rscore: a Stata module to compute Responsiveness Scores

Giovanni Cerulli
CNR-IRCrES
National Research Council of Italy
Institute for Research on Sustainable Economic Growth
Via dei Taurini 19, 00185 Roma
E-mail: g.cerulli@ceris.cnr.it
Introduction

Responsiveness Scores measure the change of a given outcome \(y \) when a given factor \(x_j \) changes, conditional on all other factors \(x_{-j} \).

It is the *derivative* of \(y \) on \(x_j \), given \(x_{-j} \) (*regression coefficient*), but allowing each observation to get its own *responsiveness score* (*random coefficient regression*).
RSCORES: definition and estimation

Responsiveness Scores (RS) are obtained by an *iterated Random Coefficient Regression (RCR)*. The basic econometrics of this model can be found in Wooldridge (2002, pp. 638-642). The calculation of RS follows this simple protocol:

1. Define y, the outcome (or *response*) variable.
2. Define a set of Q factors thought of as affecting y, and indicate the generic factor with x_j.
3. Define a RCR model linking y to the various x_j, and extract a unit-specific *responsiveness effect* of y to the all set of factors x_j, with $j=1, \ldots, Q$.
4. For the generic unit i and factor j, indicate this effect as b_{ij} and collect all of them in a matrix B. Finally, aggregate by unit (row) and by factor (column) the b_{ij} getting synthetic unit and factor responsiveness measures.
Analytically, an RS is defined as the “partial effect” of an RCR (Wooldridge, 1997; 2002; 2005). Define a RCR model of this kind:

\[
\begin{align*}
y_i &= a_{ij} + b_{ij} x_{ij} + e_i \\
a_{ij} &= \gamma_0 + x_{i,-j} \gamma + u_{ij} \\
b_{ij} &= \delta_0 + x_{i,-j} \delta + v_{ij}
\end{align*}
\]

where \(e_i, u_{ij} \) and \(v_{ij} \) are error terms with \(E(e_i \mid x_{ij}) = E(u_{ij} \mid x_{ij}) = E(v_{ij} \mid x_{ij}) = 0 \).

It is easy to show that the regression parameters, \(a_{ij} \) and \(b_{ij} \), are both non constant as depending on all the other inputs \(x \) except \(x_j \) (this is, in fact, the meaning of the vector \(x_{i,-j} \)). Observe that \(\delta_0 \) and \(\gamma_0 \) are, on the contrary, constant parameters.
According to this model, we can define the **regression line** as:

\[
E(y_i \mid x_{ij}, a_{ij}, b_{ij}) = a_{ij} + b_{ij} x_{ij}
\]

From this, we define the **RS** of \(x_{ij}\) on \(y_i\) as the derivative of \(y_i\) respect to \(x_{ij}\), that is:

\[
\frac{\partial}{\partial x_{ij}} \left[E(y_i \mid x_{ij}, a_{ij}, b_{ij}) \right] = b_{ij}
\]

where: \(b_{ij}\) is called the **partial effect** of \(x_{ij}\) on \(y_i\).
We can repeat the same procedure for each \(x_{ij} \) (\(j=1, ..., Q \)) so that it is possible eventually to define, for each unit \(i =1 ..., N \) and factor \(j=1, ..., Q \), the \(N \times Q \) matrix \(\mathbf{B} \) of “partial effects” as follows:

\[
\mathbf{B} = \begin{pmatrix}
 b_{11} & \cdots & b_{1Q} \\
 \vdots & \ddots & \vdots \\
 b_{N1} & \cdots & b_{NQ}
\end{pmatrix}
\]

If all variables are standardized, partial effects are beta coefficients so that they are independent of the unit of measurement and can be compared and summed.
Once matrix B is known, we can define for each unit i the Total Unit Responsiveness (TUR) and the Mean Unit Responsiveness (MUR) as:

$$\text{TUR}_i = \sum_{j=1}^{Q} b_{ij} \quad \text{and} \quad \text{MUR}_i = \frac{1}{Q} \sum_{j=1}^{Q} b_{ij}$$

and for each factor j, the Total (or Mean) Responsiveness of y to factor j’s unit change (TFR and MFR) as:

$$\text{TFR}_j = \sum_{i=1}^{N} b_{ij} \quad \text{and} \quad \text{MFR}_j = \frac{1}{N} \sum_{i=1}^{N} b_{ij}$$
In a **cross-section** data setting, the estimation of each b_{ij} can be done by **Ordinary Least Squares** of this regression:

$$y_i = \gamma_0 + x_{i,-j} \gamma + (\delta_0 + \bar{x}_{-j} \delta)x_{ij} + x_{ij}(x_{i,-j} - \bar{x}_{-j})\delta + \eta_i$$

$$\eta_i = u_i + x_{ij}v_i + e_i$$

where: \bar{x}_{-j} is the vector of the sample means of $x_{i,-j}$.

Once previous regression parameters have been estimated, we can get for the generic unit i an estimation of the partial effect of factor x_j on y as:

$$\hat{b}_{ij} = \hat{\delta}_0 + x_{i,-j} \hat{\delta}$$

By repeating this procedure for each unit i and factor j, we can finally obtain \hat{B}, the estimation of matrix B.
When a longitudinal dataset is available, the estimation of B can be obtained either by using random-effect or fixed-effects estimation of this panel regression:

$$
y_{it} = \gamma_0 + x_{it,-jt} \gamma + (\delta_0 + \bar{x}_{-jt} \delta)x_{ijt} + x_{ijt} (x_{it,-jt} - \bar{x}_{-jt}) \delta + \alpha_i + \eta_{it}
$$

where the added parameter α_i represents a unit-specific effect accounting for unobserved heterogeneity.

Fixed-effect estimation, by assuming free correlation between α_i and η_{it}, can mitigate a potential endogeneity bias due to misspecification of previous equation and measurement errors in the variables considered in the model (Wooldridge, 2010, pp. 281-315).

As such, a panel dataset allows for more reliable estimates of the true responsiveness scores than usual OLS.
The Stata command \texttt{rscore}

help \texttt{rscore}

Title
\texttt{rscore-} Estimation of responsiveness scores

Syntax
\begin{verbatim}
rscore outcome [varlist] [if] [in] [weight], model(modeltype) [factor(varlist_f) xlist(varlist_c)]
\end{verbatim}

fweights, iweights, and pweights are allowed; see weight.

Description
\texttt{rscore} computes unit-specific responsiveness scores using an iterated Random-Coefficient-Regression (RCR). The basic econometrics of this model can be found in Wooldridge (2002, pp. 638-642). The model estimated by \texttt{rscore} considers a regression of a response variable y, i.e. (outcome), on a series of factors (or regressors) x, i.e. varlist, by assuming a different reaction (or "responsiveness") of each unit to each factor contained in x. \texttt{rscore} allows for: (i) ranking units according to the level of the responsiveness score obtained; (ii) detecting factors that are more influential in driving unit performance; (iii) studying, more in general, the distribution (heterogeneity) of the factors’ responsiveness scores across units.

Options
\begin{description}
\item \texttt{model(modeltype)} specifies the model to be estimated, where modeltype must be one of the following models: "ols", "fe", "re". It is always required to specify one model.
\item \texttt{factor(varlist_f)} specifies that factor variables have to be included among the regressors. It is optional for both models.
\item \texttt{xlist(varlist_c)} specifies that control variables (which are not factors) have to be included among the regressors. It is optional for both models.
\end{description}

\begin{tabular}{ll}
\hline
\textbf{modeltype_options} & \textbf{Description} \\
\hline
\textit{Model} & \\
ols & regression estimated by ordinary least squares (OLS) \\
fe & panel data fixed-effect regression (FE) \\
re & panel data random-effect regression (RE) \\
\hline
\end{tabular}
rscore creates a number of variables:

_bvarname is the responsiveness scores variable related to varname. They are as many as the variables and/or factors considered in model specification.

Remarks

Please remember to use the update query command before running this program to make sure you have an up-to-date version of Stata installed.

Examples

. rscore y x1 x2 x3, model(ols) factor(f1 f2)
. rscore y x1 x2 x3, model(fe) factor(f1 f2) xlist(x4 x5)

Reference

Author

Giovanni Cerulli
IRCrES-CNR
Research Institute for Sustainable Economic Growth, National Research Council of Italy
E-mail: giovanni.cerulli@ircres.cnr.it

Also see

Online: ivregress
The Impact of Technological Capabilities on Invention: An Investigation Based on Country Responsiveness Scores

GIOVANNI CERULLI *
Ceris-CNR, Roma, Italy

Summary. — This study explores the impact of “technological capabilities” (TCs) on invention (measured by “patenting intensity”) in a dataset of 42 emerging and advanced countries observed over 13 years (1995–2007). By computing country responsiveness scores we are able to: (i) rank countries according to their inventive responsiveness; (ii) detect more influential TCs factors; (iii) test the presence of increasing/decreasing patenting returns to TCs. Results show an inverted-U relation between invention responsiveness and TCs intensity. We conclude that self-reinforcing mechanisms characterize the early stage of TCs accumulation (increasing returns), and weakening mechanisms higher levels of TCs intensity (decreasing returns). Findings are widely discussed.

Key words — technological capabilities, responsiveness scores, patenting returns, countries’ technological performance
Illustrative example: drivers of GDP growth

Research questions

Factor importance rank: Among countries’ GDP components, what are those whose growth change produces larger/smaller response in terms of GDP growth?

Factor response heterogeneity: Is country GDP growth response more or less heterogeneously/homogenously distributed among its driving factors?

Unit responsiveness rank: which units do have larger/smaller responsiveness scores for each given factor?
Dataset: World Bank’s “Economy & Growth” indicators (283 macroeconomic indicators, 250 countries, 1960-2014, 13,695 observation, longitudinal).

```
***************
* GDP annual growth
***************
global time year>=1990
tw ///
line ny_gdp_mktp_kd_zg year if countrycode == "GBR" & $time, sort || ///
line ny_gdp_mktp_kd_zg year if countrycode == "FRA" & $time, sort || ///
line ny_gdp_mktp_kd_zg year if countrycode == "ITA" & $time, sort || ///
line ny_gdp_mktp_kd_zg year if countrycode == "ESP" & $time, sort || ///
line ny_gdp_mktp_kd_zg year if countrycode == "DEU" & $time, sort ///
xlabel(1990(2)2015, gmax angle(horizontal)) ///
legend(label(1 "GBR") label(2 "FRA") label(3 "ITA") label(4 "ESP")label(5 "DEU")) ///
title("GDP annual growth")
```
* Estimate RSCORES for the "GDP annual growth" (Y)

global xvars B std G std C std I std E std M std
* OLS
rscore Y_std $xvars , model(ols)
order _b*

data.plt

* Distribution of RSCORES for 'GDP annual growth'

global cond if _bx5>-0.5 & _bx1>-0.5 & _bx4>-0.5 & _bx4<3
tw ///
kdensity _bx1 $cond || ///
kdensity _bx2 $cond || ///
kdensity _bx3 $cond || ///
kdensity _bx4 $cond || ///
kdensity _bx5 $cond || ///
kdensity _bx6 $cond , ///
xtitle(""") legend(label(1 "Deficit/surplus") label(2 "Public expenditure") ///
label(3 "Consumption") label(4 "Investment") label(5 "Export") label(6 "Import")) ///
title("Distribution of RSCORES for 'GDP annual growth'")

This figure lends two relevant information:

- Driver response *heterogeneity*
- Driver response *intensity*
* Country "GDP growth" responsiveness to "GROWTH IN FIXED INVESTMENTS" over time

global time _bx4!=".

tw ///
line _bx4 year if countryCode == "GBR" & $time, sort || ///
line _bx4 year if countryCode == "FRA" & $time, sort || ///
line _bx4 year if countryCode == "ITA" & $time, sort || ///
line _bx4 year if countryCode == "ESP" & $time, sort || ///
line _bx4 year if countryCode == "DEU" & $time, sort ///
xlabel(1994(2)2014, gmax angle(horizontal)) ///
legend(label(1 "GBR") label(2 "FRA") label(3 "ITA") label(4 "ESP") label(5 "DEU")) ///
title("Country GDP GROWTH responsiveness to INVESTMENT GROWTH over time", size(small))
Country GDP GROWTH responsiveness to INVESTMENT GROWTH over time

Year
GBR FRA ITA ESP DEU
Unit responsiveness rank

```plaintext
set more off
sort _bx4
list countryname year _bx4 if _bx4>=3 & _bx4!=.
```

<table>
<thead>
<tr>
<th>countryname</th>
<th>year</th>
<th>_bx4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belarus</td>
<td>1992</td>
<td>3.230418</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>1999</td>
<td>3.232215</td>
</tr>
<tr>
<td>Mali</td>
<td>2006</td>
<td>3.271389</td>
</tr>
<tr>
<td>Congo, Rep.</td>
<td>2008</td>
<td>3.311152</td>
</tr>
<tr>
<td>Seychelles</td>
<td>2008</td>
<td>3.314989</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2012</td>
<td>3.334117</td>
</tr>
<tr>
<td>Macao SAR, China</td>
<td>2009</td>
<td>3.413818</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>2007</td>
<td>3.46852</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1999</td>
<td>3.514539</td>
</tr>
<tr>
<td>Argentina</td>
<td>2002</td>
<td>3.515946</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1991</td>
<td>3.667125</td>
</tr>
<tr>
<td>Iran, Islamic Rep.</td>
<td>1994</td>
<td>3.690769</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1990</td>
<td>4.40006</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2004</td>
<td>5.845391</td>
</tr>
</tbody>
</table>
Conclusions

\texttt{rscore} can be useful to detect both \textit{factor importance} and \textit{factor heterogeneous response}.

\texttt{rscore} allows to \textit{fixed-effect} estimation to mitigate potential factor \textit{endogeneity}.

\texttt{rscore} allows to rank both factors and observations, thus providing more detailed idiosyncratic information.