Title
episens - Basic sensitivity analysis of epidemiological results
Syntax
Cohort studies and Case-control studies
episens var_case var_exposed [var_time] [if] [in] [weight] [, options]
episensi #a #b #c #d [, options]
Options
options Description ------------------------------------------------------------------------- Options study(cc|cs|ir) specify the type of study unconf(#pexp #punexp #rrcd) analysis of unmeasured confounding miexp(#seca #spca #senc spnc) analysis of misclassification of the exposure corder(#) order of the corrections format(%fmt) display format for numbers ------------------------------------------------------------------------- Description
episens provides basic sensitivity analysis of the observed relative risk for unmeasured confounding and misclassification of the exposure, or both. episensi is the immediate form of episens; see immed.
Options
+-------+ ----+ Model +------------------------------------------------------------
study(cc|cs|ir) specifies the type of study: cc (case-control data), cs (cumulative-incidence data), or ir (incidence-rate data). The default is cc. See epitab for more information.
unconf(#pexp #punexp #rrcd) specifies the analysis of unmeasured confounding, where #pexp is the prevalence of the unmeasured confounder among the exposed subjects; #punexp is the prevalence of the unmeasured confounder among the unexposed subjects; and #rrcd is the relative risk between the unmeasured confounder and disease.
miexp(#seca #spca #senc spnc) analysis of misclassification of the exposure, where #seca is the sensitivity among the cases; #spca is the specificity among the cases; #senc is the sensitivity among the non-cases; and #spnc is the specificity among the non-cases.
corder(#) specifies the order of the corrections: 1 means first correct for unmeasured confounding and then for misclassification of the exposure; 2 means first correct for misclassification of the exposure and then for unmeasured confounding.
format(%fmt) display format for numbers; default is format(%3.2f).
Examples
// Cumulative incidence data
webuse ugdp.dta cs case exposed [fweight=pop] episensi 30 21 174 184 , st(cs) unc(0.3 0.7 3) episens case exposed [fweight=pop], st(cs) episens case exposed [fweight=pop], st(cs) unc(0.3 0.7 1) episens case exposed [fweight=pop], st(cs) unc(0.3 0.7 3) episens case exposed [fweight=pop], st(cs) unc(0.3 0.7 3) mie(0.9 0.8 > 0.9 0.8)
// Incidence-rate data
sysuse cancer.dta gen exp = drug == 2 ir died exp studytime episens died exp studytime episens died exp studytime , st(ir) unc(0.5 0.2 2) episensi 6 25 209 535 , st(ir)
// Case-control data
episensi 45 94 257 945, st(cc) unc(0.7 0.5 5) episensi 45 94 257 945, st(cc) mie(0.9 0.9 0.8 0.8) episensi 45 94 257 945, st(cc) mie(0.9 0.9 0.8 0.8) episensi 45 94 257 945, st(cc) mie(0.9 0.9 0.8 0.8) episensi 45 94 257 945, st(cc) unc(0.7 0.5 5) mie(0.9 0.9 0.8 0.8) co( > 1) episensi 45 94 257 945, st(cc) unc(0.7 0.5 5) mie(0.9 0.9 0.8 0.8) co( > 2) episensi 45 94 257 945, st(cc) mie(0.8 0.8 0.8 0.8) episensi 45 94 257 945, st(cc) unc(0.7 0.5 5) mie(0.9 0.9 0.8 0.8) episensi 45 94 257 945, st(cc) unc(0.7 0.5 5) mie(1 1 1 1)
References
Greenland S., 1996, Basic methods for sensitivity analysis of biases. Int J Epidemiol, 5(6):1107-16.
Authors
Nicola Orsini, Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
Rino Bellocco, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
Sander Greenland, Department of Epidemiology, UCLA School of Public Health, USA
Support
http://nicolaorsini.altervista.org nicola.orsini@ki.se
Also see
Manual: [ST] epitab
Online: epitab, episensrri (if installed)