2_width'+4') "|" /// _col(`=`col1_width'+`col2_width'+6') " Model 2 " _col(`=`col1_width'+`col2_width'+`col3_width'+6') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+8') "Diff." _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+8') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+10') "t-stat" _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+`col5_width'+10') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+`col5_width'+12') "P>|t|" di as text _dup(`total_width') "-" // Loop through each independent variable forval i = 1/`numvars' { // Get the variable name local varname : word `i' of `indepvars' // Extract coefficients and standard errors from both models scalar beta_m1 = b_m1[1, `i'] scalar beta_m2 = b_m2[1, `i'] scalar stderr_m1 = sqrt(V_m1[`i', `i']) scalar stderr_m2 = sqrt(V_m2[`i', `i']) // Calculate the difference, t-statistic, and p-value scalar diff = beta_m1 - beta_m2 scalar pooled_se = sqrt(stderr_m1^2 + stderr_m2^2) scalar tvalue = diff / pooled_se scalar pvalue = 2 * ttail(df_m1, abs(tvalue)) // Display the results in a formatted table di as text _col(2) "`varname'" _col(`=`col1_width'+4') "|" /// _col(`=`col1_width'+4') %9.4f beta_m1 _col(`=`col1_width'+`col2_width'+4') "|" /// _col(`=`col1_width'+`col2_width'+6') %9.4f beta_m2 _col(`=`col1_width'+`col2_width'+`col3_width'+6') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+8') %9.4f diff _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+8') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+10') %9.4f tvalue _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+`col5_width'+10') "|" /// _col(`=`col1_width'+`col2_width'+`col3_width'+`col4_width'+`col5_width'+12') %9.4f pvalue } di as text _dup(`total_width') "-" // Perform a joint chi-squared test for all coefficients (excluding the constant term) di as text "Jointly Bias Test:" di as text "H0: All parameters are equal" // Exclude the constant term from the coefficient vectors and variance-covariance matrices matrix b_m1_no_const = b_m1[1, 1..`numvars'] // Exclude the last column (constant term) matrix b_m2_no_const = b_m2[1, 1..`numvars'] // Exclude the last column (constant term) matrix V_m1_no_const = V_m1[1..`numvars', 1..`numvars'] // Exclude the last row and column (constant term) matrix V_m2_no_const = V_m2[1..`numvars', 1..`numvars'] // Exclude the last row and column (constant term) // Calculate the difference in coefficients (excluding the constant term) matrix diff_coef = b_m1_no_const - b_m2_no_const // Calculate the variance-covariance matrix of the difference (excluding the constant term) matrix V_diff = V_m1_no_const - V_m2_no_const // Check if the variance-covariance matrix is invertible if det(V_diff) <= 0 { di as error "Variance-covariance matrix of the difference is not positive definite. Chi-squared test cannot be computed." exit } // Compute the chi-squared statistic matrix chi2_stat = diff_coef * inv(V_diff) * diff_coef' scalar chi2_value = abs(chi2_stat[1, 1]) // Degrees of freedom for the chi-squared test scalar df_chi2 = `numvars' // Calculate the p-value for the chi-squared test scalar chi2_pvalue = chi2tail(df_chi2, chi2_value) // Display the chi-squared test results display as text "chi2" "(" df_chi2 ") ="%9.4f chi2_value display as text "Prob > chi2 ="%9.4f chi2_pvalue display as text _dup(`total_width') "-" end