{smcl} {* *! version 1.0.0 24/jul2020}{...} {hline} {cmd:help critiband1} [Salgado-Ugarte, I.H. 2002] {hline} {title:Title} {p2colset 5 18 20 2}{...} {p2col :{hi:critiband1} {hline 2}} Critical bandwidth search for WARPing density estimation (Updated version){p_end} {p2colreset}{...} {title:Syntax} {p 8 17 2} {cmd:critiband1} {varname} {ifin} {cmd:,} {cmdab:bwh:igh(}{it:#}{cmd:)} {cmdab:bwl:ow(}{it:#}{cmd:)} {cmdab:st:size(}{it:#}{cmd:)} {cmdab:m:val(}{it:#}{cmd:)} [{cmdab:nog:raph} {cmd:graph_options}] {title:Description} {pstd}{cmd:critiband1} calculates the kde's and count the modes in order to find the critical bandwidths in the specified range of bandwidths for use with the Silverman multimodality smoothed bootstrapped test. As in the silvtest.ado program, to estimate the KDE it uses the WARPing procedure based on the algorithms described in Haerdle (1991), Scott (1992; 2016), Salgado-Ugarte & Saito-Quezada (2020). The program produces a graph and a text in the Results window with the bandwidths and number of modes in the analyzed range. {title:Options} {phang}{opt bwhigh}({it:#}) is the high value for the range of smoother parameter h (bandwidth for kernel density estimators). {phang}{opt bwlow}({it:#}) is the low value for the range of smoother parameter h {phang}{opt stsize}({it:#}) specifies size of the step for the specified bandwidth range {phang}{opt mval}({it:#}) is the number of histograms to average for the kde estimation {phang}{opt nograph} suppresses the graph drawing. {phang}{opt graph_options} are any of the options allowed with {cmd:graph, twoway} except top label options. {title:Remarks} {hi:bwhigh}, {hi:bwlow}, {hi:stsize} and {hi:mval}, are not optional. If the user does not provide them, the program halts and displays an error message on screen. As the warpdenm.ado program, this program is an all Stata command. Due to the requirement of larger precision, a value of at least 40 for the number of histograms to average ({opt mval) is necessary. The kde graphics display the effect of varying the bandwidth: "smooth" results being gradualy becoming noisy estimations, with the corresponding increment in the number of modes. Because this program is intended to use in combination with the silvtest.ado program (Silverman's multimodality smoothed bootstrap test) only the Gaussian kernel is implemented. The number of KDEs calculated is round(({hi:bwhigh} - {hi:bwlow})/{hi:stsize}) + 1. If this number is large, it is recommended to divide the total range of interest in several shorter intervals in order to fit the size of the Results window. This procedure permit to observe the gradual increment of the modes and to locate the last bandwidth value compatible with a given number of modes. The graphics give and animated presentation of the increasing number of modes with the bandwidth decreasing, procedure very instructive and recommended by Izenman and Sommer (1988). {title:Examples} {phang}{stata "use silica" :. use silica}{p_end} {phang}{stata "critiband1 silica, bwhigh(2.5) bwlow(.5) stsize(0.01) mval(40)" :. critiband1 silica, bwhigh(2.5) bwlow(.5) stsize(0.01) mval(40)}{p_end} {pstd}Will display the KDEs for {hi:silica} using bandwidths from 2.5 to 0.5 in steps of 0.01 and a text report of the bandwidths and the corresponding number of modes {phang}{stata "critiband1 silica, bwh(2.5) bwl(.5) st(.01) m(40) nog" :. critiband1 silica, bwh(2.5) bwl(.5) st(.01) m(40) nog}{p_end} {pstd}Will display only the text of bandwidth and number of modes on the "Results" window for the {hi:silica} variable. {title:References} Haerdle, W. (1991) Smoothing Techniques with Implementation in S. Springer-Verlag Chapter 2: 43-84; Chapters 1-2: 1-84. Izenman, A.J. and C. Sommer (1988) Philatelic mixtures and multimodal densities. Journal of the American Statistical Association, 83(404): 941-953. Salgado-Ugarte, I.H. (2002) Suavización no paramétrica para análisis de datos. DGAPA and FES Zaragoza, UNAM. Mexico. 139 p. Salgado-Ugarte, I.H., M. Shimizu, and T. Taniuchi (1993) snp6: Exploring the shape of univariate data using kernel density estimators. Stata Technical Bulletin 16: 8-19. Salgado-Ugarte, I.H., M. Shimizu, and T. Taniuchi (1995a) snp6.1: ASH, WARPing, and kernel density estimation for univariate data. Stata Technical Bulletin 26: 23-31. Salgado-Ugarte, I.H., M. Shimizu, and T. Taniuchi (1995b) snp6.2: Practical Rules for bandwidth selection in univariate density estimation. Stata Technical Bulletin 27: 5-19. Salgado-Ugarte, I.H., M. Shimizu, and T. Taniuchi (1997) snp13: Nonparametric assessment of multimodality for univariate data. Stata Technical Bulletin 38: 27-35. Scott, D.W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley, Chapter 9: 256-257. Scott, D.W. (2016) Multivariate Density Estimation: Theory, Practice, and Visualization. 2nd. ed. John Wiley, Hoboken, NJ, USA: Chapter 9: 275-276 Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall. {title:Authors} Original version: Isaias H. Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi University of Tokyo, Faculty of Agriculture, Department of Fisheries, Yayoi 1-1-1, Bunkyo-ku Tokyo 113, Japan.(Fax 81-3-3812-0529) Updated version: Isaías H. Salgado-Ugarte & V. Mitsui Saito-Quezada Laboratorio de Biometría y Biología Pesquera Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México isalgado@unam.mx {title:Also see} {psee} STB: snp6 (STB-16); snp6.1 (STB-26); snp6.2 (STB-27); snp6.4 (STB-38) {phang}On-line: {hi:help} for {help warpdenm1}, {help kerneld}, {help bandw1}, {help l2cvwarpy}, {help bcvwarpy}, {help kernrpy}, {help numode} {p_end}