{smcl}
{* *! version 1.2.1 20jan2011}{...}
{cmd:help fracdydx}
{right:also see: {help fracpoly}}
{hline}
{title:Title}
{p2colset 5 17 19 2}{...}
{p2col :{hi:fracdydx} {hline 2}}Evaluate derivatives of fractional polynomials{p_end}
{p2colreset}{...}
{title:Syntax}
{p 8 16 2}{cmd:fracdydx} [{varname}] [{cmd:,} {it:options}]
{synoptset 29 tabbed}{...}
{synopthdr}
{synoptline}
{synopt :{opt c:oeffs(# [#...]|matrixname)}}defines the
regression coefficients to be used{p_end}
{synopt :{opt d:eriv(#)}}order of derivative to be calculated{p_end}
{synopt :{opt g:en(newvarname)}}stores the required derivative in {it:newvarname}{p_end}
{synopt :{opt p:owers(# [#...]|matrixname)}}defines the
fractional polynomial powers to be used{p_end}
{synoptline}
{p2colreset}{...}
{title:Description}
{pstd}
{cmd:fracdydx} evaluates derivative(s) of a fractional polynomial function
at {it:varname} (if specified) or at the xvar most recently used by
{help fracpoly}.
{pstd}
If {opt powers()} and {opt coeffs()} are not specified, powers and regression
coefficients from the most recent fit of {cmd:fracpoly} are used.
Otherwise, powers from {opt powers()} and coefficients from
{opt coeffs()} are used.
{title:Options}
{phang}
{opt coeffs(# [#...] | matrixname)} defines the regression coefficients for
the fractional polynomial model to be used.
{phang}
{opt deriv(#)} specifies the order of derivative to be calculated.
Default {it:#} is 1.
{phang}
{opt gen(newvarname)} puts the {opt deriv()}th derivative of the FP into
{it:newvarname}.
{phang}
{opt powers(# [#...] | matrixname)} defines the fractional polynomial
powers to be used.
{title:Stored quantities}
{pstd}
{cmd:fracdydx} is an R-class program and saves in the following
{cmd:r()} locations:
{cmd:r(powers)} powers for the FP representing the {cmd:deriv()}th derivative
{cmd:r(coeffs)} regression coefficents for the FP representing the
{cmd:deriv()}th derivative
{title:Examples}
{phang2}{cmd:. fracdydx}{p_end}
{phang2}{cmd:. fracdydx, gen(d1)}{p_end}
{phang2}{cmd:. fracdydx x, powers(-1 2) coeffs(1.25 0.65) deriv(2)}{p_end}
{title:Author}
{pstd}
Patrick Royston, MRC Clinical Trials Unit, London, UK.
({browse "mailto:patrick.royston@ctu.mrc.ac.uk":pr@ctu.mrc.ac.uk})
{title:Also see}
{psee}
Manual: {manlink R fracpoly}