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Abstract. The method of multiple imputation (MI) is used increasingly for ana-
lyzing datasets with missing observations. Two sets of tasks are required in order
to implement the method: (a) generating multiple complete datasets in which
missing values have been imputed by simulating from an appropriate probabil-
ity distribution and (b) analyzing the multiple imputed datasets and combining
complete data inferences from them to form an overall inference for parameters
of interest. An increasing number of software tools are available for task (a), al-
though this is difficult to automate, because the method of imputation should
depend on the context and available covariate data. When the quantity of miss-
ing data is not great, the sensitivity of results to the imputation model may be
relatively low. In this context, software tools that enable task (b) to be performed
with similar ease to the analysis of a single dataset should facilitate the wider use
of multiple imputation. Such tools need not only to implement techniques for in-
ference from multiple imputed datasets but also to allow standard manipulations
such as transformation and recoding of variables. In this article, we describe a
set of Stata commands that we have developed for manipulating and analyzing
multiple datasets.

Keywords: st0000, missing data, multiple imputation, Rubin’s rule of combination,
overall estimates

1 Introduction

The presence of missing data is a frequent source of difficulties in statistical practice.
In large surveys, subjects may decline to participate or fail to respond to particular
items in a questionnaire. The situation may be worse in longitudinal studies where
investigators seek participation from individuals over several occasions—subjects may
decline to respond to certain questions at each occasion (“item missingness”) or fail to
participate entirely at some occasions (“occasion missingness”).

A simple way to deal with incompletely observed data is to omit any case that has
a missing value for any variables required in the analysis of interest. This so-called
complete-case analysis may, however, produce biased inferences when the subgroup
with complete data differs systematically from the target population. It may also lead
to inefficient use of the collected information, since the number of individuals with
complete data may be substantially less than the total sample size.

c© 2003 Stata Corporation st0000
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2 Tools for multiple imputed datasets

A slightly more sophisticated approach is to use single imputation, where missing
values in a variable are simply filled in by a plausible estimate, such as the mean or me-
dian for that variable on other participants. Better estimates may be obtained by using
the predicted means from a regression model or a hotdeck procedure (Little and Rubin
1987). Relative to the complete-case approach, single imputation has the advantage of
retaining the full sample size, and in some situations, it can produce unbiased estimates
of target parameters. It cannot, however, provide valid standard errors and confidence
intervals, as it ignores the uncertainty implicit in the fact that the imputed values are
not the actual values.

Under certain assumptions, valid inferences can, however, be obtained with the
more sophisticated technique of multiple imputation introduced by Rubin (1987). The
heuristic basis of this approach is that if several different complete datasets (rather
than just one) are obtained by imputing missing values, then appropriate account can
be taken of the uncertainty involved in imputing the missing values by examining the
variation between inferences obtained in each of the completed datasets. In practice, the
statistician (not necessarily the same analyst who will make final substantive analyses of
the data) produces several complete datasets using plausible modeling assumptions. The
data analyst then analyzes each of these using standard complete-data methods, and
then combines the results according to appropriate rules to produce overall estimates
with confidence intervals and p-values. The overall estimates incorporate the missing-
data uncertainty as well as sampling variation.

The key assumption with the method of multiple imputation, as with most ap-
proaches to missing data problems, is that the missing data are missing at random
(MAR) in the sense that the probability of a value being missing may only depend on
observed data for the individual in question and not on the unobserved missing values.
The original formal definition of MAR was provided by Rubin (1976); Little and Rubin
(1987) and Schafer (1997) provide more recent discussions. An essential requirement
for the MI method to work in practice is that imputation should be performed under
a model that is general enough to make the MAR assumption defensible, even if this
model uses variables that are not of substantive interest for later data analysis.

Generating proper imputations for missing values in a given dataset is not straight-
forward. The general principle is that missing values should be imputed by simulation
from their posterior predictive distribution (PPD) under a plausible model fitted to the
observed data. For general model specifications, this in principle requires Markov Chain
Monte Carlo (MCMC) methods, and Schafer (1997) has developed a set of reasonably
flexible software that covers a range of models. Imputation under a multivariate normal
model for all variables (both those to be imputed and others used because of their asso-
ciation with the variable requiring imputation) is also now available in the S-PLUS and
SAS packages. Another widely available tool is the SOLAS package (Statistical Solutions
Ltd.), which implements an imputation method that provides considerable flexibility.
It gives proper imputations when the pattern of missingness is monotone (variables
can be arranged in order from those with least missing values to those with most) and
otherwise employs pragmatic methods to force the data into a monotone missingness
pattern. Raghunathan et al. (2001) have recently proposed another more flexible ap-
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proach using conditional distributions and a SAS program is available to implement
this. Finally, for small quantities of missing data, the approximate Bayesian bootstrap
method implemented as the hotdeck command by Mander and Clayton (1999) may be
adequate.

When you implement MI, it is usually sufficient to obtain a relatively small number
of imputed datasets, often as few as 3 or 5, because the relative gains in precision from
using larger numbers are usually minor, unless the fraction of missing data is extremely
large (in which case the MAR assumption becomes increasingly tenuous in any case).
See Rubin (1987) for details.

2 Statistical inference from multiple imputed datasets

The Stata commands presented in this article have been written to provide a large
number of useful data manipulations and transformations, enabling data analysts to
have maximum flexibility in their analyses. Ultimately, the analyst will need to perform
inferences using the multiple datasets, so we have implemented the simple method
derived by Rubin (1987).

Suppose that initially our primary interest lies in a scalar estimand Q. In a typical
case, this might be a regression coefficient, for example, the log odds ratio in a logistic
regression. Suppose that we have imputed m complete datasets using an appropriate
model. In each of these datasets, we use standard complete-data methods to obtain an
estimate of Q with an associated estimated variance (or equivalently, standard error).
Let Q̂(k) and U (k) denote the point estimate and variance respectively from the kth
(k = 1, 2, . . . ,m) dataset.

As might be expected, the multiple imputation point estimate of Q is the average
of the m complete-data estimates:

Q =
1
m

m∑
t=1

Q̂(t)

Obtaining a valid standard error for this estimate requires combining information
on within-imputation and between-imputation variation. The latter is important in
reflecting variability due to imputation uncertainty.

First, a within-imputation variance component is obtained as the average of the
complete-data variance estimates:

W =
1
m

m∑
t=1

U (t)
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4 Tools for multiple imputed datasets

Second, between-imputation variance is calculated by a simple empirical combination
of the complete-data point estimates:

B =
1

m − 1

m∑
t=1

(Q̂(t) − Q)2

The total variance in the combined estimate of Q is then given by

T = W +
(

1 +
1
m

)
B (1)

and Rubin (1987) shows that, approximately,

T−1/2(Q − Q) ∼ tγ

where the degrees of freedom γ are given by

γ = (m − 1)
{

1 +
W

(1 + 1/m)B

}2

(2)

In the usual way, a 100(1 − α)% interval estimate for Q is

Q ± tγ,1−α/2

√
T

The (1 + 1/m) term in these simple equations indicates why it is not necessary to
a create large number of imputed datasets, especially if there is a low ratio of between-
imputation to within-imputation variance. The latter is typically the case unless there
is a large fraction of missing data, along with relatively precise estimation of parameters
within each dataset.

On occasion, it is of interest to perform inference for a multidimensional (vector)
quantity, for example, when assessing a batch of effects related to a multi-category factor
or examining interaction terms in a regression model. The simple methods described
above for scalar estimands do not generalize immediately, but we have implemented
an approximate method given by Li, Raghunathan, and Rubin (1991) to give a p-value
for the null hypothesis that all components of a vector Q are equal to zero. Schafer
(1997) cautions that for the procedure to work well, you should have a large sample and
make sure that the scale in which Q is expressed is such that the usual normal-theory
inferences for complete data are valid.

3 Syntax

miset
[
using filename-prefix

] [
, mimps(#) clear

]
mireset
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miappend using filename-prefix
[
, nolabel keep(varlist)

]
mimerge

[
varlist

]
using filename-prefix

[
, keep(varlist) unique uniqmaster

uniqusing nolabel nokeep merge(varname)
]

misave filename-prefix
[
, replace

]
mido Stata-command

mici
[
, indiv

]
: varlist

[
in range

] [
if exp

] [
, level(#) binomial poisson

exposure(varname)
]

mifit
[
, indiv

]
:

[
xi :

]
estimation command

milincom
[
, indiv

]
: exp

[
in range

] [
if exp

] [
, level(#) or irr eform

]
mitestparm varlist

where estimation command may be regress, logit, probit, clogit, glm, logistic,
poisson, svyreg, svylogit, svyprobit, svypoisson, xtgee, or xtreg followed by
standard arguments and options for that command.

where exp is any linear combination of coefficients that is valid syntax for test. Note
that exp must not contain an equal sign (see [R] lincom).

4 Description

miset creates temporary copies of imputed datasets so that subsequent mi (multiple
imputation) commands can be executed on these data. The other mi commands can only
be used after the multiple datasets have been declared by miset. The imputed datasets
are assumed to be created from an original dataset by a “proper” imputation method.
These datasets must have the same variables and the same number of observations.

The following naming convention must be used: filenames of the imputed datasets
must consist of a common word followed by a consecutive number, followed by the
normal extension .dta; for example, foo1.dta, foo2.dta, . . . , foo5.dta. Only the
common word or filename-prefix (“foo” in this case) is to be specified after the using
command.
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6 Tools for multiple imputed datasets

miset creates temporary files mitemp1.dta, mitemp2.dta, and so on by copying
the using files. All subsequent commands will be executed on these temporary files,
leaving the original using files unchanged. The temporary files remain in the working
directory until mireset is issued. To save the updated temporary files after a series of
mi commands, see misave.

mireset erases the temporary files created by miset and clears the global macros
created by miset.

misave saves the multiple temporary datasets declared by the last miset with any
subsequent changes made with the mi commands. File names are constructed from the
filename-prefix followed by the numbers 1, 2, . . . , m.

mido executes a Stata command on each of the datasets created by miset. Most
commands can be used, except estimation and post-estimation commands. You cannot
define value labels with mido.

For execution of estimation-class commands with a combination of results over im-
puted datasets, see mifit; for post-estimation inferences, see milincom and mitestparm;
and for manipulation of multiple datasets, see mimerge, miappend, and misave.

miappend appends the multiple datasets of the using files to the currently loaded
miset datasets. The first using file is appended to the first miset file, the second to the
second, and so on. The number of using datasets must be the same as the number of
datasets declared in miset.

mimerge merges each of the miset datasets with each of the using datasets. The
number of using datasets must be the same as that of the master datasets.

mici calculates confidence intervals separately for each of the miset datasets and
calculates overall confidence intervals by Rubin’s rule of combination (see section 2).

mifit carries out the estimation command on each of the miset datasets and then
computes multiple-imputation point estimates of the regression parameters and asso-
ciated overall variance estimates using Rubin’s rule. Confidence intervals for the esti-
mated model parameters are given. The xi prefix command can be used in the usual
way within mifit to create dummy variables and interaction terms.

milincom computes multiple-imputation point estimates, standard errors, p-values
t statistics, and confidence intervals for linear combinations of regression coefficients
after mifit using Rubin’s combining rule (1). Results can be displayed optionally in
exponentiated form (giving odds ratios or incidence rate ratios in appropriate circum-
stances).

mitestparm is the mi version of the post-estimation command testparm. It obtains
an approximate F -test (Li, Raghunathan, and Rubin 1991) to test the hypothesis that
the specified coefficients are all equal to zero, analogous to the standard Wald test.
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5 Options

In general, commands inherit the standard Stata options for their parent command.
Most options and prefixes are acceptable with mido; for example, mido by w: tab x y,
sum(z) freq is a legal syntax. However, the parent options update and replace are
not options for mimerge because these options take effect only when there are missing
values in the master file, which should not occur with multiple imputed datasets. mifit
accepts all options available in the estimation command.

5.1 Options for miset

mimps(#) specifies the number, m, of datasets to be used. The default is 5. A minimum
of 2 and a maximum of 9 datasets can be specified. If there are more than m datasets,
only the first m datasets are used. As mentioned earlier, usually as few as 3 or 5
multiple imputed datasets is sufficient.

clear permits the data to be loaded, even if there is a dataset already in memory and
even if that dataset has changed since the data were last saved.

5.2 Options for miappend

nolabel prevents copying the value label definitions from the using dataset.

keep(varlist) specifies the variables to be kept from the using data. If keep() is not
specified, all variables are kept.

These options are inherited from the parent command append.

5.3 Options for mimerge

keep(varlist) specifies the variables to be kept from the using data. If keep() is not
specified, all variables are kept.

unique, uniqmaster, and uniqusing specify that the match variables in a match-merge
uniquely identify the observations.

unique specifies that the match variables uniquely identify the observations in the
master data and in the using data. For most match-merges, you should specify
unique. merge does nothing differently when you specify the option, unless the
assumption that you are making is false. In that case, an error message is issued
and the data are not merged.

uniqmaster specifies that the match variables uniquely identify the observations in
memory, the master data, but not necessarily the ones in the using data.

uniqusing specifies that the match variables uniquely identify the observations in
the using data but not necessarily the ones in the master data.
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8 Tools for multiple imputed datasets

nolabel prevents Stata from copying the value label definitions from the using dataset.

nokeep causes merge to ignore observations in the using data that have no corresponding
observation in the master.

merge(varname) specifies the name of the variable that will mark the source of the
resulting observation. The default is merge( merge).

These options are all inherited from the parent merge command.

5.4 Option for misave

replace permits misave to overwrite existing datasets.

5.5 Options for mici

indiv reports the confidence intervals from each of the individual miset datasets, as well
as the overall confidence intervals. By default, only the overall confidence interval
is displayed.

level specifies the desired level of significance in calculating the confidence intervals.
The default is to use the current system value defined by set level (whose initial
value is 95%).

binomial specifies that each of the variables in varlist has a binomial distribution and
that mici will calculate the binomial standard error for each of the miset datasets
and then calculate an overall confidence interval for the corresponding proportion
using Rubin’s combining rule. If any variable in varlist is not binary (value 0 or 1),
an error message is given. Note that the “exact” binomial method is not used since
it does not enable application of Rubin’s rule.

poisson specifies that the variables are Poisson-distributed counts. Poisson standard
errors are calculated from individual miset datasets, and overall confidence intervals
are computed using Rubin’s rule.

exposure(varname) is used only with poisson. varname contains the total exposure
during which the number of events recorded in varlist was observed.

5.6 Options for mifit

indiv causes an estimation result to be output for each of the miset datasets. The
default is that only overall estimation results are displayed.

In principle, any options of the original estimation command can be passed along to
mifit.
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5.7 Options for milincom

indiv causes milincom to report estimates of the linear combination obtained from
each of the miset datasets, as well as an overall estimate obtained by the combining
rule.

level(#) specifies the confidence level, as a percentage, for confidence intervals; see
[R] level.

or, irr, and eform all report coefficient estimates as exp(b) rather than b. Standard
errors and confidence intervals are similarly transformed. or is the default after
logistic. The only difference in these options is how the output is labeled; see
[R] lincom.

5.8 Options for mitestparm

The testparm options equal and equation have not yet been implemented.

6 Examples

We illustrate the mi commands using two sets of datasets: smiF1.dta, . . . , smiF5.dta
and smiM1.dta, . . . , smiM5.dta. The datasets were imputed separately for gender,
using a multivariate linear mixed effects model from data that contained 25% to 47%
missing observations across variables. The data are extracted from a cohort study of
adolescent health and consist mainly of self-reported indicators of substance use and
other behavioral outcomes over 6 timepoints (waves), along with some fixed covariates.

First, we load the females’ datasets smiF*.dta:

. miset using smiF
smiF1.dta to smiF5.dta were loaded to _mitemp1.dta to _mitemp5.dta respectively

The five datasets have now been set up for mi operation. Note that the first dataset is
always the one currently in memory after any mi command.

(Continued on next page)
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10 Tools for multiple imputed datasets

. describe

Contains data from _mitemp1.dta
obs: 600 Imputed females data No.1
vars: 10 11 Jun 2003 10:16
size: 10,200 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

id long %9.0g
wave byte %9.0g wave 1 to wave 6
mmetro byte %9.0g school in mmetro
parsmk byte %9.0g either parent smokes
drkfre byte %6.0g drkfre drink frequency
alcdos byte %6.0g alcdos av units/drinking day
alcdhi byte %6.0g alcday>=5 units at least once
smk byte %6.0g smk none, occasional, daily
cistot byte %6.0g cis total score (0,56)
mdrkfre byte %9.0g mis missing drkfre

Sorted by: id wave

With a view to appending the males’ data, we generate a variable sex=1 for females

. mido gen byte sex=1

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).

and we save the five datasets by issuing

. misave temp, replace
file temp1.dta saved
file temp2.dta saved
file temp3.dta saved
file temp4.dta saved
file temp5.dta saved

Similarly, we set up the males’ datasets and generate a variable sex=0.

. miset using smiM
smiM1.dta to smiM5.dta were loaded to _mitemp1.dta to _mitemp5.dta respectively

. mido gen byte sex=0

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).
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We may then join the two datasets into a single one by appending smiF1.dta to
smiM1.dta, smiF2.dta to smiM2.dta, and so on to form new datasets both1.dta,
both2.dat, and so on.

. miappend using temp

. mido label data "male & female"

-> Applying label to dataset1 (_mitemp1.dta).

-> Applying label to dataset2 (_mitemp2.dta).

-> Applying label to dataset3 (_mitemp3.dta).

-> Applying label to dataset4 (_mitemp4.dta).

-> Applying label to dataset5 (_mitemp5.dta).

. qui mido labsex

. mido sort id wave

-> Applying sort to dataset1 (_mitemp1.dta).

-> Applying sort to dataset2 (_mitemp2.dta).

-> Applying sort to dataset3 (_mitemp3.dta).

-> Applying sort to dataset4 (_mitemp4.dta).

-> Applying sort to dataset5 (_mitemp5.dta).

. misave both, replace
file both1.dta saved
file both2.dta saved
file both3.dta saved
file both4.dta saved
file both5.dta saved

Note that in the above, the values of sex were labeled by calling a user-written program
labsex using mido. labsex was defined by an ado-file as follows:

program define labsex
version 7
label def sexlb 0 "male" 1 "female"
label val sex sexlb

end

As Stata does not differentiate between built-in and ado-defined commands, mido also
accepts commands defined by ado-files.

Now, we base our analysis on the datasets both. The variable mdrkfre is an index
equal to 1 if drkfre was missing in the original data (before imputation), and zero oth-
erwise. So, mdrkfre=0 corresponds to actual observations and mdrkfre=1 corresponds
to imputed observations. We see that there are a total of 163 observations missing in
drkfre. These missing values are filled in differently in the five datasets, as shown in
column two of the following tables.

(Continued on next page)
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12 Tools for multiple imputed datasets

. miset using both
both1.dta to both5.dta were loaded to _mitemp1.dta to _mitemp5.dta respectively

. mido tab drkfre mdrkfre

-> Applying tab to dataset1 (_mitemp1.dta).

missing drkfre
drink frequency 0 1 Total

Non drinker 438 51 489
not in last wk 326 69 395
<3 days last wk 203 36 239

>=3 days last wk 40 7 47

Total 1,007 163 1,170

-> Applying tab to dataset2 (_mitemp2.dta).

missing drkfre
drink frequency 0 1 Total

Non drinker 438 44 482
not in last wk 326 69 395
<3 days last wk 203 38 241

>=3 days last wk 40 12 52

Total 1,007 163 1,170

-> Applying tab to dataset3 (_mitemp3.dta).

missing drkfre
drink frequency 0 1 Total

Non drinker 438 49 487
not in last wk 326 70 396
<3 days last wk 203 37 240

>=3 days last wk 40 7 47

Total 1,007 163 1,170

-> Applying tab to dataset4 (_mitemp4.dta).

missing drkfre
drink frequency 0 1 Total

Non drinker 438 49 487
not in last wk 326 68 394
<3 days last wk 203 39 242

>=3 days last wk 40 7 47

Total 1,007 163 1,170

-> Applying tab to dataset5 (_mitemp5.dta).

missing drkfre
drink frequency 0 1 Total

Non drinker 438 56 494
not in last wk 326 57 383
<3 days last wk 203 42 245

>=3 days last wk 40 8 48

Total 1,007 163 1,170
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Suppose that we are interested in the risk of drinking on a regular (at least weekly)
basis. We may recode the variable drkfre in each dataset to a binary indicator and
obtain the frequency of this level of drinking at each wave as follows.

. mido gen drkreg = drkfre>=2

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).

. for num 1/6: mici: drkreg if wave==X, bin

-> mici: drkreg if wave==1, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .1230769 .0238581 .0763051 .1698487

-> mici: drkreg if wave==2, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .2061539 .0309131 .1452904 .2670173

-> mici: drkreg if wave==3, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .2441026 .0328858 .1793391 .308866

-> mici: drkreg if wave==4, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .2912821 .035184 .2218792 .3606849

-> mici: drkreg if wave==5, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .2646154 .0338951 .1978309 .3313999

-> mici: drkreg if wave==6, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs Mean Std. Err. [95% Conf. Interval]

drkreg 195 .3558975 .0407032 .2740175 .4377774

Examining the wave 6 outcome in more detail, the indiv results reveal a moderate
amount of between-imputation variability, resulting in an overall SE about 20% greater
than the apparent SE within each imputed dataset.
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14 Tools for multiple imputed datasets

. mici, indiv : drkreg if wave==6, bin
(male & female)

Variable -- Binomial --
Data Obs Mean Std. Err. [95% Conf. Interval]

drkreg
_mitemp1 195 .348718 .0341275 .2818293 .4156066
_mitemp2 195 .3435898 .0340087 .2769338 .4102456
_mitemp3 195 .3333333 .033758 .2671689 .3994977
_mitemp4 195 .3794872 .0347501 .3113782 .4475962
_mitemp5 195 .374359 .0346569 .3064328 .4422852
Overall 195 .3558975 .0407032 .2740175 .4377774

There is a clear trend for the prevalence of regular drinking to increase with wave,
and we may use logistic regression to examine whether this trend is similar for males
and females. Note the use of the option cluster(id) to obtain robust standard errors
allowing for within-subject correlation.

. mifit : xi: logistic drkreg i.sex*wave, cl(id)

Overall estimates

Number of obs = 1170

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

_Isex_1 .52254 .20336 -1.67 0.095 .24369 1.1205 66938.36
wave 1.2254 .07173 3.47 0.001 1.0921 1.375 308.41

_IsexXwave_1 1.038 .08448 0.46 0.647 .88467 1.2178 681.17

Next, we assess potential nonlinearity (in the logistic scale) by including in the model
a (centered) quadratic term in wave.

. mido gen wave2 = (wave-2.5)^2

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).

. mifit: logistic drkreg sex wave wave2, cl(id)

Overall estimates

Number of obs = 1170

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

sex .60251 .14386 -2.12 0.035 .37667 .96374 323.55
wave 1.3483 .09245 4.36 0.000 1.1786 1.5425 1036.19
wave2 .9656 .02415 -1.40 0.167 .91844 1.0152 57.74

Slightly more precise estimates can be obtained using the GEE method (with the
default assumption of exchangeable working correlations).
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. mifit: xtgee drkreg sex wave, fam(binom) i(id) eform

Overall estimates

Number of obs = 1170

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

sex .6102 .14544 -2.07 0.039 .38139 .97629 202.30
wave 1.2457 .04823 5.67 0.000 1.1535 1.3454 87.39

It may also be of interest to examine the association with other covariates; for
example, a measure of psychological morbidity grouped into 3 categories:

. mido gen cisgp = cistot

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).

. mido recode cisgp 0/5=1 6/11=2 12/100=3

-> Applying recode to dataset1 (_mitemp1.dta).
(cisgp: 1077 changes made)

-> Applying recode to dataset2 (_mitemp2.dta).
(cisgp: 1071 changes made)

-> Applying recode to dataset3 (_mitemp3.dta).
(cisgp: 1077 changes made)

-> Applying recode to dataset4 (_mitemp4.dta).
(cisgp: 1069 changes made)

-> Applying recode to dataset5 (_mitemp5.dta).
(cisgp: 1076 changes made)

. mifit: xi: xtgee drkreg sex wave i.cisgp, fam(binom) i(id) eform

Overall estimates

Number of obs = 1170

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

sex .55838 .13396 -2.43 0.016 .34826 .89529 303.65
wave 1.2807 .05258 6.03 0.000 1.1802 1.3897 81.89

_Icisgp_2 1.0057 .19269 0.03 0.976 .68955 1.4668 241.80
_Icisgp_3 1.7755 .35374 2.88 0.004 1.2 2.6272 358.64

A test of the overall null hypothesis of no differences between the three “CIS groups”
can be obtained using the mitestparm command:

. mitestparm _Icis*

( 1) _Icisgp_2 = 0
( 2) _Icisgp_3 = 0

F( 2, 3996) = 5.45
Prob > F = 0.0043
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There is clearly strong evidence against the null hypothesis—not surprising, given
the individual effect estimates in the regression table, which reveal that this is entirely
due to an elevated odds in the third group.

Although there was no evidence of sex by wave interaction, we refit this model to
illustrate the use of milincom.

. mifit: xi: logistic drkreg i.sex*wave

Overall estimates

Number of obs = 1170

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

_Isex_1 .52254 .18247 -1.86 0.063 .26356 1.036 43384.52
wave 1.2254 .07201 3.46 0.001 1.0916 1.3756 313.20

_IsexXwave_1 1.038 .08936 0.43 0.665 .87658 1.229 852.87

. milincom: wave + _IsexXwave_1

Overall estimates

drkreg Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

(1) 1.271952 .0837888 3.65 0.000 1.117311 1.447996 303.59

This provides an estimate of the OR per wave among females; as the interaction term
is very small, this is almost identical to that among males (1.2254).

Now, we reshape the data to examine longitudinal changes in more detail; for ex-
ample, below examining the uptake of drinking between waves 1 and 2.

. mido gen drkany = drkfre>=1

-> Applying gen to dataset1 (_mitemp1.dta).

-> Applying gen to dataset2 (_mitemp2.dta).

-> Applying gen to dataset3 (_mitemp3.dta).

-> Applying gen to dataset4 (_mitemp4.dta).

-> Applying gen to dataset5 (_mitemp5.dta).

. mido keep id wave drkany cisgp sex

-> Applying keep to dataset1 (_mitemp1.dta).

-> Applying keep to dataset2 (_mitemp2.dta).

-> Applying keep to dataset3 (_mitemp3.dta).

-> Applying keep to dataset4 (_mitemp4.dta).

-> Applying keep to dataset5 (_mitemp5.dta).

(Continued on next page)
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. mido reshape wide drkany cisgp, i(id) j(wave)

-> Applying reshape to dataset1 (_mitemp1.dta).
(note: j = 1 2 3 4 5 6)

Data long -> wide

Number of obs. 1170 -> 195
Number of variables 5 -> 14
j variable (6 values) wave -> (dropped)
xij variables:

drkany -> drkany1 drkany2 ... drkany6
cisgp -> cisgp1 cisgp2 ... cisgp6

-> Applying reshape to dataset2 (_mitemp2.dta).
(note: j = 1 2 3 4 5 6)

Data long -> wide

Number of obs. 1170 -> 195
Number of variables 5 -> 14
j variable (6 values) wave -> (dropped)
xij variables:

drkany -> drkany1 drkany2 ... drkany6
cisgp -> cisgp1 cisgp2 ... cisgp6

-> Applying reshape to dataset3 (_mitemp3.dta).
(note: j = 1 2 3 4 5 6)

Data long -> wide

Number of obs. 1170 -> 195
Number of variables 5 -> 14
j variable (6 values) wave -> (dropped)
xij variables:

drkany -> drkany1 drkany2 ... drkany6
cisgp -> cisgp1 cisgp2 ... cisgp6

-> Applying reshape to dataset4 (_mitemp4.dta).
(note: j = 1 2 3 4 5 6)

Data long -> wide

Number of obs. 1170 -> 195
Number of variables 5 -> 14
j variable (6 values) wave -> (dropped)
xij variables:

drkany -> drkany1 drkany2 ... drkany6
cisgp -> cisgp1 cisgp2 ... cisgp6

-> Applying reshape to dataset5 (_mitemp5.dta).
(note: j = 1 2 3 4 5 6)

Data long -> wide

Number of obs. 1170 -> 195
Number of variables 5 -> 14
j variable (6 values) wave -> (dropped)
xij variables:

drkany -> drkany1 drkany2 ... drkany6
cisgp -> cisgp1 cisgp2 ... cisgp6
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. mici: drkany2 if drkany1==0, bin
(male & female)

Overall estimates -- Binomial --
Variable Obs(min) Obs(max) Mean Std. Err. [95% Conf. Interval]

drkany2 136 137 .3034993 .0401668 .2247364 .3822623*

This provides an estimate of the (cumulative) incidence of alcohol use between waves
1 and 2. The asterisk at the end of the output line is a hyperlink to a warning message
indicating that the complete data analyses are not based on the same number of obser-
vations (because the if condition defines a slightly different subset in each imputation).
Logistic regression may be used (below) to examine association between incidence and
covariates of interest.

. mifit: xi: logistic drkany2 i.cisgp1 if drkany1==0

Overall estimates

Number of obs (min) = 136
Number of obs (max) = 137

drkany2 Odds Ratio Std. Err. t P>|t| [95% Conf. Interval] MI.df

_Icisgp1_2 .8641 .40652 -0.31 0.756 .34345 2.174 1968.65*
_Icisgp1_3 1.0686 .48456 0.15 0.884 .43906 2.6007 1603.00*

Finally, you might choose to do a little cleaning up before ending the session.

. for num 1/5: erase tempX.dta

-> erase temp1.dta

-> erase temp2.dta

-> erase temp3.dta

-> erase temp4.dta

-> erase temp5.dta

. for num 1/5, nohead : erase bothX.dta

. mireset

7 Saved Results

mici saves results in r():

Macros
r(mimps) number of multiple imputed datasets
r(level) confidence level

Matrices
r(overall) multiple-imputation results and related quantities of interest
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mifit saves results in e():

Scalars
e(dr r) maximum multiple-imputation degrees of freedom for estimates of regression

coefficients
e(df m) model degrees of freedom
e(obs mii) number of observations in the ith imputed dataset

Macros
e(cmd) original estimation command issued in the call of mifit
e(depv) name of the dependent variable
e(mi level) confidence level

Matrices
e(MI b) regression coefficient vector
e(MI V) diagonal elements, which are estimates of multiple-imputation variance for the

coefficients. Note that it is not a genuine variance–covariance matrix
e(MI df) vector of multiple-imputation degrees of freedom, see expression (2)

in section 2
e(b i) coefficient vector for the ith imputed dataset
e(V i) variance–covariance matrix for the ith imputed dataset
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