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Overview

Many scalar measures have been developed to summarize the overall goodness of fit for regres-
sion models of continuous, count, or categorical dependent variables. The post-estimation
command fitstat calculates a large number of fit statistics for the estimation commands
clogit, cnreg, cloglog, gologit, intreg, logistic, logit, mlogit, nbreg, ologit,
oprobit, omodel, poisson, probit, regress, zinb, and zip. With its saving() and
using () options, the command also allows the comparison of fit measures across two models.
While fitstat duplicates some measures computed by other commands (e.g., the pseudo- R?
in standard Stata output; 1fit), fitstat adds many more measures and makes it conve-
nient to compare measures across models. Details on the measures that are discussed below
can be found in Long (1997) which cites the original sources for each measure and provides
further details on their derivation. Note to the Editor: If you prefer, the original sources can
be cited in this article.

Before proceeding, a word of caution regarding the use of these measures. A scalar
measure of fit can be useful in comparing competing models and ultimately in selecting a
final model. Within a substantive area of research, measures of fit can provide a rough index
of whether a model is adequate. However, there is no convincing evidence that selecting a
model that maximizes the value of a given measure results in a model that is optimal in
any sense other than the model having a larger (or smaller) value of that measure. While
measures of fit provide some information, it is only partial information that must be assessed
within the context of the theory motivating the analysis, past research, and the estimated
parameters of the model being considered.

Syntax
fitstat [, saving(name) save using(name) dif bic forcel

While many measures of fit are based on values returned by the estimation command, for
some measures it is necessary to compute additional statistics from the estimation sample.
While fitstat does not include if and in options, analysis is based on the sample defined by
e(sample) from the last model estimated. Accordingly, fitstat is appropriate for models
estimated using if and in restrictions in the original model. fitstat can also be used
when models are estimated with weighted data. Here there are two limitations. First,
some measures cannot be computed with some types of weights. Second, with pweights we
use values of the “pseudo-likelihoods” to compute our measures of fit. Given the heuristic
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nature of the various measures of fit, we see no reason why the resulting measures would be
appropriate. fitstat ends with an error if the last estimation command does not return a
value for the log-likelihood equation with only an intercept (i.e., if e(11_0) returns a missing
value). This will occur, for example, if the noconstant option is used with the estimation
command.

Options

saving(name) saves the computed measures in a matrix for subsequent comparisons.
name cannot be longer than 4 characters.

save 1is equivalent to saving(0) .

using(name) compares the fit measures for the current model with those of the model
saved as name. name cannot be longer than 4 characters.

dif is equivalent to using(0) .

bic presents only BIC and other information measures. In comparing two models, fitstat
reports Raftery’s (1996) guidelines for assessing the strength of one model over another.

force allows comparison of two models even when the number of observations or the
estimation method varies between the two models.

Models and Measures

Details on the measures of fit are given below. Here we only summarize which measures are
computed for which models. B indicates a measure is computed; [J indicates the measure is
not computed.

gologit
nbreg
logistic cnreg poisson
logit ologit clogit intreg =zinb
regress probit cloglog oprobit mlogit tobit zip
Log-likelihood [] [ ] m' [] [] [] (B
Deviance & LR chi-square | | | ] | | |
AIC, AIC*n, BIC, BIC/ ] | | ] | | |
R? & Adjusted R? ] ] | U U | U
Efron’s R? ] | | (] (] ] (]
McFadden’s, ML, C&U’s R? g | | ] ] | ]
Count & Adjusted Count R? O [ | [ | [ ] m O O
Var(e), Var(y*) and M&Z's R? 0O | O [ O | O

1 - For cloglog the log-likelihood for the intercept-only model does not correspond to the first step in the
iterations.

2 - For zip and zinb, the log-likelihood for the intercepts-only model is calculated by estimating zip|zinb
lhs-variable, inf(_cons).

3 - The adjusted count R? is not defined for clogit.



Example

To compute fit statistics for a single model:

. use mroz, clear

(PSID 1976 from T. Mroz)

. * compute fit statistics for a single model

. logit 1fp kb5 k618 age wc hc lwg inc
Iteration O log likelihood = -514.8732
Iteration 1: log likelihood = -454.32339
Iteration 2: log likelihood = -452.64187
Iteration 3: log likelihood = -452.63296
Iteration 4 log likelihood = -452.63296
Logit estimates Number of obs 753
LR chi2(7) = 124.48
Prob > chi2 = 0.0000
Log likelihood = -452.63296 Pseudo R2 = 0.1209
1fp | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
— —t— - — - - - -
k6 | -1.462913 .1970006 -7.426  0.000 -1.849027 -1.076799
k618 | -.0645707 .0680008 -0.950 0.342 -.1978499 .0687085
age | -.0628706 .0127831 -4.918 0.000 -.0879249 -.0378162
we | .8072738 .2299799 3.510 0.000 .3565215 1.258026
hec | .1117336 .2060397 0.542 0.588 -.2920969 .515564
lug | .6046931 .1508176 4.009 0.000 .3090961 .9002901
inc | -.0344464 .0082084 -4.196  0.000 -.0505346  -.0183583
_cons | 3.18214  .6443751 4.938 0.000 1.919188 4.445092
. fitstat
Measures of Fit for logit of 1fp
Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -452.633
D(745): 905.266 LR(7): 124.480
Prob > LR: 0.000
McFadden’s R2: 0.121 McFadden’s Adj R2: 0.105
Maximum Likelihood R2: 0.152 Cragg & Uhler’s R2: 0.204
McKelvey and Zavoina’s R2: 0.217 Efron’s R2: 0.155
Variance of y*: 4.203 Variance of error: 3.290
Count R2: 0.693 Adj Count R2: 0.289
AIC: 1.223 ATC*n: 921.266
BIC: -4029.663 BIC’: -78.112



To compute and save fit measures:

. logit 1fp kb5 k618 age wc hc lwg inc
:::output same as above:::

. fitstat, saving(modi)

:::output same as above:::

(Indices saved in matrix fs_modl)

To compare saved model to current model:
. logit 1fp kb age age2 wc inc

:::output not shown:::

. fitstat, using(modl)

Measures of Fit for logit of 1lfp

Current Saved Difference
Model: logit logit
N: 753 753 0
Log-Lik Intercept Only: -514.873 -514.873 0.000
Log-Lik Full Model: -461.653 -452.633 -9.020
D: 923.306(747) 905.266(745) 18.040(2)
LR: 106.441(5) 124.480(7) -18.040(-2)
Prob > LR: 0.000 0.000 0.000
McFadden’s R2: 0.103 0.121 -0.018
McFadden’s Adj R2: 0.092 0.105 -0.014
Maximum Likelihood R2: 0.132 0.152 -0.021
Cragg & Uhler’s R2: 0.177 0.204 -0.028
McKelvey and Zavoina’s R2: 0.182 0.217 -0.035
Efron’s R2: 0.135 0.155 -0.020
Variance of yx*: 4.023 4.203 -0.180
Variance of error: 3.290 3.290 0.000
Count R2: 0.677 0.693 -0.016
Adj Count R2: 0.252 0.289 -0.037
AIC: 1.242 1.223 0.019
AIC*n: 935.306 921.266 14.040
BIC: -4024.871 -4029.663 4.791
BIC’: -73.321 -78.112 4.791
Difference of 4.791 in BIC’ provides positive support for saved model.



Saved Results

fitstat saves in r() whichever of the following are computed for a particular model:

r(aic) - AIC
r(aic_n) - AICxN
r(bic) - BIC

r(bic_p) - BICY

r(dev) - deviance

r(dev_df) - degrees of freedom for deviance

r(11) - log-likelihood for full model

r(11_0) - log-likelihood for model with only intercept
r (1rx2) - likelihood ratio chi-square

r(1rx2_df) - degrees of freedom for likelihood ratio chi-square
r(1rx2_p) - probability level of chi-square test
r(N) - number of observations

r(n_parm) - number of parameters

r(n_rhs) - number of right hand side variables
r(r2) - R? for linear regression model

r(r2_adj) - adjusted R? for linear regression model
r(r2_ct) - count R?

r(r2_ctadj) - adjusted count R?

r(r2_cu) - Cragg & Uhler’s R?

r(r2_ef) - Efron’s R?

r(r2_mz) - McKelvey and Zavoina’s R?

r(r2_mf) - McFadden’s R?

r(r2_mfadj) - McFadden’s adjusted R?

r(r2_ml) - maximum likelihood R?

r(v_error) - variance of error term

r(v_ystar) - variance of y*

When the saving(name) option is specified, computed measures are also saved in matrix
fs_name. The column names of the matrix correspond to the names of the measures listed
above. The row name is the command used to estimate the saved model. Values of -9999 in
the matrix indicate that a measure is not appropriate for the given model. The row name is
the name of the estimation procedure.

Extending fitstat to other Models and Measures

fitstat can be extended to other models and measures of fit. When doing this, there are
several things to keep in mind. First, the program depends on values returned by eclass
estimation commands (e.g., e(sample)). Programs like ocratio which do not use eclass
returns cannot incorporated into fitstat without major changes to the structure of the
program. Second, not all measures of fit are appropriate for all models. The programmer
must be careful to ensure that fitstat does not automatically compute inappropriate fit



statistics. Third, the way in which values such as the number of parameters and the number
of right-hand-side variables are computed differs across models. Consequently, additional
code may be needed for these computations.

Methods and Formulas

This provides brief descriptions of each measure computed by fitstat. Full details along
with citations to original sources are found in Long (1997). The measures are listed in the
same order as the output illustrated above.

Log-Likelihood Based Measures Stata begins maximum likelihood iterations by com-
puting the log-likelihood of the model with all parameters but the intercept(s) constrained
to zero, referred to as L (Miytercept) below. The log-likelihood upon convergence, referred to
as Mg, below, is also listed. In Stata this information is usually presented as the first step
of the iterations and in the header for the estimation results. Note that in cloglog, the
value at iteration 0 is not the log-likelihood with only the intercept. For zip and zinb, the
“intercept-only” model can be defined in different ways. These commands return as e (11_0)
the value of the log-likelihood with the binary portion of the model unrestricted while only
the intercept is free for the Poisson or negative binomial portion of the model. Alternatively,
fitstat returns the value of the log-likelihood from the model with only an intercept in
both the binary and count portion of the model.

Chi-square Test of All Coefficients: LR A likelihood ratio test of the hypothesis
that all coefficients except the intercept(s) can be computed by comparing the log-likelihoods:
LR= 21In L(Mpu) — 2In L(Miytercept)- This statistic is sometimes designated as G*. LR is
reported by Stata as: LR chi2(7) = 124.48 where the degrees of freedom, (7), are the
number of constrained parameters. fitstat reports this statistic as: LR(7): 124.48 For
zip and zinb, LR tests that the coefficients in the count portion (not the binary portion)
of the model are zero.

Deviance: D The deviance compares a given model to a model that has one param-
eter for each observation and can reproduce perfectly the observed data. The deviance is
defined as D = —21n L(My,y), where the degrees of freedom equals N minus the number of
parameters. Note that D does not have a chi-square distribution.

R? in the LRM For regress, fitstat reports the standard coefficient of determination
which can be defined variously as:

RQ =1— Zz]\il (yl B ?/\2)2 _ VCLT(’ZJ\) -1 {L(Mlntcrccpt):r/]v
SV wi—9)?  Var(y) + Var(d) L(Mgun)
The adjusted R? is defined as:

_ K N -1
2 _ 2
R_<R N—1><N—K—1>

where K is the number of independent variables.

(1)
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Pseudo-R?’s While each of the definitions of R? in equation 1 give the same numeric
value in the LRM, they give different answers and thus provide different measures of fit
when applied to the other models evaluated by fitstat.

McFadden’s R?> McFadden R?, also known as “likelihood ratio index,” compares a
model with just the intercept to a model with all parameters. It is defined as:

B In /L\(MFull)
InL (MIntcrccpt )

RI%ICF =1

If model Mmyercept = My, RﬁICF equals 0, but RﬁICF can never exactly equal one. This
measure, which is computed by Stata as Pseudo R2 = 0.1209, is listed in fitstat as:
McFadden’s R2: 0.121 Since R% . always increases as new variables are added, an ad-
justed version is also available:

In L(Mgyy) — K*
In E(Mhltercept )

RI%ICF =1
where K* is the number of parameters (not independent variables).

Maximum Likelihood R? Another analogy to R? in the LRM was suggested by
Maddala:

L ( Mlntcrccpt )

2/N
2 - N _ . 2
Ry, =1 { L(Man)_} 1 —exp(—G~/N)

Cragg & Uhler’s R* Since R%;; only reaches a maximum of 1—L( Mptercept )2/ N, Cragg
and Uhler suggested a normed measure:

R%IL _ 1- [L(Mhltcrccpt) /L(MFull) ]2/N

max RI%IL 1-— L(Mlntercept)Q/N

Efron’s R? For binary outcomes, Efron’s pseudo-R? defines j = 7 = f’;(y =1|x) and
equals:
N ~\2
>z (Y — ™)
S (i —7)

2 _
REfron =1-

V(y*), V(e) and McKelvey and Zavoina’s R?> Some models can be defined in terms
of a latent variable y*. This includes the models for binary or ordinal outcomes: logit,
probit, ologit and oprobit, as well as some models with censoring: tobit, cnreg, and
intreg. Each model is defined in terms of a regression on a latent variable y*:

Yy =x0B+e¢



o~ ——

Using 1//5"(@7*) = 3 Var(x) B, McKelvey and Zavoina proposed:

Var (7) Var (7)

Y
Var(y*)  Var(i*) + Var(e)

2 —
RJV[&Z -

In models for categorical outcomes, Var(g) is assumed to identify the model; in models with
censoring it can be estimated.

Count and Adjusted Count R? Observed and predicted values can be used in models
with categorical outcomes to compute what is known as the count R?. Consider the binary
case where the observed y is 0 or 1 and m; = Pr(y = 1 | x;). Define the expected outcome y
as

{0 ifF <05
YTV 1 ifm > 05

This allows us to construct a table of observed and predicted values, such as produced by
the Stata command lstat:

———————— True —-——————-
Classified | D "D Total
— e S
| 342 145 | 487
| 86 180 | 266
Total | 428 325 | 753

A seemingly appealing measure is the proportion of correct predictions, referred to as the
count R*:

1
R%ount = N Z 55
J

where the n;;’s are the number of correct predictions for outcome j. The count R? can
give the faulty impression that the model is predicting very well. In a binary model without
knowledge about the independent variables, it is possible to correctly predict at least 50
percent of the cases by choosing the outcome category with the largest percentage of observed
cases. To adjust for the largest row marginal:

221y — max ()

N — max (n,4)

2 —
RAdeOunt -

where n,.. is the marginal for row 7. The adjusted count R? is the proportion of correct guesses
beyond the number that would be correctly guessed by choosing the largest marginal.

Information Measures This class of measures can be used to compare models across
different samples or to compare non-nested models.
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AIC Akaike’s (1973) information criteria is defined as AIC= 2 IHL(]]:[/[’C) 2P
L(My) is the likelihood of the model and P is the number of parameters in the model
(e.g., K+1 in the binary regression model where K is the number of regressors). All else
being equal, the model with the smaller AIC is considered the better fitting model. Some
authors define AIC as being N times the value we report. This is done in m1fit (Tobias and
Campbell, STB-45). We report this quantity as AIC*n .

where

BIC and BIC' The Bayesian information criterion has been proposed by Raftery (1996
and the literature cited therein) as a measure of overall fit and a means to compare nested
and non-nested models. Consider the model M} with deviance D(M}) . BIC is defined as:

BIC), = D(My) — df, In N

where dfy is the degrees of freedom associated with the deviance. The more negative the
BICy, the better the fit. A second version of BIC is based on the LR chi-square with df},
equal to the number of regressors (not parameters) in the model. Then:

BIC, = —G*(My,) + df, In N

The more negative the BIC) the better the fit. The difference in the BICs from two
models indicates which model is more likely to have generated the observed data. Since
BIC,—BIC, =BIC]—BICj the choice of which BIC measure to use is a matter of conve-
nience. If BIC;—BIC; < 0, then the first model is preferred. If BIC;—BICy; > 0, then the
second model is preferred. Raftery suggested guidelines for the strength of evidence favoring
M, against M; based on a difference in BIC or BIC':

Absolute
Difference Evidence
0-2 Weak
2-6 Positive
6-10 Strong
>10 Very Strong
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