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Introduction and Disclaimer

gllamm is a Stata program to fit GLLAMMs (Generalised Linear Latent and Mixed Models).

GLLAMMs are a class of multilevel latent variable models for (multivariate) responses of mixed
type including continuous responses, counts, duration/survival data, dichotomous, ordered and
unordered categorical responses and rankings. The latent variables (factors or random effects) can
be assumed to be discrete or to have a multivariate normal distribution. Examples of models in this
class are multilevel generalised linear models or generalised linear mixed models, multilevel factor
or latent trait models, ordered latent class models and multilevel structural equation models.

Chapter 1 of this manual describes the models, Chapter 2 describes the program and subsequent
chapters give examples. The examples are arranged in chapters according to the structure of the
models (chapters 2 to 5) and, for complex response processes, according to the type of response
(chapters 6 to 9). There are obvious gaps in these chapters and we hope to include more examples
soon.

Potential users of gllamm are reminded to be extremely careful if using this program for serious
statistical analysis. It is the user’s responsibility to check that the models are identified, that the
program has converged, that the quadrature approximation used is adequate, etc. The manual pro-
vides quite a number of examples of different model structures where gllamm yields results identical
to those reported elsewhere obtained using more specialized programs. Though this provides some
validation of the code, nonetheless some bugs may remain. Both the program and the manual will
continually be updated.

Bug reports, comments and suggestions are all welcome! Please contact Sophia Rabe-Hesketh
at spaksrh@iop.kcl.ac.uk. We would also be grateful if you could let us know of any publications
(including ‘in press’) using gllamm.

The program and this manual can be downloaded from

http://www.iop.kcl.ac.uk /iop/departments/biocomp/programs/gllamm.html

where the data used in the examples of this manual are also available. An older (out of date) version
of the program (gllammé) is available via the Stata Technical Bulletin (Rabe-Hesketh, Pickles and
Taylor, 2000).

We would like to acknowledge Colin Taylor for his help in the early stages of gllamm develop-
ment, in particular his guidance on recursive programming and quadrature.
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Chapter 1

Generalised linear latent and mixed
models

GLLAMMs (Generalised Linear Latent And Mixed Models) are a class of multilevel latent vari-
able models for (multivariate) responses of mixed type including continuous responses, counts,
duration/survival data, dichotomous, ordered and unordered categorical responses and rankings.
Examples of models in this class are multilevel generalised linear models or generalised linear mixed
models, multilevel factor or latent trait models, ordered latent class models and multilevel structural
equation models.

GLLAMMSs can be defined by specifying:

1. The conditional expectation of the responses given the latent and observed explanatory vari-
ables,

2. The conditional distribution(s) of the responses given the latent and observed explanatory
variables,

3. Structural equations for the latent variables including regressions of latent variables on ex-
planatory variables and regressions of latent variables on other latent variables,

4. The distributions of the latent variables.

These specifications are covered in Sections 1.1 to 1.4.
Terminology: latent variables and levels

The models include latent or unobserved variables represented by the elements of a vector u. As
we will see later, the latent variables can be interpretable as random effects (random intercepts and
coefficients) or factors and we will use these terms interchangeably.

In addition, the latent variables can vary at different ‘levels’ so that we can have level 2 factors,
level 3 random effects, etc. In the case of hierarchical data, the term ‘level’ is often used to describe
the position of a unit of observation within a hierarchy of units, typically reflecting the sampling
design. Here level 1 units are nested in level 2 units which are nested in level 3 units, a typical
example being pupils in classes in schools. In this context, a random effect is said to vary at a
given level, e.g. at the school level, if it varies between schools but, for a given school, is constant
for all classes and pupils belonging to that school.

We will use the term level to refer to the position of a ‘unit’ within the structure of a model,
not necessarily within the sampling structure of the data. The models assume that lower level

7



8 CHAPTER 1. GENERALISED LINEAR LATENT AND MIXED MODELS

‘units’ are conditionally independent given the higher level latent variables and the explanatory
variables. An example where the distinction between the levels of a hierarchical data structure and
the levels of the model becomes important are multivariate multilevel models. Here the variables
of the multivariate response are often treated as level 1 units so that the levels of the model do not
correspond with the levels reflecting the hierarchical structure of the data (except, possibly in the
case of repeated measures or longitudinal data).

1.1 Conditional expectation of the responses

We refer to a particular response simply as y, omitting subscripts for the units of observation. The
conditional expectation of the response y given two sets of explanatory variables x and z and the
vector of latent variables u is specified via a link function g() and a linear predictor 7 as

9(Elylx,u,z2]) =1 (1.1)

where the link can be any of the links used in generalised linear mixed models. For a model
with L levels, and M, latent variables at level [, the linear predictor has the form

L M
X+ Z u AL 2 (1.2)
1=2m=1

with the first element of )\g,ll) set to 1, i.e.

A =1, (1.3)

The elements of x are explanatory variables associated with the ‘fixed’ effects 3, uﬁ) is the mth
latent variable at level [ and u in equation (1.1) is the vector of latent variables,

I TN B T B C BN DI CO R (O (1.4)

u:(ul yUg "y Uppy, Uy U y Uppy U T, Ug Upr,

0

Each latent variable is multiplied by a linear combination of explanatory variables A$£2’ Zy; . Here
the superscript of z$,2 denotes that the corresponding latent variable varies at level [ (generally, z§£)
will vary at a lower level than /). The vector z in (1.1) has the same structure as u. The latent
variables at the same level are generally mutually correlated whereas latent variables at different
levels are independent.

The model in equation (1.2) includes multilevel generalised linear models (or generalised linear

mixed models) and multilevel factor models as special cases.

1.1.1 Multilevel generalised linear models

There are a large number of books on multilevel models, see for example Bryk and Raudenbush
(1992) and Kreft and De Leeuw (1998) for texts on linear multilevel models and Snijders and Bosker
(1999), Longford (1993), Goldstein (1995) and McCulloch and Searle (2001) for texts on both linear
and generalised linear multilevel models.

To write down a multilevel genemlised linear model, or generalised linear mized model, simply
use one explanatory variable P 1 for each latent variable (with /\(l) = 1) so that the latent variable
can be interpreted as a random coefficient or random slope. Multilevel generalised linear models
are therefore a special case of GLLAMMSs with
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L M

n=B%x+3 3 u®: (1.5)

=2m=1

where, typically, zﬁ) = 1 so that there is a random intercept at each level. Omitting the random

terms yields a generalised linear model.
An example of a three level model (using subscripts i, j, k for levels 3,2,1, respectively) with
random intercepts at levels 2 and 3 and a random coefficient at level 2 is

Nijk = B'Xijk + ug; + ugﬁzg) +ull). (1.6)

(Here zﬁ) and zﬁ)

Multilevel generalised linear models are sometimes defined by first writing down the relationship
between the response variable and the level 1 covariates, where some coefficients vary at level
2. Models for these coefficients are then specified where the coefficients are regressed on level 2
covariates and have level 2 residuals, etc. For a two-level linear model (using subscripts i and j for
levels 3 and 2), the relationship between the response variable and the level 1 covariates has the
form

were set to 1.)

Yij = boi + b1;7145 + €, (1.7)

where some of the parameters (here the intercept and slope) vary between level 2 units as indicated
by the ¢ subscript. Regressions of these parameters on level 2 covariates are then specified with
residual error terms at level 2, e.g.,

boi = 7Yoo + 01215 + Uoi
bii = 710+ 711215 + U14- (1.8)

Again, some parameters may vary between level 3 units (here they do not) in which case regressions
for these parameters are specified. This method of model specification is used, for example, in Bryk
and Raudenbush (1992) and in the HLM program (Bryk et al.,1996).

When a multilevel model has been specified in the way described above, we can substitute the
models for the coefficients into the model for the observed responses to obtain the reduced form, a
single model equation having the form of equation (1.5). Substituting the expressions for by; and
b1; into the first equation, we obtain:

Yij = 700+ Y0121 + uoi + (V10 + V11215 + U1i)T1s + €45
= 00 + Y0121 + Y10%1i5 + V1121i%135 + Uoi + V1iT145 + €5 (1.9)

By forming a new variable z2;; = 21,215, it is easy to see that this equation is a special case of
equation (1.5). (Note that the level 1 error term ¢;; does not appear in (1.5) because it is not part
of the linear predictor in the generalised linear model formulation.)

We have only used one explanatory variable per latent variable to set up these standard models.
However, the use of several explanatory variable enables us to allow the random effects variances to
vary between groups of individuals. For example, consider a two level random intercept model. If
the level 1 units j are the measurement occasions of a longitudinal study and the level 2 units ¢ are
children, we can allow the intercept variance to differ between boys and girls by defining dummy
variables for boys and girls, say zy; and z4;, respectively, and specifing

Nij = ,B'X + uz@) (zbij + )\gzgij) (1.10)
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so that the random intercept variance is var(u; (2 )) for boys and )\2var( (2 )) for girls. Heteroscedas-
ticity of the random effects can be specified at any of the levels. In addltlon, we can allow the level
1 variances to differ (see Section 1.2).

Examples of multilevel generalised linear models are given in Chapter 3. Papers using gllamm
for multilevel generalised linear models include Rabe-Hesketh et al. (2001c) and Leese et al. (2001)
for applications in psychiatry and Dohoo et al. (2001) and Stryhn et al. (2000) for applications in
veterinary medicine.

1.1.2 Multilevel factor models

For a treatment of factor models for normal and non-normal responses, see Bartholomew and Knott
(1999). Multilevel factor models for continuous data are discussed in Longford (1993).

By treating the variables of a multivariate response as level 1 units in a multilevel dataset (the
original units become level 2 units), and by defining appropriate dummy variables, factor models
can be defined. As mentioned earlier, we will use the term ‘level’ to refer to the position of a latent
variable in the structure of the model; for a non-hierarchical multivariate dataset consisting of
responses to questionnaire items by subjects, the common factor will be a level 2 latent variable.
To see this, consider a simple example. Let there be up to J variables j = 1,---,J observed on
each individual ¢ and stack the variables into a single response vector indexed 5. This is shown in
the table below:

subject ¢ wvariable 7 211 212 -+ Yy
1 1 1 0 - yn
1 2 0 1 - w2
2 1 1 0 - ya

2 2 0 1 Y22

A single level unidimensional factor model can be written as

Mij = &MU+@@U+“'+ﬁ?Oﬁéﬂ+*@4%+*Q%%+-ﬁ

— A (1

(2)

where A\}7 = 1 and zp;; = zﬁ)ij with

@)_{1 if p=] (1.12)

z .
1pij 0 otherwise

(2) (2)

In equation (1.11), g; is the intercept, u;;’ is the common factor and >‘1j is the factor loading
for the jth variable. The scale of the factor is identified through the constraint that the first factor
loading equals 1. For normally distributed responses, the specific factors are simply the level 1 error
terms ¢;; since y;; = 7;; + €;;. In factor models for non-normal responses, the level 1 variability is
implicit in the distribution family of the chosen generalised linear model (see Section 1.2).

A two factor model at a single level can be defined as

ij = PL21ij + Pagoij + - + ug)()\( ) S)U + )\gz) %223 +-)+ “g)()\g) él)zg + Ag2) 531] +---) (1.13)
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(2) (2)

Here, some of the variables would typically load on factor 1, u;;’ and the others on factor 2, uy,’.

(2) (2)

(The dummy variables z; 1pij and zg;; must be defined approprlately). Certain restrictions need
to be imposed on the factor loadings and/or the covariance matrix of the factors for these higher
dimensional factor models to be identified.

A two level factor model (unidimensional at levels 1 and 2) can be defined as

2 2
Nijk = B1Tiijk + PoTojr + - gzg(mﬁiﬂc + /\( )Z§223k +-)
3 3) (2 3 3) (2
+U§J)+1) ()‘lz&%jk + Ag )z§22'jk +- ) ( )Z&Lk + ugz)zggk +--- (1-14)
where zﬁ%j = zg)ij are dummy variables for the items as in equation (1.12), u% is the lower level

CINE)

common factor, u(?}) +1); is the higher level common factor and uy;’, uy;’, etc. are specific factors at
the higher level. The ievel 3 latent variables are assumed to be mutually independent.

Although this method of defining factor models through the use of dummy variables is not very
elegant, a great advantage of the specification is that missing values on any of the variables are
allowed and pose no extra problem in the estimation. Since estimation is by maximum likelihood,
the parameter estimates are consistent if the data are missing at random (MAR), see Little and
Rubin (1987). In addition, unlike the usual model specification for structural equation models,
this setup allows unbalanced longitudinal data to be modelled where individuals are measured
at different sets of time points. In addition, hybrid models, containing both factors and random
coefficients at several levels can easily be defined using this setup.

Examples of factor models are given in Chapter 4. Rabe-Hesketh and Skrondal (2001) discuss
the use of factor models (estimated in gllamm) for structuring the covariance matrix of multivariate
categorical responses.

1.2 Conditional distributions of the responses

The conditional distribution of the responses given the explanatory variables and random effects is
specified via a family and a link function (see McCullagh and Nelder, 1989). Currently available
are the following links and families:

Links
identity Families
reciprocal Canssian
logarithm
logit sanma

. Poisson
probit . binomial
scaled probit
complimentary log-log

For ordered and unordered categorical responses, the following models are available:

Polytomous responses
ordinal logit

ordinal probit

ordinal compl. log-log
scaled ordinal probit
multinomial logit
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Offsets can be included in the linear predictor and linear constraints applied to any of the
parameters.

For the Gaussian and gamma distributions as well as the scaled probit link, the variance param-
eter can be allowed to differ between groups of observations or to depend on explanatory variables,
therefore allowing for level 1 heteroscedasticity.

The available links and families allow many different response processes to be modelled includ-
ing continuous responses, dichotomous or ordinal responses, counts, continuous or discrete time
(interval censored) to event (survival) data and first choice and ranking data.

Different links and families can be combined for different responses in order to model responses
of mixed type. This allows many different types of problems to be modelled, for example logistic
regression with measurement errors in a continuous covariate. Mixing of the identity link and Gauss
family with the probit link and binomial family allows censored normally distributed responses to
be modelled (as in tobit), e.g. when there are ceiling and/or floor effects.

Examples of models using particular links and families can be found using the Index. The
analysis of continuous survival times is discussed in Chapter 7 and the analysis of nominal responses
and rankings is discussed in Chapter 9. Examples of models with mixed responses are discussed in
Chapter 6.

Leese et al. (2001) use gllamm to specify heteroscedasticity at levels 1 and 2. Rabe-Hesketh
and Pickles (1999; 2001) mix the identity and logit links to estimate logistic regression models with
covariate measurement error. Rabe-Hesketh et al. (2001d) analyse different types of discrete time
survival models and Skrondal and Rabe-Hesketh (2001) analyse nominal data and rankings.

1.3 Structural equations for the latent variables

Books on structural equation models include Dunn, Everitt and Pickles (1993) and Bollen (1989).
The models discussed so far can be viewed as a measurement models specifying the relationship
between observed responses (or indicators) and latent and observed explanatory variables. In
addition, we can specify relationships among the latent variables as well as regressions of latent
variables on explanatory variables. These relationships can be written as a matrix equation for the
vector of latent variables u whose M elements are the latent variables varying at levels 2 to L,

u= (u?)aug)a Tt U’S\?Qaug?’)aug?’)a Tt U%Z’, T 7ugL)augL)a e ug\gl) (115)

(Remember that the latent variables can be interpretable as variance components, factors or
random coefficients.) The ‘structural’ equation for the latent variables has the form

u=Bu+Tw+¢ (1.16)

where B is an M x M upper diagonal matrix, w is a vector of ¢ covariates, I" is an M X ¢ design
matrix and ¢ is a vector of M errors of disturbances where each element of ¢ varies at the same
level as the corresponding element of u.

The regressions of latent variables on other latent variables must be such that the elements
of the u vector within a given level can be permuted in such a way to make the B matrix upper
diagonal. This implies that there are no simultaneous effects with latent variable 1 regressed on
latent variable 2 and vice versa. The expression for the Mth element of u can be substituted into
the expression for M — 1th element which can be substituted into the expression for M — 2nd
element, etc. (i.e., the relationship is recursive). When these expressions for the latent variables
are substituted into equation (1.2), we obtain an equation of the same form as equation (1.2) with
constraints among the parameters.
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Since the lower level latent variables come before the higher level ones in the u vector, an upper
diagonal B matrix ensures that lower level latent variables can be regressed on higher but not the
reverse since it would not make sense to regress a higher level latent variable on a lower level one.

1.3.1 MIMIC models

MIMIC (Multiple Indicator Multiple Causes) models are factor models (where observed variables
are indicators of the factor) combined with regressions of factors on explanatory variables (the
explanatory variables are the causes). Here, there are no relationships among the latent variables
and instead of equation (1.16), we only require simply the equation

u=Tw+¢(. (1.17)

An example of a MIMIC model is described in Section 6.1.

1.3.2 General multilevel structural equation models

Combining (1.16) with (1.2) and making use of the ability to model responses of mixed types allows
a very large range of latent variable models to be defined, see Rabe-Hesketh et al. (2001a). For
example, a level 2 random coefficient in a survival model may be regressed on a level 3 factor whose
(level 3) indicators are dichotomous. A chapter on these models will be added soon.

1.4 Distribution of the latent variables

The structure of the latent variables is specified by the number of levels L (and the variables defining
these levels, e.g. pupil, school etc.) and the number of latent variables M at each level. Latent
variables at the same level are assumed to be correlated with each other, unless the user specifies
zero correlations. The latent variables at different levels are assumed to be independent (except if
a lower level latent variable is explicitly regressed on a higher level one). The interpretation of the
latent variable as a factor or random coefficient depends on the form of the linear predictor in (1.2).

If a latent variable is regressed on (another) latent or observed variable, we need to specify the
distribution of the disturbances ; otherwise we specify the distribution of u directly. The latent
variables at a level | may be assumed to have a

e multivariate normal distribution with zero mean and covariance matrix X; at level [

e discrete distribution, having non-zero probability on a finite number of points (of dimension-
ality equal to the number of latent variables, M;, at level 1)

The discrete distribution can be interpreted as representing a number of latent classes which
are homogeneous in the unobserved characteristics represented by the latent variable, e.g. in their
intercepts.

If the number of points, or masses, is chosen to achieve the largest possible likelihood, the
nonparametric maximum likelihood estimator (NPML) is achieved (Lindsay et al., 1991). The
Gateaux derivative method can be used to determine the number of masses required for the NPML
solution (see Heckman and Singer (1984), Follmann and Lambert (1989) and Davies and Pickles
(1987))). Starting with a small number of masspoints, say two, the likelihood is maximized. A
further point is introduced if a location can be found at which introduction of a very small new mass
increases the likelihood when all other parameters are held constant at their previous maximum
likelihood values. If such a location can be found, a new point is introduced and the likelihood
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maximized. The starting values are the parameters estimates of the previous model with a new
mass at the location yielding the greates an increase in log-likelihood. This procedure is repeated
until no location can be found at which introduction of a small mass increases the likelihood.

Most examples in the manual assume multivariate normally distributed latent variables except
for the examples in Chapter 5 and Section 9.4. Papers using gllamm with discrete random effects
include Maughan et al. (2000) on latent trajectory models, Rabe-Hesketh and Pickles (2001) and
Rabe-Hesketh et al. (2001c) on nonparametric maximum likelihood estimation and Rabe-Hesketh
and Pickles (1999) on a latent transition model.



Chapter 2

The gllamm program

The gllamm program runs within Stata 6 or 7 (StataCorp. 2001) using a similar syntax to Stata’s
own estimation commands. After estimating a model using gllamm, gllapred can be used to obtain
the posterior means and standard deviations of the latent variables.

2.1 Implementation

gllamm uses Stata’s ml with method d0 to maximise the likelihood. (See the Stata reference manuals
under m1 and maximize; for details of the modified Newton Raphson algorithm, see also Gould and
Sribney (1999)). For a 2-level model, the likelihood is given by

II /{H f(izlxi, wi) bg(wi)du; (2.1)
i j

where f(yi;|xi, u;) is the conditional density of the response variable given the latent and explana-
tory variables and g(u;) is the prior density of the latent variables. When the latent variables are
discrete, the integral becomes a sum of the form

11> 7 I1 £ igloxis wi = 2,) (2.2)
7 r j

where the locations z, and masses 7, are freely estimated. For a single normally distributed latent
variable, the same expression is used to approximate the likelihood, where locations and masses
are given by Gaussian quadrature.

If there are My > 1 correlated (multivariate normal) latent variables at level 2, we express them
as a linear combination of uncorrelated random effects v, u = Lv where L is a lower triangular
matrix. The multiple integral is then approximated by summing over v = z, using M, nested
sums. The elements of L are estimated by gllamm and the covariance matrix of the random effects
is given by L'L so that L is simply the Cholesky decomposition of the covariance matrix.

Ordinary Gaussian quadrature sometimes performs poorly because there are insufficient loca-
tions z, under the peak of the integrand in (2.1). Adaptive quadrature (Naylor and Smith, 1982; Liu
and Pierce, 1994) can be used to scale and shift the locations for each latent variable v,, according
to the spread 7, and location u,, of the integrand with respect to v,,. The integrand is propor-
tional to the joint posterior density of the latent variables. Therefore appropriate scale and location
parameters are the posterior standard deviations and means of v. Since these quantities depend on
the parameter estimates, gllamm iterates between updating the parameter estimates for given 7,
and i, and updating the 7,,, and pu,, for given parameter estimates. See Rabe-Hesketh et al.(2001)
for details.

15
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In (2.1), the contribution to the likelihood from the ith level 2 unit is found by integrating
the product of the contributions from the level 1 units inside the level 2 unit over the level 2
random effects distribution. In a three level model, the contribution from a 3-level unit is found by
integrating the product of contributions from the level 2 units inside the level 3 unit over the level
3 random effects distribution. The likelihood for an n-level model is therefore computed using a
recursive algorithm.

The parameters are transformed to ensure that they lie within their permitted ranges. For the
normal (or gamma) density, the log of the standard deviation (or coefficient of variation) at level
1 is estimated to ensure a positive estimate on the natural scale. When quadrature is used, the
Cholesky decomposition of the covariance matrix of the random effects at each level is estimated to
ensure a semi positive definite covariance matrix. When there are no correlations, this corresponds
to estimating the standard deviations directly where the sign of these estimates is arbitrary. When
R discrete mass-points are specified for the random effects at a level, R — 1 log odds are estimated
to give the R probabilities and R — 1 locations are estimated directly for each random effect. The
last location is determined by constraining the mean of the discrete distribution to zero. The
variance of the random effects distribution is not estimated directly but follows from the locations
and masses. The variances are estimated as

var(um,) Z #r2l, (2.3)
and the covariances are estimated as

cov (U, U ) E T Zrm Zrm! (2.4)

where 7, and Z,, are the estimated probabilities and locations. Instead of centering the location of
the discrete distribution around the mean, we can also estimate R locations freely and remove the
corresponding fixed effects from the linear predictor. In the equations above, we must then replace
Zrm DY Zrm — Zr Tr Zrm-

Approximate standard errors for the back-transformed parameter estimates are obtained using
the delta-method (except for the variances and covariances of the discrete random effects distribu-
tions). Note that the standard error of variance estimates should not be used to construct Wald
tests because the null value is on the border of the parameter space. Likelihood ratio test should
be used instead, keeping in mind that the alternative hypothesis and p-value are one sided.

Linear constraints can be specified for the transformed versions of the parameters that are
used during maximisation. For example, two parameters can be set equal, a parameter can be
constrained to a particular value or one parameter can be specified to be twice as large as another.

The posterior means and standard deviations of the latent variables can be estimated for both
discrete and continuous latent variables using gllapred. If there is a single random effect in a two
level model, the posterior mean is estimated as

=) 2y (2.5)
T
where 0, is the estimated posterior probability that the latent variable equals 2, given by

B = o 11 f (g5, wi = 2)
T A 1L f gl wi = 2)
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2.2 Installing gllamm

The version of the program described in this manual is available at
http://www.iop.kcl.ac.uk/IoP /Departments/BioComp/programs/gllamm.html

it can also be found by searching for the program gllamm at the Boston IDEAS archive maintained
by Kit Baum at

http://ideas.uqam.ca/ideas/search.html

An earlier verion (January 2000) of gllamm was published in the Stata Technical Bulletin (STB
53, Sg 129) but this version is now out of date. A later version (June 2001) is described in Rabe-
Hesketh et al. (2001b) and (2001e).

The easiest way of installing the current version of the program is to use the net commands
from within Stata:

net from http://www.iop.kcl.ac.uk/IoP/Departments/BioComp/programs
net describe gllamm

net install gllamm

net get gllamm

Where the last command is optional; it downloads the auxiliary files. Alternatively, net
install from the IDEAS archive using:

net from http://fmwww.bc.edu/RePEc/bocode/
net cd g

net describe gllamm

net install gllamm

Another possibility is to store the files gllamm.ado, gllam_ll.ado, remcoré.ado, gllamm.hlp,
gllapred.ado gllapred.hlp (downloadable from the above web-sites) in the directory where personal
ado-files are stored (e.g. c:\ado\stbplus) or to store them in any other directory and issue the
following command before using gllamm:

adopath + dirname

Once gllamm has been installed, help is available as for all of Stata’s own commands.

2.3 Running gllamm

gllamm runs in Stata 6 and 7 (StataCorp, 2001). Anyone planning to use gllamm should know a
little bit about Stata to be familiar with features common to all estimation commands including
gllamm and to be able to prepare the data for analysis using gllamm, see the Appendix for a
brief introduction to Stata. Sections 2.3.1 and 2.3.2 describe the syntax of gllamm and gllapred
following the style of the Stata Reference Manuals.

For simple problems, gllamm is usually easy to use and does not take a very long time to
run. However, the program can be very slow when there are many latent variables in the model,
many quadrature or free mass-points, many parameters to be estimated and many observations.
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The reason for this is that numerical integration is used to evaluate the marginal log-likelihood
and numerical derivatives are used to maximise it. Roughly, execution time is proportional to the
number of observations and the square of the number of parameters. For quadrature, the time
is approximately proportional to the product of the number of quadrature points for all latent
variables used. For example, if there are two random effects at level 2 (a random intercept and
slope) and 8 quadrature points are used for each random effect, the time will be approximately
proportional to 64. Therefore, using 4 quadrature points for each random effect will take only about
a quarter (64/16) as long as using 8. For (2-level) discrete latent variables, the time is proportional
to the number of points, but the increase in the number of parameters must be taken into account.

An easy way to speed up the program is to collapse the data as much as possible and use
frequency weights (see for example Section 3.2.1). If there are several identical level 2 units, level
2 weights can be used. It is also a good idea to start with fewer integration points to obtain some
initial estimates and then pass these estimates as starting values to gllamm, increasing the number
of quadrature points (see for example Section 7.2.2). This way, the accuracy of the quadrature
approximation can be assessed (see also Section 2.3.3). It is also recommended to first estimate the
simplest model of interest (e.g. using very few predictors) and then introduce additional features,
again passing the parameter estimates from the simpler model to gllamm as starting values for the
more complicated model.

The program does not check whether a model is identified. Using the trace option to monitor
convergence may help identify problems since warning messages that the log-likelihood is noncon-
cave may appear shortly before apparent convergence (if such messages appear in the beginning,
this is no cause for concern). gllamm prints out the condition number, defined as the square root of
the ratio of the largest to smallest eigenvalues of the Hessian matrix. From our experience so far,
large condition numbers do not necessarily imply poor identification; however, it is unlikely that a
low condition number is obtained when the model is not identified.

2.3.1 Syntax for gllamm

The full syntax with all its options looks overwhelming because a single program can estimate such
a wide range of different models. For most models, the command would be no longer than a single
line and the syntax closely follows that of similar Stata commands. The reader may find it easier
to read Chapter 3 as an introduction to gllamm. This section on the syntax could be used as a
reference. To find examples in the manual of the use of particular options, also see the Index.

The data need to be in ‘long’ form with all responses stacked into a single variable, see the
Appendix, Stata’s reshape command and the ‘data preparation’ sections in this manual. The full
syntax with all available options is

gllamm [varlist] [if exp] [inrange] , i(varlist) [nrf(#,...,#) eqs(eqnames)

nocorrel noconstant offset(varname) weight(varname) family(families)

fv(varname) denom(varname) link(links) 1lv(varname) expanded(varname var-

name string) basecategory(#) s(varname) thresh(egnames) ip(string) nip(#,..

adapt geqs(egnames) bmatrix(matname) constraints(#,...,#) from(matriz)

long 1fO(# #) gateaux(###) search(#) maximize options nodifficult

)
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level(#) eform allc trace nolog noest eval init dots |

where [varlist] gives the response variable followed by the explanatory variables associated with
the fixed effects. The families and links are:

families links

gaussian identity

}Esson log

gzlma Eiprocal

binomial logit
probit
¢l11 (complimentary log-log)
ologit (o stands for ordinal)
oprobit
ocll
mlogit
sprobit (scaled probit)
soprobit (scaled ordinal probit)

Options
Structure of the model

i(warlist) gives the variables that define the hierarchical, nested clusters, from the lowest level
(finest clusters) to the highest level, e.g., i (pupil class school).

nrf(#,...,#) specifies the number of latent variables at each level of clustering, i.e. for each
variable in i(varlist). The default is nrf(1,...,1).

eqs(egnames) specifies the equation names (defined before running gllamm) for the linear predic-
tors multiplying the latent variables. The equations for the level 2 random effects a listed
first, followed by those for the level 3 random effects, etc., the number of equations per level
being specified in the nrf () option. If required, constants should be explicitly included in the
equation definitions using variables equal to 1. If the option is not used, the latent variables
are assumed to be random intercepts and only one random effect is allowed per level. The
first lambda coefficient is set to one. The other coefficients are estimated together with the
(co)variance(s) of the random effect(s)

nocorrel may be used to constrain all correlations to zero if there are several random effects at
any of the levels and if these are modelled as multivariate normal.

geqs(egnames) specifies regressions of latent variables on explanatory variables. The second char-
acter of the equation name indicates which latent variable is regressed on the variables used
in the equation definition, e.g. f1:a b means that the first latent variable is regressed on a
and b (without a constant).

bmatrix(matriz) specifies a square matrix B of regression coefficients for the dependence of the
latent variables on other latent variables. The matrix must be upper diagonal and have
number of rows and columns equal to the total number of random effects. This option only
makes sense together with the nocorrel option.
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constraint(clist) specifies the constraint numbers of the linear constraints to be applied. Con-
straints are defined using the constraint command; see help constraint. To find out the
equation names needed to specify the constraints, run gllamm with the noest and trace
options.

noconstant omits the constant term from the fixed effects equation.

offset(varname) specifies a variable to be added to the linear predictor with corresponding re-
gression coefficient fixed at 1 (e.g. log exposure time for Poisson regression).

weight(wt) specifies that variables wt1, wt2, etc., contain frequency weights. The suffixes in the
variable names determine at what level each weight applies. (If only some of the weight
variables exist, e.g. only level 2 weights, the other weights are assumed equal to one.) For
example, if the level 1 units are occasions (or panel waves) in longitudinal data and the level
2 units are individuals, and the only variable used in the analysis is a binary variable result,
we can collapse dataset A into dataset B by defining level 1 weights as follows:

A B

ind occ result ind occpat result wtl
1 1 0 1 1 0 2
1 2 0 2 2 0 1
2 3 0 2 3 1 1
2 4 1 3 4 0 1
3 5 0 3 5 1 1
3 6 1

The two occasions for individual 1 in dataset A have the same result. The first row in B
therefore represents two occasions (occasions 1 and 2) as indicated by wti. The variable
occpat labels the unique patterns of responses at level 1.

The two individuals 2 and 3 in dataset B have the same pattern of results over the measure-
ment occasions (both have two occasions with values 0 and 1). We can therefore collapse the
data into dataset C by using level 2 weights:

B C
ind occpat result wtl indpat occpat result wtl wt2
1 1 0 2 1 1 0 2 1
2 2 0 1 2 2 0 1 2
2 3 1 1 2 3 1 1 2
3 4 0 1
3 5 1 1

The variable indpat labels the unique patterns of responses at level 2 and wt2 indicates that
indpat 1 in dataset C represents one individual and indpat 2 represents two individuals, i.e.,
all the data for individual 2 are replicated once. Collapsing the data in this way can make
gllamm run considerably faster.

Densities, links, latent variable distribution and quadrature method
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family(families) specifies the family (or families) to be used for the conditional densities. The
default is gaussian. Also available are binomial, poisson and gamma. Several families may
be given in which case the variable allocating families to observations must be given using
fv(varname).

fv(varname) is required if mixed responses requiring more than a single family of conditional distri-
butions are being analyzed. The variable indicates which family applies to which observation.
A value of one refers to the first family specified in family(), etc.

denom(varname) gives the variable containing the binomial denominator for the responses whose
family was specified as binomial. The default denominator is 1.

link(links) specifies the links to be used for the conditional densities (identity, logit, probit,
log, reciprocal, cll, ologit, etc.). If a single family is specified, the default link is
the canonical link. Several links may be given in which case the variable allocating links
to observations must be given using lv(varname). Feasible choices of link depend upon
the distributions of the covariates and the choice of conditional error and random effects
distributions.

lv(varname) is the variable whose values indicate which link applies to which observation.

expanded(varname varname string) is used together with the mlogit link and specifies that the
data have been expanded as illustrated below:

A B

choice response altern selected
1 1 1 1
2

N NN+~ =
W NP WN
O = O OO

where the variable choice is the multinomial response (possible values 1,2,3), the response
labels the original lines of data, altern gives the possible responses or ‘alternatives’ and
selected is an indicator for the response that was given. The syntax would be
expanded(response selected m) and altern would be used as the dependent variable. This
expanded form allows the user to have alternative specific covariates, apply different random
effects to different alternatives and have different alternative sets for different individuals.
The third argument is o if one set of coefficients should be estimated for the explanatory
variables and m if one set of coefficients is to be estimated for each category of the response
escept the reference category.

basecategory(#) When the mlogit link is used, this specifies the value of the response to be used
as the reference category. This option is ignored if the expanded () option is used with the
third argument equal to m.

s(egname) specifies that the log of the standard deviation (or of the coefficient of variation) at level
1 for normally (or gamma) distributed responses is modelled by the linear predictor defined by
eqname. This is necessary if the variance is heteroscedastic. For example, if dummy variables
for groups are used in the definition of eqname, different variances are estimated for different
groups.
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thresh(egnames) specifies equation(s) for the thresholds for ordinal response(s). One equation
is specified for each ordinal response. The purpose of this option is to allow the effects of
some covariates to be different for different categories of the ordinal outcome rather than
assumming a constant effect - the proportional odds assumption if the ologit link is used.
Variables used in the model for the thresholds cannot appear in the fixed part of the linear
predictor.

ip(string) if string is g, Gaussian quadrature points are used and if string is f, the mass-points
are freely estimated. The default is Gaussian quadrature. With the ip(£f) option, the nip-1
mass-point locations are estimated the last being determined by setting the mean of the mass-
point distribution to 0. The ip(fn) option can be specified to estimate nip masses freely
- the user must make sure that the mean is not modelled in the linear predictor, e.g. by
specifying the nocons option.

nip(#,...,#) specifies the number of integration points or masses to be used for each integral or
summation. When quadrature is used, a value may be given for each random effect. When
freely estimated masses are used, a value may be given for each level of the model. If only one
argument is given, the same number of integration points will be used for each summation.
The default value is 8.

adapt causes adaptive quadrature to be used instead of ordinary quadrature. This option cannot
be used with the ip(£) or ip(£f0) options.

Starting values

from(matriz) specifies the matrix (one row) to be used for the initial values. Note that the column-
names and equation-names have to be correct (see help matrix), unless the copy option is
used. The matrix may be obtained from a previous estimation command using e(b). This is
useful if another explanatory variable needs to be added or the number of masses needs to be
increased. (The skip option must be used of variables are dropped.)

long may be used with the from(matrix) option when parameter constraints are used to indicate
that the matrix of initial values corresponds to the unconstrained model, i.e. it has more
elements than will be estimated.

1f0(# #) gives the number of parameters and the log-likelihood for a likelihood ratio test to
compare the model to be estimated with a simpler model. A likelihood ratio chi-squared test
is only performed if the 1£0() option is used.

gateaux(# # #) may be used with method ip(f) or ip(fn) options to increase the number
of mass-points by one from a previous solution with parameter estimates specified using
from(matrix). The number of parameters and log-likelihood of the previous solution must
be specified using the 1f0(# #) option. The program searches for the location of the new
mass-point by placing a very small mass at the location given by the first argument and
moving it to the second argument in the number of steps specified by the third argument. (If
there are several random effects, this search is done in each dimension resulting in a regular
grid of search points.) If the maximum increase in likelihood is greater than 0, the location
corresponding to this maximum is used as the initial value of the new location, otherwise
the program stops. When this happens, it can be shown that for certain models the current
solution represents the non-parametric maximum likelihood estimate.
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search(#) causes the program to search for initial values for the random effects at level 2 (in range
0 to 3). The argument specifies the number of random searches. This option may only be
used with ip(g) and when from(matriz) is not used.

Estimation options and output

maximize options see ml. The most useful one is iterate (#) since by default the program does
not limit the number of iterations. If the matrix of initial parameter estimates specified
using the from(matrix) option, the skip option causes redundant parameters to be skipped
(ignored). The copy option can be used if the matrix of starting values does not have the
correct equation and/or column names.

nodifficult causes ml not to use the difficult option, see [R] maximise.
level(#) specifies the confidence level in percent for confidence intervals of the fixed coefficients.

eform causes the exponentiated estimates and confidence intervals of the fixed coefficients to be
displayed.

allc causes all estimated parameters to be displayed in a regression table (including the raw
random effects parameters) in addition to the usual output.

trace is one of the maximize options, see [R] maximize. In addition to displaying the details of
the maximum-likelihood iterations, it displays details of the model being fitted.

nolog suppresses output for maximum likelihood iterations.

noest is used to prevent the program from carrying out the estimation. This may be used with
the trace option to check that the model is correct and get the information needed to set up
a matrix of initial values. Global macros are available that are normally deleted. Particularly
useful may be M_initf and M_initr, matrices for the parameters (fixed part and random part,
respectively).

eval causes the program to simply evaluate the log likelihood for values passed to gllamm using
the from(matrix) option.

init causes the program to compute initial estimates of fixed effects only

dots causes a dot to be printed (if used together with trace) every time the likelihood evaluation
program is called by ml. This helps to assess how long gllamm is likely to take to run and
reassures the user that it is making some progress when it is very slow.

2.3.2 Syntax for gllapred

After estimating the parameters of a model using gllamm, we can run the ‘post-estimation’ com-
mand gllapred to obtain predictions or estimates of the latent variables both in the continuous
and discrete case. Both posterior means and standard deviations of the latent variables are pro-
vided. In multilevel regression models, the posterior means are also referred to as empirical Bayes
predictions, shrinkage estimates, or higher level residuals. In factor models, the posterior means are
regression factor scores. The posterior standard deviations can be interpreted as standard errors
of the posterior means although they do not take into account the fact that the parameters are
estimated.
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gllapred warname [, xb u p s linpred adapt ]
where varname is the ‘prefix’ used for the variables that will contain the predictions.

Options

xb The fixed effects part of the linear predictor is returned in varname including the offset.

u The posterior means and standard deviations of the latent variables are returned in varnamemi,
varnamem2, etc. and varnamesl, varnames2, etc., respectively, where the order of the latent
variables is the same as in the call to gllamm. In the case of quadrature, the number of
quadrature points used is also the same as in the previous call to gllamm.

p can only be used for two-level models estimated using the ip(f) option. gllapred returns the
posterior probabilities in varnamel, varname2, etc., giving the probabilities of classes 1,2,
etc. gllapred also prints out the (prior) probability and location matrices to help interpret
the posterior probabilities.

s returns the scale. This is useful if the s() otion was used in gllamm to specify level 1 heteroscedas-
ticity.

linpred returns the linear predictor including the fixed and random effects part where posterior
means are substituted for the latent variables or random effects in the random part.

adapt if the gllamm command did not use the adapt option, gllapred will use ordinary quadrature
for computing the posterior means and standard deviations unless the adapt option is used
in the gllapred command.

2.3.3 Some comments on quadrature

Bock (1985) suggested that in most applications 10 quadrature are sufficient in one dimension, 5
per dimension in two and 3 per dimension in three or more dimensions. However, Bartholomew
(1987) points out investigations performed by Shea (1984) indicating that at least 20 points may be
necessary to achieve reasonable accuracy. Similarly, in logistic regression with covariate measure-
ment error problems, Crouch and Spiegelman (1990) suggest that 20 quadrature points or more are
often needed to adequately approximate the marginal log-likelihood. Skrondal (1996) carried out
a simulation for a two factor model with 3 ordinal items loading on each factor finding substantial
bias in the parameter estimates when only 5 quadrature points were used per dimension whereas
20 quadrature points performed adequately. In practice, the adequacy of the number of quadrature
points used in a particular application should be checked. A good discussion of potential numerical
problems with quadrature and suggestions for discovering these problems can be found in the Stata
Reference Manual (2001) under quadchk. There it is pointed out that the method works better
for small (level 2) cluster sizes or if the intraclass correlation is not too great. Intuitively, for a
simple two level random intercept model, this can be understood by imagining the joint conditional
distribution of the level 1 responses, []; f (yijlxi,u;) of a given cluster ¢ given the value of the
random intercept u;, plotted against the value of the random intercept. If the ‘true’ realisation
of the random intercept for that cluster is large, (i.e. the responses are all substantially ‘higher’
than the overall mean) the graph will have a sharp peak in the tail of the prior distribution g(u;)
of the random intercept. If we do not use sufficient quadrature points, there may not be enough
quadrature locations under the peak of the integrand, g(u;) [1; f(yij|xi, u:). In fact, since increasing
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the number or quadrature points increases mostly the range of locations rather than their density,
it may not be possible to adequately approximate the marginal likelihood using quadrature.

Lesaffre and Spiessens (2001) discuss this problem in relation to binary data with high intraclass
correlation and Albert and Follmann (2000) for Poisson responses. In the Poisson case, if the
responses (usually counts) are high, numerical problems with quadrature can occur also for smaller
clusters because the conditional distribution of a single level 1 unit can have a very sharp peak.
A method that is likely to work better than ordinary quadrature is adaptive quadrature (Liu and
Pierce, 1994) implemented in SAS PROC NLMIXED. This method has just been implemented in
gllamm, see Rabe-Hesketh et al. (2001e).

Obviously, problems with quadrature are likely with normally distributed responses. We would
therefore not recommend using ordinary quadrature. Adaptive quadrature may give good estimates
but it may be better to use software that does not use any approximations for normally distributed
responses (e.g. Mplus by Muthén and Muthén (1998), S-Plus Ilme, MLwiN (Goldstein, 1998), etc.)

A number of programs for generalised linear mixed models, including MLwiN and HLM use
MQL/PQL (Breslow and Clayton, 1993). Taylor expansions are used to linearise the relationship
between response and linear predictor; both first and second order expansions are available in
MLwiN. The PQL/MQL methods work best if the level 2 clusters are very large; in the case of
smaller clusters, the variances of the random effects tend to be underestimated (Lin and Breslow,
1995, Breslow and Lin, 1995, Rodriguez and Goldman, 1995).

Since quadrature tends to work better for smaller cluster sizes, PQL may work well when quadra-
ture does not and vice versa. Rabe-Hesketh et al. (2001c) Dohoo et al. (2001) and Stryhn et al. (2000)
compare quadrature with PQL for particular examples using simulations. In Section 9.3.3 of this
manual, we compare MQL/PQL with quadrature in the case of nominal (unordered categorical)
responses.

2.3.4 Some comments on nonparametric maximum likelihood estimation

The following papers evaluate the performance of nonparametric maximum likelihood (NPML):
Davies (1987), Hu et al. (1998), Magder and Zeger (1996), Follmann and Lambert (1989), and
Rabe-Hesketh and Pickles (2001).
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Chapter 3

Multilevel generalised linear models

3.1 Three level random intercept logistic regression

Three groups of subjects, a group of patients with schizophrenia, their first degree relatives and an
independent control group, completed a neuropsychological test called the Tower of London. In this
computerised task, subjects are given a starting arrangement of 3 disks on 3 rods and are asked to
move the disks among the rods to achieve a ‘target’ arrangement, if possible, in a specified minimum
number of moves. The level of difficulty is increased by increasing the minimum number of moves
required. We will analyse the binary response, whether the task was completed using the minimum
number of moves, for three levels of difficulty. Taking into account the nesting of subjects in families,
this becomes a three level problem. (The data are also analysed in Rabe-Hesketh et al. (2001c).)
We will use indices i, j and k for families, subjects and measurement occasions, respectively. The
binary responses ;;; may be modelled by a generalised linear mixed model with linear predictor

Nijk = Bo + B1xrijk + Paxsiji + Ug) + UZ(S) (3.1)

where Tg;j; and zg;jx are dummy variable for the relatives and patients with schizophrenia, re-
spectively, ug) is the random intercept for subject j in family ¢ and “53) is the random effect for

family 4. The random effects are assumed to be independently normally distributed.

3.1.1 Data preparation

The dataset is called towerl.dta. The responses are stacked into a variable called dt1m (dichotomised
tower of london moves). The variables id, famnum and group are the subject, family and group
identifiers respectively and level codes the levels of difficulty. A listing of these variables for
observations 19 to 27 is given below.

. list id famnum group level dtlm in 19/27

id famnum group level dtlm
19. 7 6 1 0 0
20. 7 6 1 1 0
21. 7 6 1 -1 1
22. 8 15 1 0 0
23. 8 15 1 1 0
24. 8 15 1 -1 1
25. 9 10 1 -1 0
26. 9 10 1 0 0
27. 9 10 1 1 0

27
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3.1.2 Model fitting

A two-level model with a random effect for subjects could be fitted using Stata’s xtlogit command
with the following syntax:

xi: xtlogit dtlm i.group level, i(id) quad(20)
The syntax for the same model using gllamm is
xi: gllamm dtlm i.group level, i(id) family(binom) link(logit) nip(20)

The syntax is therefore very similar to that of xtlogit except that the logit link and binomial
family are specified as in Stata’s glm command and the nip() option specifies the number or
quadrature points (‘integration points’) to be used.

The following output is obtained:

. xi: gllamm dtlm i.group level, i(id) family(binom) link(logit) nip(20)

i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)
number of level 1 units = 677
number of level 2 units = 226

Condition Number = 4.4745542
gllamm model

log likelihood = -305.95929

dtlm | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___________________ ———— —— ————— —————

_Igroup_2 | -.1690688 .334248 -0.51 0.613 -.8241828 .4860452

_Igroup_3 | -1.022688 .3938465 -2.60 0.009 -1.794613 -.2507631

level | -1.648835 .1933503 -8.53 0.000 -2.027795 -1.269875

_cons | -1.482656 .2835593 -5.23 0.000 -2.038422 -.9268896

Variances and covariances of random effects

*xxlevel 2 (id)

var(1): 1.6752845 (.66195499)

The number of level 1 units (here measurement occasions) and the number of level 2 units (here
individuals) are listed first, followed by the condition number and the log-likelihood. (The condition
number will be large when the Hessian matrix is nearly singular indicating that the model may not
well identified.)

The fixed effects estimates are given in the familiar format used in all of Stata’s estimation
commands. The variance of the level 2 (id) random effect is estimated as 1.675 with a standard
error of 0.662.
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We normally recommend that gllamm should be used with the trace option. This provides
more information on how the syntax has been interpreted and shows the iterations of the maximum
likelihood procedure. Using this option makes it easier to assess how long the program will take
and to make sure that the model has been specified correctly. Using the above command with the
trace option, gives the following output:

. xi: gllamm dtlm i.group level, i(id) family(binom) link(logit) nip(20) trace
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

General model information

dependent variable: dtlm
family: binom
link: logit
denominator: 1

equation for fixed effects _Igroup_2 _Igroup_3 level _cons

Random effects information for 2 level model

**xlevel 2 (id) equation(s):

standard deviation of random effect
id: _cons

677
226

number of level 1 units
number of level 2 units

Initial values for fixed effects

Iteration 0: log likelihood = -373.67941
Iteration 1: log likelihood = -317.84501
Iteration 2: log likelihood = -313.96138
Iteration 3: log likelihood = -313.89083
Iteration 4: log likelihood = -313.89079
Logit estimates Number of obs = 677
LR chi2(3) = 119.58
Prob > chi2 = 0.0000
Log likelihood = -313.89079 Pseudo R2 = 0.1600
dtlm | Coef. Std. Err. z P>zl [95% Conf. Intervall
_____________ U ——— ——— ———
_Igroup_2 | -.1396641  .2282452  -0.61 0.541  -.5870164  .3076882
_Igroup_3 | -.8313329 .2742339 -3.03 0.002 -1.368821 -.2938444
level | -1.313382 .1409487 -9.32 0.000 -1.589636 -1.037127
_cons | -1.160498 .1824502 -6.36 0.000 -1.518094 -.8029024

start running on 16 Apr 2001 at 09:56:59

Iteration O:
Coefficient vector:
dtlm: dtlm: dtlm: dtlm: id:
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_Igroup_2 _Igroup_3 level _cons _cons
rl -.1396641 -.8313329 -1.313382 -1.160498 .5
log likelihood = -310.89641
Iteration 1:
Coefficient vector:
dtlm: dtlm: dtlm: dtlm: id:
_Igroup_2 _Igroup_3 level _cons _cons
rl -.1511037 -.9209352 -1.478316 -1.31004 1.246432
log likelihood = -306.86363

>>>> More iterations and final output

The information that the equation for the fixed effects is _-Igroup 2 _Igroup.3 level _cons
means that these are the column names of the parameter vector printed out in the iteration log.
The initial output also tells us that the standard deviation for the random effect has equation name
id and column name _cons in the parameter vector. (The absolute value of this parameter should
be interpreted as the standard deviation; it can also be negative.)

The initial values for the fixed effects are estimated using conventional logistic regression. An
arbitrary value of 0.5 is then used as the initial estimate of the standard deviation of the random
intercept. In the first iteration, this changes to 1.246. We can watch the change in parameter
values and log-likelihood until convergence.

We now consider a model that cannot be estimated in xtlogit by introducing a random effect
for families. This gives a three level logistic regression model as in equation (3.1). Here the level 3
identifier, famnum, is simply specified within the i () option:

. xi: gllamm dtlm i.group level, i(id famnum) family(binom) link(logit) nip(8)
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)
number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118
Condition Number = 4.2148989
gllamm model
log likelihood = -305.11873
dtlm | Coef.  Std. Err z P>|z| [95% Conf. Intervall
_Igroup_2 | -.249  .3544871 -0.70  0.482 -.943782 .445782
_Igroup_3 | -1.052334 .3999883 -2.63 0.009 -1.836297 -.2683716
level | -1.648503 .1932191 -8.53  0.000 -2.027206 -1.269801
_cons | -1.485952 .2848916 -5.22  0.000 -2.044329  -.9275745

Variances and covariances of random effects

***xlevel 2 (id)
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var(1): 1.1345171 (.68948027)
***xlevel 3 (famnum)

var(1): .57347062 (.53124401)

The variance at level 2 is estimated as 1.134 with a standard error of 0.689, and the variance at
level 3 is estimated as 1.134 with a standard error of 0.689. The output only shows the final results
of the estimation. Again, we would normally use the trace option to check that the model was
correctly specified and to obtain the full iteration log. To check if 8 points were sufficient, we can
use the commands

matrix a=e(b)
xi: gllamm dtlm i.group level, i(id famnum) family(binom) link(logit) nip(20)
*/ from(a) trace

Here, the vector of parameter estimates is stored in the matrix a and then passed to gllamm
as intial values using the from() option. Using 20 quadrature points (which takes a long time
since evaluation of the marginal likelihood requires summing 20 x 20 terms), some of the parameter
estimates change in the third decimal place. Increasing the number of quadrature points by another
10 gives negligible changes.

Using the eform option when estimating the model or issuing the command gllamm, eform
after estimating the model gives the same output as above but with exponentiated estimates and
confidence intervals in the fixed-effects table.

See Section 8.3 for an example of three level ordinal logistic regression.

3.2 Two level random coefficient model

Here we illustrate the use of random coefficient models for normally distributed responses. Note,
however, that we would normally not recommend using gllamm for normally distributed responses
since plenty of software exists for fitting such models without using approximations such as quadra-
ture. However, if gllamm is used, adaptive quadrature is likely to give better parameter estimates
than ordinary quadrature. With both methods, the user must ensure that sufficient quadrature
points are used.

The data for this section are the Junior School Project data from the MLn manual (Woodhouse,
1995). Maths results are available on pupils from different schools in the third and fifth years. We
will fit a linear regression model of the year 5 results, math5, on the (mean centred) year 3 results,
math3, with a random intercept and a random coefficient of math3 for schools. The model can be
written as

Nij = Bo + Przij + i + u1iTy; (3.2)

where ¢ indexes the schools and j indexes the pupils, z;; is the year 3 result and u;; is the cor-
responding random coefficient. The two random effects are assumed to have a bivariate normal
distribution.
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3.2.1 Data preparation

A listing of the variables in the file jsp.dta is shown below for observations 87 to 95.

. list school pupil math5 math3 wtl in 87/95

school pupil mathb math3 wtl
87. 5 21 28 3.6 1
88. 5 22 30 -3.4 1
89. 5 23 25 -3.4 1
90. 5 24 37 6.6 2
91. 5 25 36 1.6 1
92. 6 1 28 -5.4 1
93. 6 2 26 4.6 1
94. 6 3 30 -6.4 1
95. 6 4 37 5.6 1

The variable wt1 contains level 1 weights and is equal to 1 for most pupils because there were only
a few instances of two pupils in the same school having the same result for math3 and mathb.

3.2.2 Model fitting

When any of the random effects are not intercepts, we must specify the sets of variables whose
linear combination multiplies the random effects. This is done by defining equations prior to
running gllamm using the eq command (still available in Stata 7 but undocumented). The syntax
is

eq name: varl var2 vars .-

The equation can now be referred to by its name and the variables on the right hand side will
be combined to form a linear combination X'z as in equation (1.2). In the gllamm command, we
must first specify that there are two random effects at level 2 using the nrf () option. We then
use the eqs () option to specify that one of the random effects, the random intercept, multiplies a
variable, cons, equal to 1 and the other random effect, the random coefficient, multiplies math3.

Initially, we will assume zero correlation between the random slope and intercept by using the
nocor option. The weight () option is used to inform gllamm that the data are in collapsed form
and that wt1 represents frequency weights for the level 1 units. (gllamm will also look for a wt2
variable, but if this is not found, as here, the level 2 weights will be assumed to be equal to 1.)

. gen cons = 1

. eq sch_c: cons

. eq sch_m3: math3

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nocor nip(8) weight(wt)

887
48

number of level 1 units

number of level 2 units
Condition Number = 12.01191
gllamm model

log likelihood = -2763.3492

mathb5 | Coef. Std. Err. z P>|z| [95% Conf. Intervall
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- + —_—— _——
+

math3 | .6137155 . 0443395 13.84 0.000 .5268117 .7006192
_cons | 30.68167 .29562563  103.92  0.000 30.10298 31.26036

Variance at level 1

26.935556 (1.357001)

Variances and covariances of random effects

*xxlevel 2 (school)

var(1): 4.0987663 (.99349648)
cov(1,2): fixed at O

var(2): .03747035 (.01981001)

The within-school (residual) level 1 variance is estimated as 26.94 with a standard error of 1.36

In order to interpret the level 2 variances, we need to consider that, in the eqs() option,
equation sch_c was specified first, followed by equation sch_.m3. Therefore, the first random effect
is the random intercept (it multiplies cons) and the second random effect to be the random slope
of math3. The random intercept variance, var(1), is therefore estimated as 4.10 with a standard
error of 0.99 and the random slope variance, var(2), is estimated as 0.037 with a standard error
of 0.020. The output reminds us that the covariance was fixed at 0.

Comparing the estimated variance of the random coefficient with its standard error (using a
Wald test) gives the impression that it is not significant at the 5% level. However, the variance
estimate is unlikely to be normally distributed and the Wald test is known to be invalid when
the null value is on or near the boundary of the parameter space. A likelihood ratio test should
therefore be used. The program estimates the Cholesky decomposition of the covariance matrix of
the random effects. Since the covariance was set to 0, the Cholesky decomposition is diagonal with
diagonal elements equal to the standard deviations (apart from the sign which may be negative).
We can obtain the standard deviation estimates and their standard errors using the allc option:

. gllamm, allc

>>>> output as above, omitted

math5 | Coef. Std. Err. z P>z [95% Conf. Interval]
_____________ +___________________ _—————— ———— ————
mathb |
math3 | .6137155 .0443395 13.84 0.000 .5268117 .7006192
_cons | 30.68167 .2952553 103.92  0.000 30.10298 31.26036
_____________ +___________________ —_—————— _—————— ————
1ns1 |
_cons | 1.646724 .0251898 65.37 0.000 1.597353 1.696095
_____________ +___________________ _—————— ———— ————
schol |
cons | 2.024541 .2453634 8.25 0.000 1.543638 2.505444
_____________ +___________________ _—————— ———— ————
scho?2 |
math3 | -.1935726 .0511695 -3.78 0.000 -.2938629 -.0932823
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The standard deviation of the random coefficient is estimated as 0.193 with a standard error of
0.05 - this would be significant at the 5% level. ([1ns1] _cons is the log standard deviation at level
1.)

In order to carry out the likelihood ratio test, we will now fit the model without a random
coefficient for math3. It will be quicker to use as starting values the previous estimates, obtained
using e (b), and passed to gllamm using the from() and skip options. Since the parameter vector
has equation name schol and column name cons for the intercept standard deviation estimate
(see above), we will use the option eqs(sch_c) although this would normally not be necessary for
a random intercept model:

. matrix a=e(b)
. gllamm math5 math3, i(school) nip(20) eqs(sch_c) weight(wt) from(a) skip

number of level 1 units = 887
number of level 2 units 48

Condition Number = 14.000586
gllamm model

log likelihood = -2767.866

math5 | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___________________ —_—————— _—————— ————

math3 | .6087711 .0326381 18.65 0.000 .5448016 .6727406

cons | 30.60566 .3407557 89.82 0.000 29.93779 31.273563

Variance at level 1

28.118708 (1.3728251)

Variances and covariances of random effects

*xx]level 2 (school)

var(1): 4.0556597 (1.2020057)

The likelihood ratio test is

. disp chiprob(1,2*(2767.866 -2763.3492))
.00265062

showing that the effect of math3 varies significantly between schools.

We now introduce a correlation between the random slope and intercept, using as starting values
the estimates from the model with uncorrelated slope and intercept (these estimates are still in the
vector a):

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(8) weight(wt) from(a)

number of level 1 units = 887
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number of level 2 units = 48
Condition Number = 13.579083
gllamm model

log likelihood = -2757.0046

math5 | Coef. Std. Err. z P>z [95% Conf. Interval]
math3 | .6073693 .042477 14.30 0.000 .524116 .6906226
_cons | 30.65958 .3311732 92.58 0.000 30.01049 31.30867

Variance at level 1

26.934382 (1.3527423)

Variances and covariances of random effects

*x*xlevel 2 (school)

var(1): 4.1463278 (.95033318)
cov(1,2): -.31583208 (.09461644) cor(1,2): -.86902604

var(2): .03185542 (.01655613)

The intercept and slope are highly negatively correlated (correlation = -0.869). The difference in
log-likelihoods indicates that this correlation is highly significant.

Again, the Cholesky decomposition of the covariance matrix, L, was estimated and the covari-
ance matrix and corresponding standard errors were computed from L and its standard errors. To
view these ‘raw’ parameters, use the allc option. Since the parameters have just been estimated,
we can simply redisplay them in their raw form using the command gllamm, allc.

We will now use adaptive quadrature to improve the parameter estimates. We would recommend
always trying adaptive quadrature if the responses are continuous (or perhaps for any types of
responses). Simply run the same command as before but with the adapt option.

. matrix a=e(b)
. gllamm math5 math3, i(school) nrf(2) egs(sch_c sch_m3) nip(8) weight(wt) from(a) adapt

887
48

number of level 1 units
number of level 2 units

Condition Number = 14.9902
gllamm model

log likelihood = -2757.0803

mathb5 | Coef. Std. Err. z P>lz| [95% Conf. Intervall

- +
+

math3 | .6123977 .0428954 14.28 0.000 .5283242 .6964712
_cons | 30.59295 .3655917 83.68  0.000 29.8764 31.30949
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Variance at level 1

26.964585 (1.3460859)

Variances and covariances of random effects

*xxlevel 2 (school)

var(1): 4.5788594 (1.3101581)
cov(1,2): -.3605893 (.12256045) cor(1,2): -.90984435

var(2): .03430316 (.01760728)

These estimates are close to those obtained using MLwiN, namely fixed effects (standard error):
0.6124 (0.04283) and 30.59 (0.3657), level 1 residual variance: 26.96 (1.343) and covariance matrix
of the random effects:
4.585 (1.291) —0.3603 (0.1189)
—0.3606 (0.1189) 0.03423 (0.01704) |-

We can use gllapred to obtain the posterior means (empirical Bayes predictions) of the random
effects:

. gllapred u,u

Non-adaptive log-likelihood: -2757.1446
-2757.5280 -2757.0861 -2757.0803 -2757.0803
log-likelihood is -2757.0803

This creates four variables, uml and um2 containing the posterior means of the random intercept
and coeflicient, respectively, and us1 and us2 containing the corresponding posterior standard de-
viations. (The final log-likelihood value returned by gllapred should be the same as that returned
by gllamm, otherwise there is a problem!)

Values of the posterior means are created for each observation in each school. This can be seen
by listing the same observations as before,

. list school pupil uml um2 usl us2 in 87/95

school pupil umil um2 usi us2
87. 5 21 -.03652747 -.00149414 1.044302 .10956977
88. 5 22 -.03652747 -.00149414 1.044302 .10956977
89. 5 23 -.03652747 -.00149414 1.044302 .10956977
90. 5 24 -.03652747 -.00149414 1.044302 .10956977
91. 5 256 -.03652747 -.00149414 1.044302 .10956977
92. 6 1 .85082254 -.07551827  1.1132732 .11470399
93. 6 2 .856082254 -.07551827  1.1132732 .11470399
94. 6 3 .8560822564 -.07551827  1.1132732 .11470399
95. 6 4  .85082254 -.07551827 1.1132732 .11470399

We can summarise the values of uml and um2 for the 48 schools by first creating a dummy
variable, £, that is equal to one for only one observation in each school:
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. sort school pupil
. qui by school: gen f=_n==1
. summ uml um2 if f==1

Variable | Obs Mean Std. Dev. Min Max
umi | 48 -1.58e-08 1.853219 -3.834251 3.270771
um?2 | 48 2.65e-09 .1517105 -.2679363 .3366223

. corr uml um2 if f==1, cov
(obs=48)

I
umi | 3.43442
| -.277808 .023016

The variances of the posterior means are smaller than the estimated variances of the (prior)
distribution of the random effects. This is because the posterior means are ‘shrunken’ towards the
mean of the prior distribution, in this case 0. They are therefore sometimes referred to as shrinkage
estimators.

We can use gllapred with the 1inpred option to get predicted values for each individual child
based on

Uij = Tij
= fo + Pixij + Go; + Uiz, (3.3)

where 30 and Bl are the fixed parameter estimates and gy; and 4,; are the posterior means of the
random intercept and slope, respectively.

. gllapred 1lp, linpred

Non-adaptive log-likelihood: -2757.1446
-2757.5280 -2757.0861 -2757.0803 -2757.0803
log-likelihood is -2757.0803

We can plot the predictions agains math3 for each school by first sorting the data by math3
within school and then using the connect (L) option which connects only groups of points for
which math3 increases:

. sort school math3
. graph 1p math3, connect(L) s(i) xlab ylab 1l1(predicted math5 score) b2(math3 score) gap(3)

The resulting graph is shown in Figure 3.1.

Level 1 residuals could be computed by subtracting lp from math5. The empirical Bayes
estimates are sometimes considered level 2 residuals. Outlying schools could be detected by dividing
the level 2 residuals by the standard errors (the posterior standard deviations).

See also Section 5.2 for a discrete random effects version of this model.
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Figure 3.1: Predictions from random coefficients model for JSP data.
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Multilevel factor models

4.1 One parameter and two parameter item-response models

Binary data on 5 items from section 6 of the Law School Admission Test (LSAT)(Bock and Lieber-
man, 1970), will be used to illustrate how factor models may be fitted using gllamm.

Item response models may be used to model the responses of subjects to a number of exam
questions, or items. The log odds of subject ¢ giving a correct answer to item j may be modelled
using a one parameter logistic item response model (Rasch model):

Nij = Bj + wi (4.1)

where —f3; represents the difficulty of question j and u; represents the ability of subject 4. This is
a simple two-level model and may be fitted using xtlogit. If we introduce a further parameter A;,
we obtain a two parameter logistic item response model

Nij = Bj + uidj (4.2)

where \; represents the extent to which question j discriminates between subjects of different
abilities. Here we are modelling a multivariate dataset by representing the variables as level 1 units
indexed j. If the data are in long form with the responses to all the questions stacked into a single
response vector, we can use dummy variables

_ ) lif p=j
Tpij = { 0 otherwise (4.3)

to write the model in the form of equation (1.2), giving
Mij = B'Xij + uiA'xi (4.4)
(See Section 1.1.2 for more details on defining factor models.)

4.1.1 Data preparation

The data are in Isat.dta. The responses are stacked into the variable resp and the variables il to
i5 are indicators for the 5 items. Here we list some of these variables for observations 1 to 10.

. list id resp wt2 il i2 i3 in 1/10

id resp wt2 i1 i2 i3

39
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The values in the variable wt2 are level 2 weights and give the number of subjects with the same
response pattern across the 5 items.

4.1.2 Model fitting

A simple one parameter logistic (or Rasch) model (see equation (4.1)) may be fitted using

. gllamm resp il i2 i3 i4 i5, nocons link(logit) fam(bin) i(id) nip(10) /*
> x/ weight (wt)

5000
1000

number of level 1 units

number of level 2 units
Condition Number = 2.3633019
gllamm model

log likelihood = -2466.9376

resp | Coef. Std. Err. z P>lz| [95% Conf. Intervall
il | 2.730013 .130441 20.93 0.000 2.474353 2.985673
i2 | .9986051 .0791772 12.61  0.000 .8434207 1.15379
i3 | .2398536 .0717746 3.34 0.001 .0991779 .3805292
i4 | 1.30645 .084638 15.44  0.000 1.140563 1.472338
i5 | 2.099404 .1054449 19.91 0.000 1.892736 2.306072

Variances and covariances of random effects

*xxlevel 2 (id)

var(1): .57022544 (.10486119)

The random effects variance is estimated as 0.570 with a standard error of 0.105. (Note that the
same model may be fitted using xtlogit resp i1-i5, nocons i(id) quad(10) if the data is not
in ‘collapsed’ form.)

In order to fit a two-parameter item-response model in equation (4.4), we first need to define
an equation using the eq command and then use the eqs () option to specify the variables i1 to
i5 in the linear combination of variables that multiplies the latent variable in (4.4).
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. eq id: il i2 i3 i4 ib

. gllamm resp il i2 i3 i4 i5, nocons link(logit) family(binom) i(id)/*
> %/ eqs(id) nip(10) w(wt) 1f0(6 -2466.9376252) trace

5000
1000

number of level 1 units
number of level 2 units

Condition Number = 11.496849

gllamm model Number of obs = 1000
LR chi2(4) = 0.57

Log likelihood = -2466.6534 Prob > chi2 = 0.9665
resp Coef.  Std. Err. z P>|z| [95% Conf. Intervall

I
il | 2.773176  .2056812
I
I
I
I

i2 .9902013 .0900178
i3 .2491494 .0762736
i4 1.28476 .0990366
i5 2.053274 .1353578

13.48 0.000

11.00  0.000
3.27 0.001
12.97 0.000
156.17  0.000

2.370049 3.176304
.8137696 1.166633

.0996559 .3986429
1.090651 1.478868
1.787978 2.31857

***xlevel 2 (id)
var(1): .68157927 (.42601805)

loadings for random effect 1
i2: .87541638 (.36267338)
i3: 1.0790915 (.43509518)
i4: .83378521 (.36723728)
ib: .79561451 (.38058924)

Using the 1£f0() option caused the likelihood ratio test (LR chi2(4) = 0.57) to be shown which
indicates that the factor loadings do not differ significantly from 1, i.e. the one parameter item

response model was adequate.

Here the factor loading of item 1 was constrained to 1 and the variance of the random effect was
estimated freely. To obtain the parameters of the model where the standard deviation is constrained
to 1 instead, we can interpret the standard deviation sqrt(.87541533) as the first loading and
multiply all other loadings by this value. See Section 8.2 for a discussion of item-response models

for ordinal data.
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Chapter 5

Discrete random effects

5.1 A simple finite mixture model

In the Handbook of Statistical Analyses using Stata, Rabe-Hesketh and Everitt (2000) describe
finite mixture modelling using Stata’s m1 functions. Here we will use gllamm to fit a simple finite
mixture model the age of onset of schizophrenia data used in the book.

According to the subtype model of schizophrenia, there are two types of schizophrenia. One is
characterized by early onset, typical symptoms and poor premorbid competence and the other by
late onset, atypical symptoms and good premorbid competence. We will investigate this question
by fitting a mixture of two normal distributions to the ages. (If we had variables on symptoms and
premorbid competence, we could fit a more general latent class model.) The finite mixture model
can be written as

f(yis 71, pas 2, 01, 02) = mg(ys; p1,01) + (1 — m1)g(ys; po, 02) (5.1)

where g(y; p, o) is the Gaussian density with mean p and standard deviation o,

N2
9(y; u,0) = Ulﬁexp{—% (y U“) } (5.2)

and m; and 7o are the mixing probabilities.
To write this model as a GLLAMM, we constrain o1 = 09 = ¢. Conditional on u;, y; has a
normal distribution with variance o2 and expectation

Elyilui] = ni (5.3)

where
7 = i+ u; (5.4)

and w; is a discrete latent variable with two values, z; = p; — g and 29 = po — u where p is the
overall mean.

5.1.1 Data preparation

First we read the data

infile ages using onset.dat, clear

We need to specify the ‘level 2 units’ in gllamm, i.e. the units ¢ over which u; varies, in this
case the subjects:
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gen id=_n
The first ten ages are:

. list id ages in 1/10

id ages
1 1 20
2 2 30
3 3 21
4 4 23
5 5 30
6 6 25
7 7 13
8 8 19
9 9 16
10 10 25

5.1.2 Parameter estimation

Since sensible starting values are crucial for finite mixture models, we will first estimate the one
class solution and then use the Gateaux derivative method to introduce a second class. Having
both solutions will also enable us to assess the change in log-likelihood although the log-likelihood
ratio test is strictly not valid for mixtures.

We can estimate the one class solution using the ip (f) option and by specifying one integration
point using the nip() option:

gllamm ages, i(id) ip(f) nip(1)

In order to force gllamm to estimate the parameters by maximum likelihood rather than ordinary
regression (for comparison with the two class solution), we must make the problem look like a
nonstandard regression problem. One possibility is to use the s() option which allows the residual
variance to vary with covariates - here we will use a ‘covariate’ equal to 1.

. gen cons = 1
. eq het: comns
. gllamm ages, i(id) ip(f) nip(1) s(het) trace

General model information

dependent variable: ages
family: gauss
link: ident

equation for fixed effects _cons

Random effects information for 2 level model

***level 1 equation:

log standard deviation
Insl: coms

>>> output omitted
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log likelihood = -383.39585
ages | Coef Std. Err z P>z [95% Conf. Interval]
_____________ +___________________ ———— ———— ————
ages I
cons | 30.47475 1.169045 26.07 0.000 28.18346 32.76603
1nsi |
cons | 2.453747 .0710669 34.53 0.000 2.314458 2.593035

The log standard deviation is estimated as 2.453747 and the log-likelihood is -383.39585.
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We can now use the gateaux() option, gateaux(min max num), to introduce another mass.
Setting all the parameters equal to the estimates of the one class solution (obtained using e (b)),
a very small new mass will be moved from min to max in num steps. If the log-likelihood increases
at any of these locations, a new mass is introduced at the location with the largest increase in log-
likelihood and all parameters are updated to maximise the log-likelihood for the two class solution.
We need to pass the current log-likelihood to gllamm using the 1£0() option. The syntax is 1£0(k
11) where k is the number of parameters of the current solution and 11 is the log-likelihood of the

current solution:

. matrix a=e(b)
. local 1ll=e(1l)
. local k=e(k)

. gllamm ages, i(id) ip(f) nip(2) s(het) 1f0(‘k’ ‘11’) /*

> %/ gateaux(-20 20 100) from(a) trace

>>> output omitted

99
99

number of level 1 units

number of level 2 units

Condition Number = 23.174028

gllamm model Number of obs = 99

LR chi2(2) = 19.40

Log likelihood = -373.69749 Prob > chi2 = 0.0001

ages | Coef. Std. Err. z P>z [95% Conf. Interval]
_____________ +___________________ ———— ———— ————

cons | 30.47475 1.169045 26.07 0.000 28.18346 32.76603

Variance at level 1

44.646412 (7.8530966)

Probabilities and locations of random effects

**xlevel 2 (id)
prob: 0.2515, 0.7485
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locl: 16.426, -5.5187
var(1): 90.653445

We therefore have a mixture component (or latent class) with a small mixing probability (or
prior probability) estimated as 0.25 whose mean age of onset is 16.43 years greater than the overall
average age of onset of 30.47 and a larger class (estimated prior probability of 0.75) whose age
of onset is -5.52 years lower than the overall average. In gllamm the variance must be assumed
to be equal in both classes and is estimated as 44.65. (Allowing different variances in the classes
as in Rabe-Hesketh and Everitt (2000), hardly increases the log-likelihood, so for these data the
assumption of equal variances is appropriate.)

To see how the model is parameterised, use the allc option:

. gllamm, allc

>>> same output as without allc option (omitted)

gllamm model Number of obs = 99
LR chi2(2) = 19.40
Log likelihood = -373.69749 Prob > chi2 = 0.0001
ages | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_____________ +___________________ _—————— ———— ————
ages |
_cons | 30.47475 1.169045 26.07 0.000 28.18346 32.76603
1ns1 |
cons | 1.899387 .0879477 21.60 0.000 1.727013 2.071761
z2_1 |
_cons | 16.42646 1.852972 8.86 0.000 12.7947 20.05822
p2_1 |
_cons | -1.090743 .2742904 -3.98 0.000 -1.628342  -.5531438
Here, p2_1 is the log odds for class 1 so that the estimated probability is
. exp(p2-1
= _exp(p2-1) (5.5)
1 + exp(p2.1)
and z2_1 is the location for class 1
21 =1 —p=12z21. (5.6)
The location for class 2 is estimated as
22:,&2—/1,:217}1/(1—7?1) (57)

so that the mean of the discrete probability distribution of the latent variable is zero
217?('14-22(1—7?(1) =0 (5.8)

We can obtain estimates of the posterior probabilities and posterior means using the gllapred
command:
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Figure 5.1: Boxplots of ages of onset by assigned latent class

. gllapred u, p
prior probabilities

M_zps2[1,2]
cl c2
rl .25147836 .74852164

locations for random effect 1

M_zlc2[1,2]
cl c2
ri 16.426462 -5.5187445

log-likelihood is -373.69749

The output reminds us what the prior probabilities were and gives us the log-likelihood which
should be identical to that given in the gllamm output. The posterior probabilities are stored in
the variables ul and u2.

We can assign individuals to the class with the greatest posterior probability and produce
boxplots of the ages within each class:

gen class = u2>ul
sort class
graph ages, by(class) box s([id])

giving the graph in Figure 5.1.

We could also use the ip(fn) option to estimate the means of the two latent classes directly
rather than their deviation from a common mean. This is an example of a model with no fixed
effects. For the one class solution, use:

. gllamm ages, nocons i(id) ip(fn) nip(1) trace

>>> output omitted
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99
99

number of level 1 units
number of level 2 units

Condition Number = 16.449916
gllamm model

log likelihood = -383.39585
No fixed effects

Variance at level 1

135.29987 (19.230686)

Probabilities and locations of random effects

*xxlevel 2 (id)
prob: 1

locl: 30.475
var(1): 0

Then introduce another point using the gateaux option:

. matrix a=e(b)

. local 1ll=e(1l)

. local k=e(k)

. gllamm ages, nocons i(id) ip(fn) nip(2) 1f0(‘k’> ‘11’) /*
> */ gateaux(20 60 100) from(a) trace

>>> output omitted

99
99

number of level 1 units
number of level 2 units

Condition Number = 20.454287
gllamm model

log likelihood = -373.69749
No fixed effects

Variance at level 1

44.646432 (7.8531028)

Probabilities and locations of random effects

**xlevel 2 (id)
prob: 0.2515, 0.7485

locl: 46.901, 24.956
var(1): 90.653439
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5.2 Linear mixed model with discrete random effects

In this section we will return to the Junior School Project data analysed in Section 3.2. Maths
results are available on pupils from different schools in the third and fifth years. We will fit a linear
regression model regressiong the year 5 results, math5, on the (mean centred) year 3 results, math3,
with a random intercept and a random coefficient of math3 for schools. The model can be written
as

i = Bo + Przij + uoi + u1iTs; (5.9)

where 4 indexes the schools and j indexes the pupils, z;; is the year 3 result and u,; is the cor-
responding random coefficient. Instead of assuming a bivariate normal ditribution of the random
effects as in Section 3.2, we now assume a bivariate discrete distribution, i.e., we assume that
the random effects (ug, u1) take on a number of discrete values (zg,, 21,), with probabilities 7,
r=1,---, R. This corresponds to assuming that the population falls into a finite number of latent
classes or types or can be approximated in this way. When the maximum number of classes is used,
the distribution may be interpreted as a non-parametric distribution.

5.2.1 Model fitting

The data are in jsp.dta. The gllamm command is identical to that used in the continuous case
except that the ip(f) option is specified. Initially we fit a model with just two points:

. use jsp, clear

. gen cons = 1

. eq sch_c: cons

. eq sch_m3: math3

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(2) weight(wt) ip(f)

number of level 1 units = 887
number of level 2 units 43

Condition Number = 25.665476
gllamm model

log likelihood = -2760.7033

mathb5 | Coef. Std. Err. z P>|z| [95% Conf. Intervall
math3 | .5921935 .0397521 14.90 0.000 .5142807 .6701062
_cons | 30.71605 .3245148 94.65 0.000 30.08001 31.35209

Variance at level 1

28.171487 (1.3495008)

Probabilities and locations of random effects

**xlevel 2 (school)
prob: 0.6727, 0.3273
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locl: -1.2586, 2.5874
var(1): 3.2566284
cov(1,2): -.285505

loc2: .11034, -.22684
var(2): .02502991

The coordinates of the two points are (intercept, slope) = (-1.2586,0.11034) and (2.5874,-0.22684)
with probabilities of 0.6727 and 0.3273 respectively. The output also gives the variances and
covariance of the discrete random effects based on the bivariate discrete probability distribution.

We can use the Gateaux derivative method to check if introduction of a further mass-point
yields a larger maximised likelihood. Keeping all other parameters at their current values, we need
to move a small mass through a fine 2-D grid of values of the random effects and check whether this
increases the likelihood anywhere. We can do this using the gateaux () option to specify the limits
and number of steps for the search in each dimension. In addition, we have to pass the number of
parameters and log-likelihood of the current model to gllamm using the 1£0() option. After finding
the maximum Gateaux derivative point, the estimation of the extended model automatically starts
of the Gateaux derivative is positive.

. matrix a=e(b)

. local 11l=e(11)

. local k=e(k)

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(4) weight (wt)
> %/ ip(f) from(a) gateaux(-10 10 30) 1f0(‘k’ ‘11°)

maximum gateaux derivative is 1.491291

887
48

number of level 1 units
number of level 2 units

Condition Number = 60.948279

gllamm model Number of obs = 48
LR chi2(3) = 6.52

Log likelihood = -2757.4437 Prob > chi2 = 0.0889
mathb5 | Coef. Std. Err. z P>lz| [95% Conf. Intervall

math3 | .6015936 .0452026 13.31 0.000 .5129981 .6901891

_cons | 30.70774 .3272301 93.84 0.000 30.06638 31.3491

Variance at level 1

27.690161 (1.3291571)

Probabilities and locations of random effects

***xlevel 2 (school)
prob: 0.6551, 0.0291, 0.3158



5.2.

The likelihood ratio test produced at the top of the output is not strictly valid for comparing
solutions with different numbers of masses but is printed whenever the 1£0() option is used. A
very small mass of 0.0291 has been placed at (-2.6896,.91947) without affecting the other masses
substantially. Note that the condition number is quite large. This seems to happen frequently
when a larger number of free masses are estimated. We now use the Gateaux derivative again to
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locl: -1.1642, -2.6896, 2.6625
var(1): 3.3371899
cov(1,2): -.33125197

loc2: .07502, .91947, -.24032
var(2): .04652579

see if a fourth point can be introduced:

. matrix a=e(b)
. local 11=e(11)
. local k=e(k)

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(4) weight (wt)
> %/ ip(f) from(a) gateaux(-10 10 30) 1f0(‘k’ ‘11°)

maximum gateaux derivative is .27726546

887
48

number of level 1 units
number of level 2 units

Condition Number = 55.415951

gllamm model Number of obs = 48

LR chi2(3) = 12.57

Log likelihood = -2751.1611 Prob > chi2 = 0.0057

math5 | Coef Std. Err z P>|z| [95% Conf. Intervall
_____________ +___________________ —————— ————— —————

math3 | .616916  .0457258 13.49  0.000 .527295 .7065369

_cons | 30.65184 .361109 84.88 0.000 29.94408 31.3596

Variance at level 1

26.644581 (1.2922193)

Probabilities and locations of random effects

***xlevel 2 (school)
prob: 0.5334, 0.0316, 0.1597, 0.2753

locl: -.34239, -2.6291, -3.3806, 2.9257
var(1): 4.4623476
cov(1,2): -.34745907

loc2: .06313, .88985, .08057, -.27122
var(2): .04845221
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The variances and covariance of the discrete random effects are now quite close to the estimates of
the model assuming continuous random effects in Section 3.2. Note that a point with a substantial
probability of 0.1597 has now been included. The previous three point solution may represent a
local maximum of the log-likelihood since it seems likely that a better three point solution can be
achieved by using as starting values the above estimates excluding the second point with the very
low probability of 0.0316. We can do this as follows:

. matrix a=e(b)
. matrix list a

a[1,12]
mathb: mathb: 1nsi: z2_1_1: z2_2_1: p2_1:
math3 _cons _cons cons math3 _cons
yi .616916 30.651841 1.6412929 -.34239476 .0631312 .66134194
z2_1_2: z2_2_2: p2_2: z2_1_3: z2_2_3: p2_3:
cons math3 _cons cons math3 _cons

yl -2.6291197 .88984924 -2.1641927 -3.3806175 .08056978 -.54491932

. matrix b = a[1,1..6],a[1,10..12]
. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(3) from(b) copy weight(wt) ip(f)

887
48

number of level 1 units
number of level 2 units

Condition Number = 37.366118
gllamm model

log likelihood = -2753.4705

math5 | Coef. Std. Err. z P>zl [95% Conf. Intervall
math3 | .6071675 .0401361 15.13 0.000 .5285023 .6858327
_cons | 30.62459 .3660526 83.66 0.000 29.90714 31.34204

Variance at level 1

27.002646 (1.3044171)

Probabilities and locations of random effects

***xlevel 2 (school)
prob: 0.539, 0.1851, 0.2759

locl: -.32603, -3.4409, 2.9461
var(1): 4.6435926
cov(1,2): -.33181452

loc2: .07632, .16678, -.26104
var(2): .02708821

giving a higher maximised likelihood than previously. Here we used the copy option to make gllamm
ignore the equation and column names of the matrix b.
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We now return to the four class model by running

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(4) from(a) copy weight(wt) ip(f)

We can use gllapred to estimate the posterior means and probabilities of the random effects.
First we estimate the posterior probabilities using the p option:

. gllapred z,p
prior probabilities

M_zps2[1,4]

cl c2 c3 c4
rl .53340462 .0316186 .15965666 .27532118
locations for random effect 1
M_zlc2[1,4]

cl c2 c3 c4
rl -.34239476 -2.6291197 -3.3806175 2.9256688
locations for random effect 2
M_z1c3[1,4]

cl c2 c3 c4
ri .0631312 .88984924 .08056978 -.27122389

log-likelihood is -2751.1611

the output reminds us what the prior probabilities of class membership are and gives us the log-
likelihood of the model which should be identical to that obtained previously using gllamm. The p
option causes gllapred to compute the four posterior probabilities for each observation and store

them in z1 to z4.
First, we calculate the greatest probability

. egen double maxp = rmax(zl z2 z3 z4)
. summ maxp

Variable | Obs Mean Std. Dev.

Min Max

.8940566

.1446485

"
+

maxp | 848

.5110811

.9998173

We can now classify the schools into four latent groups (or classes) by allocating them to the group
with the largest posterior probability. For each school, there is a latent group to which the school
belongs with a posterior probability of at least 51% (the minimum of maxp).

gen class = 1 if z1>=maxp

replace class = 2 if z2>=maxp
replace class = 3 if z3>=maxp
replace class = 4 if z4>=maxp

The posterior means are obtained in the same way as for continuous random effects:
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. gllapred z,u

log-likelihood is -2751.1611

giving posterior means stored in zml and zm2 and posterior standard deviations in zs1 and zs2:

. list school pupil zml zm2 zsl zs2 in 87/95

school pupil zml zm2 zsi zs2
87. 5 21 -.28267993 .055835 .521296  .04961322
88. 5 22 -.28267993 .055835 .521296  .04961322
89. 5 23 -.28267993 .055835 .521296  .04961322
90. 5 24 -.28267993 .055835 .521296  .04961322
91. 5 25 -.28267993 .055835 .521296  .04961322
92. 6 1 .59825982 -.03396211  1.4983812  .15183799
93. 6 2 .59825982 -.03396211  1.4983812  .15183799
94. 6 3  .59825982 -.03396211  1.4983812  .15183799
95. 6 4  .59825982 -.03396211  1.4983812  .15183799

We can estimate the same model assuming normally distributed random effects (Section 3.2)
and obtain the corresponding posterior means:

gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(8) weight(wt) adapt
gllapred u, u

giving posterior means uml and um2. We can tabulate the mean posterior means from the
continuous model for each latent group of the discrete model:

. sort school pupil
. qui by school: gen f=_n==1
. table class if f==1, contents(mean uml mean um2 freq)

class | mean(uml)  mean(um2) Freq.
1| -.21519023  .02161626 28
2 | -3.6618951  .33129555 1
3 | -2.7079715 .20277729
4 | 2.3740233 -.19526499 12

The covariance matrices of the two sets of posterior means are

. corr zml zm2 if f==1, cov
(obs=48)

zml zm?2

I
+ —

zml | 3.56467
zm2 | -.280939 .037933

. corr uml um2 if f==1, cov
(obs=48)
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Figure 5.2: Posterior means of random intercept: quadrature solution versus discrete solution

| umi um?2

uml | 3.44322
um2 | -.278019 .022844

These are remarkably similar as are the model estimates of the covariance matrices of the random
effects. Figure 5.2 and 5.3 show scatterplots of the two estimates of the random intercepts and of
the two estimates of the random slopes, respectively. These figures (in encapsulated postscript)
were created using the commands

graph uml zml if f==1, xlab ylab li1(quadrature) b2(free masses) gap(3) saving(jspresl, replace)
translate jspresl.gph jspresl.eps, trans(gph2eps)

graph um2 zm2 if f==1, xlab ylab l1(quadrature) b2(free masses) gap(3) saving(jspres2, replace)
translate jspres2.gph jspres2.eps, trans(gph2eps)

See Section 9.4 for another example of using discrete latent variables.
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Figure 5.3: Posterior means of random slope: quadrature solution versus discrete solution



Chapter 6

Mixed response models

The models we have discusses so far have had responses of a single type, dichotomous, ordinal or
continuous. A single link and family were specified. In this chapter we discuss models where the
responses are of mixed types, for example dichotomous and continuous. For such models, different
links and families are specified for different responses.

6.1 Logistic regression with covariate measurement error

An epidemiological dataset with variables on diet and coronary heart disease (CHD) (Morris et al.,
1977) will be used to illustrate how the program may be used for logistic regression with errors in
covariates. The aim is to estimate the relationship between fibre intake (exposure) and risk of CHD
(disease) where fibre is subject to measurement error and has been measured twice on a subset of
subjects.

We therefore have several responses per subject, one or two of the fallible measure of exposure
Yi1, ¥io and disease status y;3. If we wish to model the relationship between exposure and disease
status whilst correcting for measurement error in exposure, we need to specify a measurement
model for exposure. We assume that that the exposure measurements ;1 and ;2 are independently
normally distributed conditional on true exposure with means u;; given by

Nij = i = Bj+uiAj, j=1,2
= B+ (6.1)

where the mean exposure on both occasions is assumed to be the same (82 = 1), u; is a latent
variable representing the difference between subject ith’s exposure and the mean exposure, and we
assume that the scale of both measurements is the same by setting A\; = Ao = 1. By consstrain-
ing the factor loadings to 1, we ensure that the scale of u; is the same as that of the exposure
measurements.
We now specify a disease model by assuming that y;3 is binomial with the logit of the probability
;3 given by
nis = logit(mi3) = B3 + uiA3. (6.2)

A3 is the log odds ratio of interest — the estimated log of the ratio of the odds of having the disease
when the true exposure increases by one unit.
These models can be written as a GLLAMM model by using appropriate dummy variables,

nij = Przij + Bazs; + ui(z1; + Azzs;)
= Bj tuilj (6.3)
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where z1; = 1if j = 1 or 5 = 2 and 0 otherwise and z3; = 1 if j = 3 and 0 otherwise. Note that
we are constraining the factor loadings of responses 1 and 2 to be equal by simply using a single
dummy variable z1; equal to the sum of the individual dummy variables for responses 1 and 2.

There may be other covariates not assumed to be subject to measurement error. We can add
another covariate, z;, to the disease model

ni3 = logit(m3) = B3 + Bazi + uil3 (6.4)

thus assuming a direct effect of the covariate on the risk of disease. This model is shown as a
path diagram below:

(In the diagram, circles represent latent variables and rectangles observed variables. Arrows between
variables represent linear relations and the little arrows pointing to the rectangles represent residual
errors, or in the case of y3, the binomial variabilty.)

However, it may be that the covariate has an indirect effect on disease by affecting the exposure:

u; =Yz + G (6.5)

where (; is a residual error term. The measurement model now is

Mij = Bj +vzi + G (6.6)

and the disease model is
Nis = B3 + YAsxi + (ids (6.7)

The coefficient of z; (representing the indirect effect of z; on the risk of disease), yA3, in the disease
model is the product of the coefficient of z; in the measurement model and the log odds ratio A3 -
this represents a nonlinear constraint for the parameters. In gllamm, this model can therefore only
be estimated by specifying the regression of u; on z; in (6.5) directly. The model is shown as a
path diagram below:
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If there are both direct and indirect effects of x on the risk, the disease model becomes

mi3 = P + (Bs + yA3)x;i + (A3 (6.8)

In this model, we can estimate the coefficient of z freely, giving an estimate of 84 + yA3 with its
standard error. Alternatively, we can explicity specify the regression in (6.5), to obtain estimates
of all the individual parameters and their standard errors. This model is shown as a path diagram
below:

6.1.1 Data preparation

The data are in diet.dta. The variable r contains the logarithm of the dietary fibre measurements
and chd is the binary disease indicator. Those subjects who had two fibre measurements have two
lines of data; the variable t indicates whether r corresponds to the first measurement of fibre (t=1)
or the second measurement (t=2). The men had two types of occupation; occ=1: bus staff (drivers
and conductors) and occ=0: bank staff.

. use diet, clear
. sort id t
. list id t r chd occ in 210/220

id t r chd occ
210. 214 1 2.85 0 0
211. 215 1 2.76 0 0
212. 216 1 2.59 0 0
213. 217 1 3.06 0 0
214. 218 1 3.14 0 0
215. 219 1 2.75 0 0
216. 219 2 2.7 0 0
217. 220 1 2.6 0 0
218. 220 2 2.69 0 0
219. 221 1 2.77 0 0
220. 221 2 2.85 0 0
221. 222 1 2.31 0 0
222. 222 2 2.563 0 0
223. 223 1 2.98 0 0
224. 223 2 3.29 0 0
225. 224 1 2.44 1 0

Note that, for instance, subject 214 had only one measurement of fibre whereas subject 219 had
two. We need to stack the variables r and chd into a single response variable, resp and create
two dummy variables, diet for the fibre measurements and chd for disease status (CHD). We will
use the reshape command but first we must replace one value of chd by a missing value for those
subjects who have two lines of data:
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replace chd=. if t==
rename r respl
rename chd resp2

gen n=_n

reshape long resp, i(n) j(var)
drop if resp==.

drop n

sort id t var

tab var, gen(i)
rename il diet
rename i2 chd

The variable resp now contains the responses for CHD and log fibre and the variables diet and
chd indicate whether the observation in resp is log fibre or whether it is CHD status, respectively.
The variable var is 1 for diet measurements and 2 for CHD measurements.

We will include occupation as a covariate in the model in the three ways outlined in the previous
subsection. To do this, we must create interactions between occ and the dummy variables diet
and chd:

gen occd=occ*diet
gen occc=occ*chd

The data now look like this:

. sort id var t
. list id resp diet var occc occd in 419/431, nolab

id resp diet var occc occd
419. 214 2.85 1 1 0 0
420. 214 0 0 2 0 0
421. 215 2.76 1 1 0 0
422. 215 0 0 2 0 0
423. 216 2.59 1 1 0 0
424. 216 0 0 2 0 0
425. 217 3.06 1 1 0 0
426. 217 0 0 2 0 0
427. 218 3.14 1 1 0 0
428. 218 0 0 2 0 0
429. 219 2.75 1 1 0 0
430. 219 2.7 1 1 0 0
431. 219 0 0 2 0 0

Note that unit 219 has two responses for diet. We have a single dummy variable for diet, the sum of
dummy variables for the first and second measurements of diet, instead of separate dummy variables
for the measurements of diet. Using the single variable for diet in specifying model implies that
the two diet measurements are treated as interchangeable. Using such sums of dummy variables is
a convenient way to impose equality constraints.

6.1.2 Parameter estimation

We now specify a factor model where u; is the factor with mixed responses, continuous fibre intake
and dichotomous CHD status. We must specify an equation to define the variables whose linear
combination (A'z in equation (1.2)) multiplies the latent variable, here the dummy variables diet
and chd. By specifying diet first, we ensure that the loading for diet (in the measurement model)
is set to 1.
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. eq id: diet chd

Direct and indirect effects of occupation on CHD

We can estimate the model with direct and indirect effects of occupation on CHD by including
occupation in the measurement and disease models. We will specify an identity link for the responses
that are fibre measurements (var=1) and a logit link for the heart disease responses (var=2). This
is done by simply listing both links in the 1ink() option and specifying the ‘key’ to which link
applies to which observation, i.e. var, in the 1v() option. Similarly, we specify two families in the
family () option and specify var as the key to which family applies to which observation in the
fv() option.

. gllamm resp diet chd occc occd, /*

> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ nip(20) trace

General model information

dependent variable:
family:

link:

denominator:

equation for fixed effects

resp
gauss binom
ident logit
1
diet chd occc occd

Random effects information for 2 level model

**xlevel 1 equation:

log standard deviation

1lnsl: _cons

**xlevel 2 (id) equation(s):
(1 random effect(s))

lambdas for random effect 1

id1l: chd

standard deviation for random effect 1
idl : diet

>>>>> iteration log omitted

number of level 1 units = 742
number of level 2 units = 333
Condition Number = 57.294908

gllamm model

log likelihood = -186.8994

resp | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___________________ —————— ————— —————

diet | 2.863836 .0236992  120.84  0.000 2.817387 2.910286

chd | -1.977043 .2569675 -7.69 0.000 -2.480689 -1.473396
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occc | .0478208 .3327215 0.14 0.886 -.6043012 .6999429
occd | -.1209673 .0326426 -3.71 0.000 —-.1849455 -.0569891
Variance at level 1

.02161557

(.00354728)

Variances and covariances of random effects

*xxlevel 2 (id)

var(1): .0701073 (.00737485)

loadings for random effect 1
chd: -1.9532186 (.72506298)

The measurement error variance of log-fibre is 0.02 and the residual variance of latent exposure is
0.07. The odds ratio of CHD for unit increase in true fibre intake is given by

. disp exp(-1.9532186)
.14181688

The effect of occupation on diet is estimated as —0.12 with bus staff eating less fibre than bank
staff. While this implies that bank staff should be less at risk of CHD than bus staff, the estimate of
the total (direct and indirect) effect of fibre on heart disease, 84 +As, is positive but not significant
(estimate=0.05, se=0.33).

The model has the structure of a single factor model with covariates and is theoretically iden-
tified. However, the condition number is 57.3. The standard errors do not look very large but we
could check if there are large correlations between the parameter estimates:

. matrix v=e(V)
. matrix c=corr(v)
. matrix list c

symmetric c[7,7]

resp: resp: resp: resp: 1nsi:
diet chd occc occd _cons
resp:diet 1
resp:chd  -.1482546 1
resp:occc .11481182 -.71974881 1
resp:occd -.72846579 .10799854 -.15278686 1
Insl:_cons -.02318717 -.01645563 .00204998 .01688886 1
id1l:chd .00343443 .26874086 -.01229009 -.00250121 -.11637887
idl:diet .01915976 .00882363 -.00271535 -.01395543 -.40922513
idil: idi:
chd diet
id1l:chd 1
id1l:diet .09674343 1

The coefficients of occc and chd are quite highly negatively correlated as are the coefficients of
occd and diet. After a bit of experimentation, we found that the condition number decreases to
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15.6 if the fibre measurements are multiplied by 2. The parameter estimates change as expected
(e.g. the log odds and its standard error halve), confirming that the paramter estimates can be
trusted.

We can fit the same model but estimate the parameter 84 directly by specifying the regression
of u; on occupation using the geqs () option. We first define an equation for this regression:

eq f1: occ

The second character of the equation name must be a number to indicate which latent variable is
to be regressed on the covariates on the right hand side of the equation. Here there is only one
latent variable and the second character must be a ‘1’. We no longer should include occuption in
the measurement model:

. gllamm resp diet chd occc, /*

> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ nip(20) geqs(f1l) trace

General model information

dependent variable: resp

family: gauss binom
link: ident logit
denominator: 1

equation for fixed effects diet chd occc

Random effects information for 2 level model

**xlevel 1 equation:

log standard deviation
lnsl: _cons

**xlevel 2 (id) equation(s):
(1 random effect(s))

lambdas for random effect 1

id1l: chd
standard deviation for random effect 1
idl : diet

Regressions of random effects on covariates:
equation for random effect 1
f1: occ

>>>> iteration log omitted

number of level 1 units 742
number of level 2 units = 333

Condition Number = 57.667102

gllamm model
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log likelihood = -186.8994

resp | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___________________ _—————— —_—————— ————

diet | 2.863836 .0236992 120.84  0.000 2.817387 2.910286

chd | -1.977042 .2669674 -7.69 0.000 -2.480689 -1.473396

occc | -.1884548 .3395229 -0.56 0.579 -.85639075 .476998

Variance at level 1

.02161557 (.00354728)

Variances and covariances of random effects

**kxlevel 2 (id)
var(1): .0701073 (.00737485)
loadings for random effect 1

chd: -1.9532186 (.72506297)

Regressions of latent variables on covariates

random effect 1 has 1 covariates:
occ: -.12096728 (.03264255)

The estimate of the direct effect of occupation on diet 4 is negative though not significant. For
the same fibre intake, bus staff are at reduced risk of heart disease; combined with the increased
risk due to lower fibre intake, the total effect of occupation on diet (84 + yA3) is negligible as we
saw using the previous parameterisation.

Direct effect of diet on heart disease

By omitting the geqs() option, we can estimate the model with no effect of occupation on fibre
intake. Starting from the previous parameter estimates, we can use the skip option to drop this
term.

. matrix a=e(b)
. gllamm resp diet chd occc, /*

> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ nip(20) from(a) skip trace

>>> output omitted

742
333

number of level 1 units
number of level 2 units

Condition Number = 55.683325

gllamm model
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log likelihood = -193.61697

resp | Coef. Std. Err z P>z [95% Conf. Interval]
_____________ +___________________ ———— ———— ————

diet | 2.799631 .016715 167.49  0.000 2.766871 2.832392

chd | -1.874724 .2481894 -7.55 0.000 -2.361166 -1.388281

occc | -.1404696 .3353402 -0.42 0.675 -.7977243 .5167852

Variance at level 1

.02196796 (.003558)

Variances and covariances of random effects

*xxlevel 2 (id)
var(1): .07330515 (.00770257)

loadings for random effect 1
chd: -1.9479411 (.72095781)

As before, there is no significant direct effect of occupation on CHD.

Indirect effect of diet on heart disease

We now omit the direct effect of occupation of heart disease and retain the effect of occupation on
fibre intake.

. gllamm resp diet chd, /*

> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) 1lv(var) fv(var) /*
> */ nip(20) from(a) geqs(f1) skip trace

>>>> output omitted

742
333

number of level 1 units

number of level 2 units
Condition Number = 55.853179
gllamm model

log likelihood = -187.05329

resp | Coef. Std. Err. z P>|z| [95% Conf. Intervall
diet | 2.86354 .0236972  120.84  0.000 2.817095 2.909986
chd | -2.068451 .2012526  -10.28 0.000 -2.462898 -1.674003

Variance at level 1
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.02156935 (.0035304)

Variances and covariances of random effects

**xlevel 2 (id)
var(1): .07018241 (.00736356)
loadings for random effect 1

chd: -1.8582014 (.7012236)

Regressions of latent variables on covariates

random effect 1 has 1 covariates:
occ: —.1203111 (.03263076)

A semi-parametric mixture model may also be fitted to this dataset using gllamm (see Rabe-
Hesketh and Pickles (2001)).



Chapter 7

Continuous time to event or survival
data

7.1 Proportional hazards models for multiple event data

We assume that, conditional on the random effects, the hazards of any two units are proportional
and can be modelled as

hij(t) = h°(t) exp(ni;) (7.1)

where ¢ is time, h?(t) is the ‘baseline’ hazard and 7;; is the linear predictor of GLLAMMs. Here we
have used two subscripts, 4 for level 2 units (e.g. subjects) and j for level one units (e.g. occasions),
but higher level models can be defined in the same way. For two level models, the linear predictor
will typically have the form

Mg = B'xi +uy 'zl (7.2)

although factor models can be useful for structuring the covariance matrix in multivariate survival
problems.

We will now consider the likelihood conditional on the random effects, i.e. we will ignore that
there are random effects in the linear predictor. If a level 1 unit {5 was observed from time f
and failed or was censored at time ¢, where d;; is 1 if the unit failed and 0 otherwise, the unit’s
contribution to the likelihood is

lij = h,’j(t)dij exp(— /tt hij(T)dT) (73)

A piecewise exponential model assumes that the (conditional) baseline hazard function is piece-
wise constant, with hO(T) = hy for t,_y < T < ts, s = 1,2,...S and interval lengths y, = ts —t,_1.
Let 0;; = exp(n;j). Clayton (1988) shows that for a unit that was censored or failed in the kth
interval, the unit’s contribution to the likelihood (we are again ignoring the random effects) becomes

lij = (h48ij)% exp(— Zh 0:7Ys) (7.4)

and this can be rewritten as i
= [ (hs0i;)%* exp(—hsb;jy,) (7.5)

j=1

where d;j; = 0 for s < k and d;j;, = d;;. This is proportional to the contribution to the likelihood
of k (conditionally) independent Poisson processes with means hs0;;ys. Therefore, by representing

67
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each unit by a number of observations (or ‘risk sets’) equal to the number of time intervals preceding
that unit’s failure (or censoring) time, the model may be fitted by Poisson regression using d;j
as the dependent variable, log(y,) as an offset and dummies for the time intervals as explanatory
variables.

Therefore, one approach to multilevel survival modelling is to divide the follow-up period into
intervals over which the hazard can be assumed to be constant and use Poisson regression with
random effects. Another approach is to define as many intervals as there are unique failure times
with each interval starting at (just after) a unique failure time and ending at (just after) the next
largest unique failure time. The units contributing to likelihood for given intervals then correspond
to the ‘risk sets’ of Cox’s propportional hazards model and no assumption of piecewise constant
hazards is made. The Poisson model with a separate constant for each intervals or risk sets yields
identical estimates to the Cox’s proportional hazards model. However, we will model the baseline
hazard function as a smooth function of time. The data manipulation for these methods is very
easy using Stata’s stsplit command (available in Stata 7).

7.2 Proportional hazards model with random coefficients

We will analyse the dataset published in Danahy et al. (?) and previously analysed by Pickles and
Crouchley (1995; 1994). Here subjects with coronary heart disease participated in a randomised
crossover trial comparing Isorbide dinitrate (ISDN) with placebo. Before receiving the drug (or
placebo), subjects were asked to exercise on exercise bikes to the onset of angina pectoris or, if
angina did not occur, to exhaustion. The exercise time and outcome (angina or exhaustion) were
recorded. The drug (or placebo) was then taken orally and the exercise test was repeated one hour,
three and five hours after drug (or placebo) administration. We therefore have repeated “survival”
times per subject pre and post administration of both an active drug and a placebo.

Each subject repeated the experiment 4 times with a placebo and 4 times with ISDN. There
are therefore times to angina or exhaustion, t;.; for occasions j, condition ¢ (drug versus placebo)
within subjects . The variable d;.; is 1 if angina occurred and 0 otherwise. (We do not know the
order in which placebo and ISDN were given since this was not reported in the original paper).

Since the subjects started each of the eight experiments at rest, so that the same processes
leading to angina or exhaustion can be assumed to begin at the start of each experiment, we will
assume that the hazard functions for the experiments are proportional. We will therefore define the
time scale as starting at 0 at the beginning of each experiment. This proportionality assumption
allows us express the treatment effect as a hazard ratio. This is achieved by introducing a covariate
z7 equal to 1 after administration of the drug and equal to 0 otherwise, i.e.

[1ifj=234
T = { 0 otherwise (7.6)

In addition, we will allow for a linear decline in the drug effect using another covariate zp

[ j-3ifj=23.4
b= { 0 otherwise (7.7)

The form of the data is illustrated in the Table below:
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Condition ¢ =1 Condition ¢ = 2

occasion j Placebo ;1 ISDN ¢t;0; T Xp
1 ti11 tio1 0 0
2 ti12 ti00 I -1
3 ti13 tio3 10
4 til4 104 1 1

Each subject repeated the four experiments in the placebo condition where there was no cen-
soring. We can include the time to Angina in the placebo condition #;y; as a covariate in the model
for the log hazard in the treatment condition at time #;;;. Including a random intercept as well as
random treatment effects, the model is

hij(t) = BO(¢) exp(nss) (7.8)
ln(ho (t)) =g + Oéltz'lj + Otzt?lj + .- (79)
nij = wo;i + Pitioj + (Be + uii)TTi1; + B3 ity (7.10)

where (ug;, u1;) are assumed to have a bivariate normal distribution. Note that adjusting for the
baseline survival times is likely to reduce the random intercept variance.

The linear predictor in gllamm will include all the terms for the log baseline hazard in equa-
tion (7.9) as well as the terms in equation (7.10).

7.2.1 Data preparation

First we read the data and list the first twelve observations:

. use angina4, clear
. list subj occ secondp secondi unceni in 1/12

subj occ  secondp secondi unceni
1. 1 1 150 136 1
2. 1 2 172 445 0
3. 1 3 118 393 0
4. 1 4 143 226 1
5. 2 1 205 250 1
6. 2 2 287 306 1
7. 2 3 211 206 1
8. 2 4 207 224 1
9. 3 1 221 215 1
10. 3 2 244 232 1
11. 3 3 147 258 1
12. 3 4 250 268 1

The data are already in long form with each subject’s four time measurements (in seconds)
under the two conditions stored in secondp for the placebo condition and in secondi for the ISDN
condition. The variable unceni is 1 when the secondi refers to the time to angina 0 when secondi
refers to the time to censoring. The subject and occasion indices are subj and occ.

We will now construct the necessary covariates after keeping only those variables we need in
the data:

. keep subj occ secondp secondi unceni
. gen after=occ>1
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. gen decl=cond(occ>1,0cc-3,0)

. sort subj occ

. gen id=_n

. list id subj occ after decl in 1/12

decl
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The coefficient of after will represent the treatment effect overall (post-treatment minus baseline)
and that of decl will represent the linear change in treatment effect over the three post-treatment
conditions. The variable id labels all combinations of subjects and occasions.

We will also standardise secondp which will be used as a covariate:

egen timep = std(secondp)
replace secondp=timep
drop timep

First we analyse the data using Stata’s Cox regression procedure so that we can check the correctness
of the expansion of the data to risk sets later on.

. stset secondi, failure(unceni) id(id)

id: id
failure event: wunceni "= 0 & unceni "= .
obs. time interval: (secondil[_n-1], secondil]
exit on or before: failure

84 total obs.
0 exclusiomns

84 obs. remaining, representing
84 subjects
71 failures in single failure-per-subject data

27066 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 743

. stcox secondp after decl
failure _d: wunceni
analysis time _t: secondi

id: id

Iteration O: log likelihood = -261.50926
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Iteration 1: log likelihood = -232.34921
Iteration 2: log likelihood = -229.30664
Iteration 3: log likelihood = -229.23612

Iteration 4: log likelihood = -229.23608
Refining estimates:
Iteration O: log likelihood = -229.23608

Cox regression -- Breslow method for ties
No. of subjects = 84 Number of obs = 84
No. of failures = 71
Time at risk = 27066
LR chi2(3) = 64.55
Log likelihood = -229.23608 Prob > chi2 = 0.0000
_t
_d | Haz. Ratio Std. Err. z P>z [95% Conf. Intervall
secondp | .3100321 .0604764 -6.00 0.000 .2115277 .4544082
after | .3480569 .1000469 -3.67 0.000 .1981424 .6113968
decl | 1.873714 .367028 3.21 0.001 1.276344 2.750672

We now expand the dataset to risk sets. For each unique failure time (or risk set), there will be
a record for each id with a failure time or censoring time greater than that failure time. Having
used stset above to specify the survival time structure of the data, we can use Stata’s stsplit
command to achieve this:

. stsplit, at(failures) riskset(RS)
(63 failure times)
(2847 observations (episodes) created)

. sort RS id

. list RS id secondi unceni in 2901/2911

RS id secondi unceni
2901. 60 22 580 1
2902. 60 23 580
2903. 60 58 580
2904. 60 62 580
2905. 60 74 580
2906. 60 75 580 .
2907. 61 23 613 1
2908. 61 58 613
2909. 61 62 613
2910. 61 74 613
2911. 61 75 613

There are 63 risk-sets. The risk-sets are labelled in increasing order of the associated survival
times and therefore in decreasing order of risk set size (as fewer individuals ‘outlive’ survive beyond
the times). The censoring indicator has been changed to missing for censored observations. We will
change these missing values to 0 since this will be our dependent variable in the Poisson regression.

replace unceni = 0 if unceni == .
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We can verify that the data are correct by rerunning the Cox regression (using the same command
as before) which yields identical results.

Now we need to compute the lengths of the intervals between unique failure times so that we
can use the log interval lengths as an offset in the Poisson regression:

. sort id secondi

. by id: gen y=cond(_n>1,secondi-secondi[_n-1],secondi)
. gen 1lny = 1n(y)

. list RS id secondi y lny in 2901/2911

RS id secondi y Iny
2901. 28 84 231 1 0
2902. 29 84 232 1 0
2903. 30 84 235 3 1.098612
2904. 31 84 248 13 2.564949
2905. 32 84 250 2 .6931472
2906. 33 84 258 8 2.079442
2907. 34 84 264 6 1.791759
2908. 35 84 265 1 0
2909. 36 84 268 3 1.098612
2910. 37 84 280 12 2.484907
2911. 38 84 290 10 2.302585

We can check that this is correct by comparing the result of fitting an exponential regression
model using

streg secondp after decl, dist(exp)

with that of running a simple Poisson regression using

poisson unceni secondp after decl, offset(lny) irr

(both models assume constant hazards over the entire period which is unrealistic, but here we just
want to check our data manipulation). Both models give the same result confirming that our data
has been set up correctly.

7.2.2 Parameter estimation

Assuming a constant baseline hazard would correspond to the exponential model. Allowing the
baseline hazard to vary freely between risk sets corresponds to Cox’s regression model (We would
get identical results as Cox’s regression by using fixed effects Poisson, i.e. xtpois unceni secondp
after decl, i(RS) fe offset(lny) irrorxi: poisson unceni secondp after decl i.RS,
offset(1lny) irr).

We will model the log baseline hazard as a smooth function of time by using polynomial terms.
One way of assessing that the model for the baseline hazard is sufficiently flexible, is to compare
the estimates of the effects of interest with those of Cox’s regreession model.

Orthogonal polynomials can be created using orthpoly:

orthpoly secondi, gen(tl-t4) degree(4)

and included in the Poisson regression:
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. poisson unceni t1-t4 secondp after decl, offset(lny) irr nolog

Poisson regression Number of obs = 2931
LR chi2(7) = 96.93
Prob > chi2 = 0.0000
Log likelihood = -328.31446 Pseudo R2 = 0.1286
unceni | IRR Std. Err z P>zl [95% Conf. Intervall
t1 | 2.073082 .2668426 5.66 0.000 1.610838 2.667973
t2 | .6969082 .0744861 -3.38 0.001 .5651953 .8593154
t3 | 1.488465 .1337025 4.43 0.000 1.248184 1.775
t4 | .7781663 .0564711 -3.46 0.001 .6749961 .8971057
secondp | .34998 .0642334 -5.72 0.000 .2442409 .5014967
after | .3731128 .1043298 -3.53 0.000 .2156886 .6454358
decl | 1.746769 .3315779 2.94 0.003 1.204086 2.534041
lny | (offset)

The fixed effects parameters are quite close to those of the Cox model. We could also model the
log baseline hazard using fractional polynomials or splines (see help for fracpoly and mkspline).

We can now fit a simple random intercept model in gllamm by using the offset () option,
specifying the Poisson family (the log link is the default link for Poisson) and including a random
intercept in the linear predictor:

. gen cons=1
. eq cons: cons
. gllamm unceni t1-t4 secondp after decl, i(subj) nip(8) /*

> %/ eqs(cons) family(poiss) offset(lny) trace eform

General model information

dependent variable: unceni
family: poiss
link: log
offset: 1ny

equation for fixed effects t1 t2 t3 t4 secondp after decl _coms

Random effects information for 2 level model

**xlevel 2 (subj) equation(s):
(1 random effect(s))

standard deviation for random effect 1

subjl : cons

>>> output omitted

number of level 1 units 2931
number of level 2 units = 21

Condition Number = 10.960424

gllamm model
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log likelihood = -314.13229

unceni | exp(b) Std. Err. z P>z [95% Conf. Interval]
_____________ e e R e
t1 | 4.945214  1.104327 7.16  0.000 3.192283 7.660707
t2 | .5294363 .0679726 -4.95 0.000 .4116526 .6809209
t3 | 1.515796 .1536843 4.10 0.000 1.242621 1.849025
t4 | .7701484 .0622239 -3.23 0.001 .6573578 .9022919
secondp | .2767016 .0661491 -5.37 0.000 .1731892 .4420816
after | .3783459 .1112643 -3.31  0.001 .2126018 .6733039
decl | 2.308358 .4780472 4.04 0.000 1.538241 3.464033
lny | (offset)

Variances and covariances of random effects

***xlevel 2 (subj)

var(1): 3.0482593 (1.2907518)

Before interpreting the results, we will check whether they can be relied on by increasing the number
of quadrature points. Estimating the model again with 20 quadrature points gives a much lower
estimate of the random intercept variance:

. matrix a=e(b)

. gllamm unceni t1-t4 secondp after decl, i(subj) nip(20) /*
> */ eqs(cons) family(poiss) from(a) offset(lny) eform
number of level 1 units = 2931

number of level 2 units = 21

Condition Number = 9.4673366
gllamm model

log likelihood = -314.95715

unceni | exp(b) Std. Err. z P>|z| [95% Conf. Intervall
_____________ S e [ e
t1 | 4.55074 1.106933 6.23 0.000 2.825099 7.330446
t2 | .5217291 .0785237 -4.32 0.000 .3884485 .7007395
t3 | 1.5743 72777 4.14 0.000 1.269607 1.952115
t4 | .7721425 .0611082 -3.27 0.001 .6611994 .9017007
secondp | .2313422 .0669501 -5.06 0.000 .1311953 .4079352
after | .4107819 .1253004 -2.92 0.004 .225928 .7468829
decl | 2.207636 .4625463 3.78 0.000 1.464141 3.328681
lny | (offset)

Variances and covariances of random effects
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**xlevel 2 (subj)

var(1): 1.6963166 (.78712772)

but the estimates seem to stabilise, the 30 point estimates being;:

. matrix a=e(b)

. gllamm unceni t1-t4 secondp after decl, i(subj) nip(30) /*
> %/ eqs(cons) family(poiss) from(a) offset(lny) eform
number of level 1 units = 2931

number of level 2 units = 21

Condition Number = 9.419333
gllamm model

log likelihood = -315.00414

unceni | exp(b) Std. Err. z P>lz| [95% Conf. Intervall

t1 | 4.493769 1.106889 6.10 0.000 2.772974 7.282419

t2 | .522476 .0813625 -4.17  0.000 .3850464 .7089565

t3 | 1.575571 .1737476 4.12 0.000 1.26932 1.955713

t4 | LT716742 .0609903 -3.28 0.001 .6609341 .900969

secondp | .2343819 .0732762 -4.64 0.000 .1270012 .4325538

after | .4108853 .1262044 -2.90 0.004 .2250463 .7501866

decl | 2.200337 .4634823 3.74 0.000 1.456099 3.324969
lny | (offset)

**xlevel 2 (subj)

var(1): 1.6563003 (.86840339)

The regression coefficients have been exponentiated in the output as indicated by exp(b) be-
cause we used the eform option. The parameters can therefore be interpreted as conditional hazard
ratios (conditional on the random effects). The estimates suggest that ISDN reduces the hazards
compared with baseline. and that there is linear decline in this treatment effect. The coefficient of
after compares occasions 3 and 1 since dec1=0 for both occasions. To compare occasions 1 and
2, we could use lincom:

lincom after + decl, eform

There is a large random intercept variance. Note that the exponential of the random intercept is
usually referred to as a frailty, so our variance estimate is not the frailty variance. Comparing the
log-likelihood with that of the ordinary Poisson model (see previous section), indicates that the
intercept varies significantly between subjects:
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. disp chiprob(1l, 2%(328.31446 -315.00414))

2.476e-07
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Note that these models could have been fitted much more quickly using the xtpois command:

xtpois unceni t1-t4 secondp after decl, i(subj) quad(30) offset(lny) normal irr

giving exactly the same results. With the xtpois command, we can also assume a gamma, distri-
bution of the frailty by omitting the normal and quad() options above. This gives very similar
fixed effects estimates which is reassuring.

We now allow the treatment effect to vary randomly between subjects by introducing a random
coefficient for after (This cannot be done in xtpois):

. gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqgs(cons after) /*
> */ family(poiss) offset(lny) nip(8) trace eform

General model information

dependent variable:
family:

link:

offset:

equation for fixed effects

unceni

poiss

log

Iny

t1 t2 t3 t4 secondp after decl _cons

Random effects information for 2 level model

**xlevel 2 (subj) equation(s):

(2 random effect(s))

diagonal element of cholesky decomp. of covariance matrix

subjl : cons

diagonal element of cholesky decomp. of covariance matrix

subj2 : after

off-diagonal elements
subj2_1: _cons

>>>> output omitted

number of level 1 units
number of level 2 units

= 2931

Condition Number = 35.401002
gllamm model
log likelihood = -307.71846
unceni | exp(b) Std. Err z P>lz| [95% Conf. Intervall
t1 | 6.201066 1.90094 5.95 0.000 3.400401 11.30844
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t2 | .4694182 .0894685 -3.97 0.000 .3230915 .6820156
t3 | 1.664008 .2161324 3.92 0.000 1.290018 2.146422
t4 | . 749202 .0649883 -3.33 0.001 .6320666 . 888045
secondp | .1844515 .0862036 -3.62 0.000 .0738027 .4609909
after | .2884662 .1261288 -2.84 0.004 .1224379 .6796321
decl | 2.271276 .499788 3.73 0.000 1.475589 3.496025
lny | (offset)
Variances and covariances of random effects
**xlevel 2 (subj)
var(1): .48137109 (.5182014)
cov(1,2): .74458779 (.84153151) cor(1,2): .74346509

var(2): 2.0836783 (1.4310411)

7

To assess how good the 8 point quadrature solution is, we will run the model with 20 points - this
will take about 20x20/(8x8) = 6.25 times as long!

. matrix a=e(b)
. gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqs(cons after) /*
*/ family(poiss) offset(lny) from(a) nip(20) eform

>

number of level 1 units
number of level 2 units

Condition Number

gllamm model

log likelihood = -307.79395

2931
21

= 19.272222

unceni | exp(b)  Std. Err z P>|z| [95% Conf. Intervall
tl | 5.819054 1.627473 6.30 0.000 3.363477 10.06738
t2 | .4772048 .0856703 -4.12 0.000 .3356547 .6784486
t3 | 1.660404 .2044309 4.12 0.000 1.304407 2.113561
t4 | .7514037 .0647278 -3.32 0.001 .634671 .8896066
secondp | .1863612 .0626826 -5.00 0.000 .0963949 .360294
after | .3114577 .1344426 -2.70 0.007 .1336512 .7258139
decl | 2.235054 .4859076 3.70 0.000 1.459601 3.4224388
1ny | (offset)
Variances and covariances of random effects
**xlevel 2 (subj)
var(1): .37465037 (.42156288)
cov(1,2): .72940438 (.42629403) cor(1,2): .90065961
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var(2): 1.7506091 (1.1129138)

The estimates of the covariance matrix are quite different but the fixed effects estimates have not
changed substantially. We can check how much the log-likelihood for these parameter estimates
changes when more quadrature points are used using the eval option:

. gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqs(cons after) /*
> %/ f(amily poiss) offset(lny) from(a) nip(30) eval
log-likelihood = -307.78548

The change in log-likelihood is small.

Using a likelihood ratio test, there is significant variability in the treatment effect (twice the
difference in log-likelihoods=14.42). This illustrates how misleading the standard errors of the
variance estimates can be. Subjects with a greater random intercept (or frailty) tend to have a
larger coefficient of after, i.e. a smaller treatment effect. (To test for the significance of this
correlation, we would have to run gllamm again using the nocor option and use another likelihood
ratio test).



Chapter 8

Ordinal responses

8.1 Generalising models for ordinal responses

The ordinal models available in gllamm can be written as latent response models with

Y =n+e (8.1)
where the S observed response categories y;, s = 1,---,S are generated by applying thresholds
Ksy s =1,---,8 —1 to y* as follows:
o iyt <y
yo | tmsyse (8.2)

ys if kg1 <y

where the thresholds x; do not vary between subjects.

If the cumulative density function of € is F', the cumulative probability 7, that the response
takes on any value up to and including ys (conditional on the latent and observed explanatory
variables) is

P(ygys):F(K’S_n)’ 3:0558 (83)
where kg = —00 and kg = co. The probability of the sth response category is then simply
P(y = ys) = P(""‘fsfl <y' < "‘75)
Fl(ks =) = F(kiy—1 — ). (8.4)

We can equivalently write the model as a cumulative model

9(P(y <ys)) = ks — 1,

where g = F~! is the link function.

In gllamm F' can be the logistic distribution (ordinal logit link, ologit), standard normal distri-
bution (ordinal probit link, opropbit) or type I extreme value distribution (ordinal complimentary
log-log link, oc1l). If the error term e of the latent response y* is assumed to have a logistic
distribution,

Pr(y <ys;) = Pr(y" <ks)
exp(ks — 1)
1+ exp(ks — 1)

79
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and we have a proportional odds model since the log odds that y < ys (conditional on the latent
and observed explanatory variables) are

Pr(y < ys)
log (m> =Ks—1 (8.6)

so that the odds that the response category is less than or equal to y; for an individual ¢ is a
constant multiple of the odds for another individual 7' with odds ratio equal to exp(n; — n;) for all
s. This parameterisation is identical to that used in Stata’s ologit command.

If the error term e of the latent response has a standard normal distribution, we have the probit
model with

Pr(y <ys) = ®(ks — ) (8.7)

where @ is the cumulative standard normal distribution function. This parameterisation is identical
to that used in Stata’s oprobit command.
If the error term e has an extreme value distribution, this corresponds to an ordinal compli-
mentary log-log link
In(—In(1 = Pr(y < ys))) = ks — 7N (8.8)

or, equivalently,
Pr(y <ys) =1 —exp(—exp(ks — 7)) (8.9)

Normally the effects of covariates are assumed to be constant across categories s. If F' is the
logistic distribution, this assumption corresponds to the proportional odds assumption. Using the
thresh() option, the thresholds can be allowed to depend on covariates z; to ), as

Ks = Qg0 + 0s1%1 + + + + QgpTp.

Note that the model is not identified if any of the covariates used in the threshold model also appear
in the linear predictor 7.

If there are several ordinal responses differing in the thresholds and possibly in the number of
response categories, we use the same method as for mixed response models. Simply specify the
ordinal link, e.g., ologit several times in the 1ink() option and use 1v() to specify the variable
identifying the responses.

8.2 Ordinal item response models

Item response models for dichotomous items were introduced in Section 4.1. Here we will discuss
similar models for ordinal responses. We will analyse six ordinal items relating to delinquency from
Udry (1998).

The simplest item response model for ordinal items assumes that the latent response has different
means for the different items but the same residual variance var(e). Further, the effect of the latent
variable u; is the same for all items and the thresholds s are constant across items j:

g(P(yij < ys)) = ks — (Bj +wi), P1=0 (8.10)

For identification, one of the means (here ;) must be set to a constant since the thresholds are
estimated freely. We can now allow the effect of u; to differ between items by including factor
loadings A; in the model

g(P(yij < ys)) = ks — (B +uidj), P1=0, A1 =1 (8.11)
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Next, we can allow the residual variance to differ between items by using the scaled ordinal probit
link, soprobit.

P(yij < ys) = ®((ks — Bj —wirj)/0j), P1=0, A1 =1, 01=1 (8.12)

where o0 is the scale, corresponding to the standard deviation of € in the latent response formulation.
Such a model was suggested and fitted by Skrondal (1996). Since the thresholds are estimated freely,
the scale of one item has to be set to a constant for the model to be identified. The model can be
rewritten as

9(P(yij < ys)) = (ks —Bj)]0oj —uirj/o;j
= KZ:]- — ui/\j-

where
Ky = (ks — Bj)/aj
The model therefore effectively allows a different linear transformation of the thresholds for each

item, i.e. the thresholds can be shifted and rescaled for each item.
A more general model allows the thresholds to differ completely between items:

9(P(yij < ys)) = ksjuirj, P1=0 (8.13)

Finally, covariates can be incorporated in different ways: (1) the covariate affects the latent response
indirectly by affecting the latent variable w; (2) the covariate has a direct effect on the latent
response, possibly in addition to an indirect effect via the latent variable (3) the covariate affects
the thresholds. In the last two situations, the effect of the covariate can either be the same for all
items or differ between items.

8.3 Three level ordinal logistic regression

A two-level analysis of a subset of the Television School and Family Smoking Prevention and Ces-
sation Project (TVSFP) (Flay et al., 1989) is presented in Hedeker and Gibbons’ MIXOR manual
(Hedeker and Gibbons, 1996) and also analysed in Hedeker and Gibbons (1994). Schools were
randomised to one of four conditions given by different combinations of two factors

TV: a media (television) intervention (1=present, 0=absent)
CC: a social-resistance classroom curriculum (1=present, 0=absent).

One outcome measure is the tobacco and health knowledge scale (THKS) score defined as the
number of correct answers to seven items on tobacco and health knowledge. This variable has been
collapsed into four ordinal categories.

In addition to the clustering of students in classes, the classes are clustered in schools. First, we
will repeat Hedeker and Gibbons’ two-level analysis ignoring schools. Then we will fit a three level
model incorporating the effect of schools. (The three level model cannot be estimated in the present
version of MIXOR but Gibbons and Hedeker (1997) fitted a three level model to the dichotomised
THKS score.)

The two-level model can be written as

Nijk = Bo + B1xpiji + Bowci + B3z + PaxcirTi + uj (8.14)
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where 4, j and k denote schools, classes and pupils, respectively, z p;;i, is the pre-intervention THKS
score, T¢; is a dummy variable for the CC intervention and z7; is a dummy variable for the TV
intervention.

The three level model is

Nijk = Bo + Pr1zpijk + Bozci + B3xri + BazciTri + Ug-Q) + Ug’) (8.15)

where the dependent variable is modelled using a proportional odds model.

8.3.1 Data preparation

The data are available from Hedeker’s home page as an ASCII file called tvsfpors.dat that is already
in the long form. We read the data using infile and drop all observations with missing values.

infile school class thk a2 const prethk cc tv cctv using tvsfpors.dat, clear
keep school class thk prethk cc tv cctv

for var thk prethk cc tv cctv: summ X

drop if thk==.

drop if prethk==.

drop if cc==.

drop if tv==.

drop if cctv==.

Here thk and prethk are the ordinal THKS score post and pre intervention, respectively and cc,
tv and cctv are the dummy variables for the main effects and interaction of the CC and TV
interventions.

To speed up estimation, we can now collapse the data and define frequency weights. Since it is
unlikely that two classes will have exactly the same number of students and pattern of outcomes
and covariates, we will not attempt to form level 2 weights. To form level 1 weights, we need to
aggregate data over all groups of children in the same class that have the same outcome. We do
not need to worry about the schools and the combination of treatments because these variables are
constant within classes. However, we can include these variables in the by () option so that they
are not dropped from the dataset. The data are therefore collapsed as follows:

gen cons=1
collapse (count) wtl=cons ,by(thk prethk cc tv cctv school class)

The variables school, class, thk, cc, tv and wtl are listed below for ten observations:

school class thk cc tv wtl
80. 196 196102 4 1 0 2
81. 196 196102 4 1 0 1
82. 196 196102 4 1 0 1
83. 196 196102 2 1 0 1
84. 196 196102 4 1 0 1
85. 197 197101 2 0 0 2
86. 197 197101 1 0 0 1
87. 197 197101 2 0 0 1
88. 197 197101 2 0 0 1
89. 197 197101 4 0 0 1
90. 197 197101 3 0 0 1
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8.3.2 Model Fitting

83

The syntax is identical to that used for an ordinary logistic regression model except that the ologit

link is specified.

. gllamm thk prethk cc tv cctv, i(class) trace link(ologit) family(binom) /*

>  */ weight(wt) nip(10)

General model information

dependent variable: thk
ordinal responses: ologit
denominator: 1

equations for fixed effects
thk: prethk cc tv cctv

_cutll: _cons
_cutl2: _cons
_cutl3: _cons

Random effects information for 2 level model

**xlevel 2 (class) equation(s):

standard deviation of random effect
clas: _cons

1600
number of level 2 units = 135

number of level 1 units

Condition Number = 15.444405
gllamm model

log likelihood = -2115.3811

thk | Coef. Std. Err. z P>lz| [95% Conf. Intervall

thk |
prethk | .4147969 .0393634 10.54  0.000 .3376461 .4919477
cc | .8613649 .1735348 4.96 0.000 .5212429 1.201487
tv | .205729 .1706124 1.21 0.228 -.1286653 .5401232
cctv | -.3009843 .245123 -1.23 0.219 -.7814166 .1794479

_cutil |
_cons | -.0757244 .1466208 -0.52 0.606 -.3630959 .2116471

_cut12 |
_cons | 1.197719 .1485227 8.06 0.000 .9066203 1.488819

_cuti3 |
_cons | 2.403267 .157911 15.22  0.000 2.093767 2.712767

Variances and covariances of random effects
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*x*xlevel 2 (class)

var(1): .18882345 (.06388833)

The output agrees with the results obtained using MIXOR with 10 quadrature points (see MIXOR
manual, Hedeker and Gibbons, 1996). As would be expected, the level of knowledge before the
intervention is a predictor of the the level of knowledge after the intervention. The social-resistance
classroom curriculum has had an effect but the TV intervention has not. The between-class variance
is estimated as 0.189. The estimates of the three cut-points k1, ko and k3 appear at the bottom of
the fixed effects table.

We could easily remove the nonsignificant terms from the model by passing the parameter
estimates of the full model to gllamm as initial parameter estimates using the from() and the skip
options:

matrix a=e(b)
gllamm thk prethk cc, i(class) trace link(ologit) family(binom) /*
*/ weight (wt) nip(10) from(a) skip

To fit the probit or complimentary log-log model, simply use the oprobit link or indxocll link,
respectively, instead of the ologit link.
We now include a random effect for schools by adding school to the i () option.

. gllamm thk prethk cc tv cctv, i(class school) trace link(ologit) /*
> */ family(binom) weight(wt) nip(10)

General model information

dependent variable: thk
ordinal responses: ologit
denominator: 1

equations for fixed effects
thk: prethk cc tv cctv

_cutll: _cons
_cutl2: _cons
_cutl3: _cons

Random effects information for 3 level model

**xlevel 2 (class) equation(s):

standard deviation of random effect
clas: _cons

**xlevel 3 (school) equation(s):

standard deviation of random effect
scho: _cons

number of level 1 units = 1600
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135
28

number of level 2 units

number of level 3 units

Condition Number = 16.636362
gllamm model

log likelihood = -2114.5881

thk | Coef. Std. Err. z P>|z| [95% Conf. Intervall

thk I
prethk | .4085269 .0396159 10.31  0.000 .3308811 .4861727
cc | .8843998 .2098805 4.21 0.000 .4730416 1.295758
tv | .2364089 .2048806 1.15 0.249 -.1651497 .6379675
cctv | -.3717357 .2958354 -1.26 0.209 -.9515624 .2080909

_cutll |
_cons | -.0959862 .1689184 -0.57 0.570 -.4270601 .2350878

_cutl2 |
_cons | 1.177437 .1705139 6.91 0.000 .8432364 1.511639

_cutil3 |
_cons | 2.38363 .178691 13.34 0.000 2.033402 2.733858

*xxlevel 2 (class)

var(1): .14821014 (.06374783)

***level 3 (school)

var(1): .04487616 (.04254602)

The variance component for schools is not significant at the 5% level since the log-likelihood changed
by less than 1.

We could estimate the model with more quadrature points to make sure that we are evaluating
the likelihood sufficiently precisely. Since this is time-consuming, we can simply evaluate the log-
likelihood for the 10 point parameter estimates using larger numbers of quadrature points by using
the eval option:

. matrix a= e(b)

. gllamm thk prethk cc tv cctv, i(class school) link(ologit) /*
> %/ family(binom) weight(wt) nip(20) eval from(a)
log-likelihood = -2114.5881

. gllamm thk prethk cc tv cctv, i(class school) link(ologit) /*
> x/ family(binom) weight(wt) nip(30) eval from(a)
log-likelihood = -2114.5881

. gllamm thk prethk cc tv cctv, i(class school) link(ologit) /*
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> #*/ family(binom) weight(wt) nip(40) eval from(a)
log-likelihood = -2114.5881

The log-likelihood values do not change at all when more quadrature points are used and the 10
point approximation therefore appears to be adequate.

8.4 Item response models with an explanatory variable

8.4.1 Data preparation

The data are read using
infile sex y1 y2 y3 y4 y5 y6 using delinq.txt, clear

Since many of the response pattern on the 6 items are likely to occur a number of times for
each sex, we can collapse the data and construct level 2 weights to make gllamm run faster:

gen cons=1

collapse (sum) wt2=cons, by(sex yl-y6)
gen id=_n

reshape long y, i(id) j(item)

8.4.2 Model fitting
Thresholds constant across items

The model in (8.10) is a simple random intercept model with an oprobit link and with non-zero
intercepts for items 2 to 6 (81 = 0). The syntax is therefore similar to the xt commands. Here we
also need to use the weight () option since we have level 2 weights in the variable wt2.

. tab item, gen(i)
. gllamm y i2-i6, i(id) weight(wt) 1(oprob) f(binom)

38652
6442

number of level 1 units
number of level 2 units

Condition Number = 8.1990212
gllamm model

log likelihood = -10226.616

vy | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ +___________________ —_—————— _—————— ————
y |
i2 | .1327059 .0368782 3.60 0.000 .060426 .2049857
i3 | -.3556413 .0422637 -8.41 0.000 -.4384767 -.2728059
i4 | -.3832299 .0426228 -8.99 0.000 —-.466769 -.2996908
i5 | -.5155239 .0446666 -11.54 0.000 -.6030688 -.4279789
i6 | -.0334661 .0386515 -0.87 0.387 -.1092215 .0422894
_____________ +___________________ —_—————— ————— —————
cutil |
|

1.98145 .037215 53.24 0.000 1.90851 2.05439
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+

_cuti2 |
_cons | 2.765931 .0428442 64 .56 0.000 2.681957 2.849904

_cutil3 |
_cons | 3.119489 .0467586 66.71 0.000 3.027844 3.211134

*xxlevel 2 (id)

var(1): 1.0110074 (.05052765)

The estimated constants suggest that the scores for item 2 tend to be higher than those for item 1
whereas the scores for items 3 to 6 tend to be lower than those for item 1.

We can introduce factor loadings using the eqs() option (the first loading will automatically
be set to one):

. eq load: il-i6
. gllamm y i2-i6, i(id) weight(wt) 1(oprob) f(binom) eqs(load)

38652
6442

number of level 1 units
number of level 2 units

Condition Number = 27.905871
gllamm model

log likelihood = -10157.782

y | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_____________ +___________________ ————— ————— —————
y |
i2 | .047605  .0574449 0.83 0.407 -.0649849 .1601948
i3 | -1.095781  .1223369 -8.96 0.000 -1.335557 -.8560054
i4 | -.9650579  .1110193 -8.69 0.000 -1.182652 -.747464
i5 | -.8419555  .0981992 -8.57 0.000 -1.034422  -.6494887
i6 | -.7239922 .1055135 -6.86 0.000 -.9307948 -.5171895
_cutll I
_cons | 1.695634  .0417319 40.63  0.000 1.613841 1.777427
_cut12 I
_cons |  2.489353  .0460217 54.09 0.000 2.399153 2.579554
_cutl3 |
_cons | 2.854539 . 0493797 57.81 0.000 2.757757 2.951322

Variances and covariances of random effects
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*xxlevel 2 (id)
var(1): .48437902 (.05732434)

loadings for random effect 1
i2: 1.1283393 (.08673783)
i3: 1.9509092 (.15915351)
i4: 1.7775206 (.1470144)
i5: 1.4899425 (.12713595)
i6: 1.9559887 (.15774182)

A likelihood ratio test shows that this model fits considerably better than the previous:

. disp chiprob(5,2*(10226.616 -10157.782))
5.601e-28

Finally the soprobit (scaled ordinal probit) link can be used together with the s() option
to allow the scale of the error term in the latent response formulation to vary between items as
in (8.13). The s() option allows an equation to be specified to introduce level 1 heteroscedasticity
when any of the links or densities specified have a scale or standard deviation parameter. (Another
application of this option would be to estimate a linear model with a heteroscedastic error term.)
The equation definition for the s() option should specify the dummy variables for the items since
a separate scale parameter is required for each item:

. eq het: i1-i6

However, we need to constrain the first scale to 1. To use constraints in gllamm, we have to
find out the equation name and column name for the parameter being constrained as well as the
transformation used in gllamm to estimate the parameter. We can do this by running gllamm with
the noest and trace options to obtain some information on the model without estimating any
parameters:

. gllamm y i2-i6, i(id) weight(wt) 1(soprob) f(binom) eqs(load) s(het) noest trace

General model information

dependent variable: y
ordinal responses: soprobit
denominator: 1

equations for fixed effects
y: i2 i3 i4 ib i6

_cutll: _cons
_cutl2: _cons
_cutl3: _cons

Random effects information for 2 level model

**x]evel 1 equation:

log standard deviation
Insi: i1 i2 i3 i4 ib i6
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**xlevel 2 (id) equation(s):
(1 random effect(s))

lambdas for random effect 1

id1l: i2 i3 i4 ib5 i6

standard deviation for random effect 1
id1l : i1

Under ‘level 1 equation’, we are informed that the log standard deviation parameters have equation
name lns1 and column names i1, i2, etc. Constraining the standard deviation to 1 corresponds
to setting the log standard deviation to 0. We can now define this contraint (see [R] contraint) and
pass it to gllamm using the contraints() option:

. matrix a=e(b)
. cons def 1 [1ns1]il =0
. gllamm y i2-i6, i(id) weight(wt) 1(oprob) f(binom) eqs(load) s(het) contr(l) from(a)

38652
6442

number of level 1 units
number of level 2 units

Condition Number = 40.48688
gllamm model with constraints:
(1) [1ns1lil = 0.0

log likelihood = -10114.84022540044

| Coef. Std. Err. z P>lz| [95% Conf. Intervall

y |
i2 | .0007387 .1116399 0.01  0.995 -.2180716 .2195489
i3 | -1.250075 .224931 -5.56 0.000 -1.690931 -.8092181
i4 | -1.022133 .2069287 -4.94 0.000 -1.427706 -.6165598
i5 | -.8588394 .2049898 -4.19 0.000 -1.260612 -.4570667
i6 | -1.988972 .2704984 -7.35 0.000 -2.519139  -1.458805

_cutll |
_cons | 1.713979 . 0442582 38.73 0.000 1.627234 1.800723

_cuti2 |
_cons | 2.589511 .0637754 40.60 0.000 2.464514 2.714509

_cut13 |
_cons | 3.007872 .0786685 38.23 0.000 2.853685 3.162059

Variance at level 1

equation for log-standard deviaton:

il: 0 (0)
i2: .02552869 (.06101471)
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i3:
i4:
ib:
i6:

.00171463 (.07983886)
-.03344029 (.07981058)
.00183414 (.08008328)
.56883155 (.07273494)
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Variances and covariances of random effects

*xxlevel 2 (id)

var (1) :

loadings for random effect 1

i2:
i3:
i4:
ib:
i6:

1.1531179 (.09444011)
2.0286322 (.18069937)
1.8105319 (.16261248)
1.4614725 (.13991799)
2.4374615 (.2164596)

.53880366 (.06639591)

The (0) next to the log-standard deviation in the output under “Variance at level 1”7 reminds us
that this parameter was constrained. Item 6 has a much larger estimated scale parameter than the
other items and this model fits better than the previous model:

. disp chiprob(5,2*(10157.782-10114.84022540044) )

4.913e-

17

Item-specific thresholds

First we fit the model in equation (8.13) without factor loadings, or equivalently, with A; = 1. We
allow a different sets of thresholds to be estimated for each item by treating the problem as a mixed
response problem. Each response uses the oprobit link, but different thresholds will be estimated.
We use the 1v() option to assign each link to a different item:

. gllamm y, i(id) weight(wt) 1l(oprob oprob oprob oprob oprob oprob) lv(item) /*
> %/ f(binom)

number of level 1 units
number of level 2 units

38652
6442

Condition Number = 9.5386324

gllamm model

log likelihood = -10156.274

vy | Coef. Std. Err. z

_cutii |
cons | 1.949536 .0373884 52.14

_cuti?2 |
cons | 2.943054 .0569112 51.71

_cuti3 |
cons | 3.363419 .0727558 46.23

P>|z]| [95% Conf. Intervall
oo s 2o
0.000 2.83151 3.054598
0.000 3.22082 3.506017
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cut21 |

_cons | 1.821942 .0356608 51.09 0.000 1.752048 1.891836
cut22 |

_cons | 2.751458 .0515766 53.35 0.000 2.65037 2.852547
_cut23 |

_cons | 3.175722 .0644845 49.25 0.000 3.049335 3.302109
_cut31 |

_cons | 2.350363 .0441402 53.25 0.000 2.26385 2.436876
_cut32 |

_cons | 3.067465 .0604432 50.75 0.000 2.948999 3.185932
_cut33 |

_cons | 3.425012 .0735344 46.58 0.000 3.280887 3.569136
_cuté4i |

_cons | 2.367085 .0444121 53.30 0.000 2.280039 2.454131
_cut42 |

_cons | 3.137144 .0627692 49.98 0.000 3.014118 3.260169
_cut43 |

_cons | 3.526405 .078913 44 .69 0.000 3.371739 3.681072
_cutb1l |

_cons | 2.487467 .0466838 53.28 0.000 2.395968 2.578966
_cut52 |

_cons | 3.326015 .0706762 47.06 0.000 3.187492 3.464538
_cutb3 |

_cons | 3.775798 .0945832 39.92 0.000 3.590418 3.961177
_cut61 |

_cons | 2.088989 .0395998 52.75 0.000 2.011375 2.166603
_cut62 |

_cons | 2.579065 .0477213 54.04 0.000 2.485533 2.672597
_cut63 |

_cons | 2.826356 .0563195 53.13 0.000 2.722095 2.930616

*x*xlevel 2 (id)

var(1): 1.0146843 (.05067357)

The first three parameters represent the thresholds for the first item, the next three those for
the second item, etc. The thresholds for the last item are closer together than the other sets of
threshold which is consistent with the large scale parameter estimate G¢ for the last item in the
previous model.

Another way of specifying the same model would be using the thresh() option. We omit one
of the items from the equation for thresh() since a constant will automatically be included:

eq thr: i2 i3 i4 ib5 i6
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We will first fit the model without the thresh() option to obtain parameter estimates that can be
used as starting values. (We would generally recommend this approach with the thresh() option.)

. qui gllamm y, i(id) weight(wt) 1(oprob) f(binom)

. matrix a=e(b)

. gllamm y, i(id) weight(wt) 1(oprob) f(binom) thresh(thr) from(a)
number of level 1 units = 38652

6442

number of level 2 units
Condition Number = 20.76315
gllamm model

log likelihood = -10156.274

vy | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_cutil |
i2 | -.1275933 .0378454 -3.37 0.001 -.201769 -.0534176
i3 | .4008272 .0435506 9.20 0.000 .3154695 .4861848
i4 | .4175487 .0437582 9.54 0.000 .3317843 .5033132
i5 | .5379312 .0456097 11.79 0.000 .4485378 .6273245
i6 | .1394534 .0402135 3.47 0.001 .0606364 .2182704
_cons | 1.949534 .0373892 52.14  0.000 1.876253 2.022816
_cut12 |
i2 | -.1915929 .0637849 -3.00 0.003 -.316609 -.0665767
i3 | .1244133 .0699024 1.78 0.075 -.0125929 .2614194
i4 | .1940915 .0718432 2.70 0.007 .0532814 .3349016
i5 | . 3829634 .0784386 4.88 0.000 . 2292267 .5367002
i6 | -.3639866 .060972 -5.97 0.000 -.4834895 -.2444837
_cons | 2.94305 .0569173 51.71 0.000 2.831494 3.054606
_____________ S ——_ — —
cuti13 |
i2 | -.1876889 .0856696 -2.19 0.028 -.3555982 -.0197796
i3 | .0615994 .0917873 0.67 0.502 -.1183004 .2414992
i4 | .1629933 .0960767 1.70 0.090 -.0253136 .3513002
i5 | .4123862 .10884 3.79 0.000 .1990637 .6257088
i6 | -.5370554 .0783063 -6.86 0.000 -.690533 -.3835778
_cons | 3.36341 .0727657 46.22 0.000 3.220791 3.506028

*xxlevel 2 (id)

var(1): 1.0146821 (.05067342)

Returning to the previous parameterisation, we now include factor loadings in the model:

. gllamm y, i(id) weight(wt) 1(oprob oprob oprob oprob oprob oprob) lv(item) /*
> %/ eq(fact) f(binom) trace

number of level 1 units = 38652
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number of level 2 units = 6442
Condition Number = 32.501837
gllamm model

log likelihood = -10113.979

y | Coef. Std. Err. z P>|z]| [95% Conf. Intervall

_cutil |
_cons | 1.713573 .0442668 38.71 0.000 1.626811 1.800334

_cut12 |
_cons | 2.606161 .0662968 39.31 0.000 2.476222 2.736101

_cuti13 |
_cons | 2.984135 .0811288 36.78 0.000 2.825125 3.143144

_cut21 |
_cons | 1.669793 .0457622 36.49 0.000 1.580101 1.759486

_cut22 |
_cons | 2.530182 .0661797 38.23 0.000 2.400472 2.659892

_cut23 |
_cons | 2.923071 .0794205 36.80 0.000 2.767409 3.078732

_cut31 |
_cons | 2.959522 .1504921 19.67 0.000 2.664563 3.254481

_cut32 |
_cons | 3.826325 .1855404 20.62 0.000 3.462673 4.189978

_cut33 |
_cons | 4.257651 .205045 20.76 0.000 3.85577 4.659532

_cut4i |
_cons | 2.830385 .1350866 20.95 0.000 2.56562 3.095149

_cut42 |
_cons | 3.72574 .1709453 21.79 0.000 3.390693 4.060786

_cut43 |
_cons | 4.179542 .1925985 21.70 0.000 3.802056 4.557028

_cutbl |
_cons | 2.568194 .0980636 26.19 0.000 2.375993 2.760395

_cutb2 |
_cons | 3.424813 .1295892 26.43 0.000 3.170823 3.678804

_cutb3 |
_cons | 3.881744 .1531407 25.35 0.000 3.581593 4.181894

_cut61 |
_cons | 2.096388 .0691691 30.31 0.000 1.960819 2.231957

_cut62 |
_cons | 2.585095 .0824883 31.34 0.000 2.423421 2.746769

_cut63 |
_cons | 2.832224 .089877 31.51 0.000 2.656068 3.008379

Variances and covariances of random effects
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***xlevel 2 (id)
var(1l): .53913465 (.06645437)

loadings for random effect 1
i2: 1.1237353 (.09207811)
i3: 2.0248149 (.1907096)
i4: 1.8724256 (.17862714)
i5: 1.4579448 (.13448445)
i6: 1.3790917 (.11736409)

The likelihood ratio test indicates that factor loadings are required:

. disp chiprob(5,2%(10156.274 -10113.979))
9.175e-17

This model is nested in the scaled probit model in (8.13) since the thresholds are freely estimated
while the scaled probit model imposes the constraints

Hsj:(h;sl_ﬁj)/o'ja J=2,--,6

for some §; and positive o;. The unconstrained model has one extra degree of freedom for each
set of thresholds and therefore five extra parameters are estimated. However, the likelihood is very
close to that of the scaled probit model (-10113.979 compared with -10114.840) so that the former
model should be retained.

We will nevertheless develop the current model further to include effects of sex. It is quite
possible that the sexes differ in their mean latent delinquencys, i.e.

Ui = ;i + G

where z; is a dummy variable for girls. Note that there is no intercept in this equation since we
are already estimating the three thresholds for each item. The regression of a latent variable on an
explanatory variable can be incorporated using the gegs() option:

matrix a=e(b)

eq f1: sex

. gllamm y, i(id) weight(wt) 1(oprob oprob oprob oprob oprob oprob) lv(item) /*
> x/ eq(fact) f(binom) from(a) geqs(f1l)

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 33.395695
gllamm model

log likelihood = -10075.106

y | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
|

_cutll
_cons | 1.560111 . 040468 38.55 0.000 1.480796 1.639427

+

_cuti2 |
_cons | 2.439244 .0614223 39.71  0.000 2.318858 2.559629
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_____________ . N
_cutl3 |

_cons | 2.810984 .0761108 36.93
cut21 |

_cons | 1.517993 .0428427 35.43
_cut22 |

_cons | 2.376942 .0622116 38.21
_cut23 |

_cons | 2.769582 .0753861 36.74
_cut31 |

_cons | 2.694531 .1349126 19.97
_cut32 |

_cons | 3.558852 .1693993 21.01
_cut33 |

_cons | 3.988311 .1889283 21.11
_cutél |

_cons | 2.585412 .1177848 21.95
_cut42 |

_cons | 3.476597 .1515286 22.94
_cut43 |

_cons | 3.927206 .1726132 22.75
_cutb1 |

_cons | 2.405344 .0923392 26.05
_cutb2 |

_cons | 3.27217 .1244941 26.28
_cutb3 |

_cons | 3.73422 .148731 25.11
_cut61 |

_cons | 1.941148 .0641503 30.26
_cut62 |

_cons | 2.43699 .0771453 31.59
_cut63 |

_cons | 2.687746 .0845165 31.80

**xxlevel 2 (id)

var(1l): .48055439 (.06096913)

loadings for random effect 1

i2:
i3:
i4:
ib:
i6:

1.1710015 (.09705691)
2.1246416 (.20096276)
1.9644739 (.18360464)
1.565467 (.1469632)

1.4882541 (.12793858)

Regressions of latent variables on covariates

0.000 3.442712 4.025727
0.000 1.815415 2.06688
0.000 2.285788 2.588192
0.000 2.522097 2.853395

95
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random effect 2 has 1 covariates:
sex: -.24379616 (.02989614)

Girls are on average less delinquent, an effect that is significant according to the likelihood ratio
test:

disp chiprob(1,2*(10113.979-10075.106))
1.172e-18

The model assumes that being a girl affects the responses to the individual items only by
affecting overall latent delinquancy wu,, i.e., the effect of being a girl on the jth item is to reduce the
latent response by —0.24);. However, it is quite possible that, even for the same overall delinquency
level, girls are more less likely to exhibit certain behaviours than boys. For example, there may
be a direct effect of being a girl on the first item in addition to the indirect effect via the latent
variable. This effect can be included in the linear predictor as an interaction between sex and the
dummy variable for the first item:

. matrix a=e(b)

. gen sexil = sex*il

. gllamm y sexil, i(id) weight(wt) 1l(oprob oprob oprob oprob oprob oprob) lv(item) /*
> */ eq(fact) f(binom) from(a) geqs(f1)

number of level 1 units = 38652

number of level 2 units = 6442

Condition Number = 27.251127
gllamm model

log likelihood = -10042.639

y | Coef. Std. Err. z P>|z]| [95% Conf. Intervall

y |
sexil | .4626439 .060348 7.67 0.000 .344364 .5809239

_cutll |
_cons | 1.823139 .0579661 31.45 0.000 1.709528 1.936751

_cuti?2 |
_cons | 2.740513 .0790767 34.66 0.000 2.585525 2.8955

_cutl3 |
_cons | 3.130098 .0935442 33.46 0.000 2.946755 3.313441

_cut21 |
_cons | 1.478449 .0414112 35.70 0.000 1.397285 1.559613

_cut22 |
_cons | 2.335236 .0605224 38.58 0.000 2.216615 2.453858

_cut23 |
_cons | 2.727335 .0736946 37.01  0.000 2.582896 2.871774

_cut31 |
_cons | 2.599276 .1260789 20.62 0.000 2.352166 2.846387

_cut32 |
_cons | 3.454004 .1598088 21.61 0.000 3.140785 3.767224

|

_cut33
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_cons | 3.878467 .179002 21.67
cutél |

_cons | 2.500363 1108483 22.56
_cut4?2 |

_cons | 3.381748 1437774 23.52
_cut43 |

_cons | 3.826931 1645363 23.26
_cutbi |

_cons | 2.353478 0890078 26.44
_cutb2 |

_cons | 3.21905 1211128 26.58
_cutb3 |

_cons | 3.681461 1455908 25.29
_cut61 |

_cons | 1.902898 0626222 30.39
_cut62 |

_cons | 2.400715 0755705 31.77
_cut63 |

_cons | 2.65268 0829613 31.97

*x*xlevel 2 (id)

var(1): .63344967 (.07759424)

loadings for random effect 1

i2: 1.0029452 (.08274042)
i3: 1.8036891 (.16951336)
i4: 1.6696892 (.15472651)
ib: 1.3477244 (.12501426)
i6: 1.295613 (.10910991)

Regressions of latent variables on covariates

random effect 2 has 1 covariates:

sex: -.34808251 (.03932434)

0.000 3.52763

0.000 2.981674
0.000 3.396109
0.000 1.78016
0.000 2.252599
0.000 2.490079

4.229305

97

For the same delinquency level, girls tend to have higher scores on the first item. This effect is

again significant:

disp chiprob(1,2*(10075.106-10042.639))

7.745e-16

The difference in mean latent response for item 1 between an average girl and an average boy

is

—0.348 x 14 0.463

Finally, it could be that the effect of being a girl is not the same for each threshold. For example,
after taking into account overall delinquency, girls may be more likely than boys to be in category 2
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but not to be in category 3. This can be modelled using the thresh() option. One equation must
be specified for each response, so if we do not want items 2 to 6 to have thresholds that depend on
sex, we must set up equations with no variables on the right hand side:

. eq sex:
. eq n:

sex

. gllamm y, i(id) weight(wt) 1(oprob oprob oprob oprob oprob oprob) lv(item) /*
> x/ eq(fact) f(binom) from(a) geqs(fl) thr(sex nn n n n)

number of level 1 units = 38652
number of level 2 units = 6442
Condition Number = 27.425758

gllamm model

log likelihood = -10041.861

y | Coef. Std. Err z

_cutll |
sex | -.4532846 .0614316 -7.38
_cons | 1.818512 .0581802 31.26

_cut12 |
sex | -.4877739 .0963228 -5.06
_cons | 2.755284 .0903551 30.49

_cuti13 |
sex | =-.5984464 .129981 -4.60
_cons | 3.211047 .1189575 26.99

_cut21 |
_cons | 1.47873 .041411 35.71

_cut22 |
_cons | 2.335549 0605201 38.59

_cut23 |
_cons | 2.727699 0736939 37.01

_cut31 |
_cons | 2.598953 1259928 20.63

_cut32 |
_cons | 3.453649 1597085 21.62

_cut33 |
_cons | 3.878291 1789169 21.68

_cut4i |
_cons | 2.499882 1107762 22.57

_cut42 |
_cons | 3.381226 1437036 23.53

_cut43 |
_cons | 3.826555 1644752 23.27

_cutb1 |
_cons | 2.353664 0889789 26.45

_cutb2 |
_cons | 3.219422 .121096 26.59

|

_cutb3

P>|z| [95% Conf. Intervall
0.000 -.5736884  -.3328809
0.000 1.704481 1.9325643
0.000 -.6765631  -.2989846
0.000 2.578192 2.932377
0.000 -.8532046  -.3436882
0.000 2.977895 3.444199
0.000 1.397566 1.559894
0.000 2.216932 2.454166
0.000 2.583261 2.872136
0.000 2.352011 2.845894
0.000 3.140626 3.766672
0.000 3.52762 4.228961
0.000 2.282764 2.716999
0.000 3.099572 3.66288
0.000 3.504189 4.14892
0.000 2.179268 2.528059
0.000 2.982078 3.456766
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_cons | 3.682137 .1456064 25.29 0.000 3.396754 3.96752
cut61 |

_cons | 1.903018 .0626056 30.40 0.000 1.780313 2.025723
_cut62 |

_cons | 2.400811 .0755498 31.78 0.000 2.252736 2.548886
_cut63 |

_cons | 2.652798 .082941 31.98 0.000 2.490237 2.81536

**xxlevel 2 (id)
var(1): .63355899 (.07755586)

loadings for random effect 1
i2: 1.0026925 (.08269602)
i3: 1.8025142 (.16934718)
i4: 1.6683532 (.15462029)
i5: 1.3472172 (.12492251)
i6: 1.2950411 (.10903563)

Regressions of latent variables on covariates

random effect 2 has 1 covariates:
sex: -.34740644 (.03929033)

There is little evidence for a differential effect of sex on the three thresholds with a small change
in log-likelihood and coefficients of sex that are similar across thresholds.
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Chapter 9

Nominal or polytomous responses and
rankings

9.1 Multinomial logit model for nominal data

Let a index the A possible categories of the response variable; it is convenient to think of these

categories as alternatives and the response as a choice among alternatives even if the response

does not strictly represent a choice. We will define multinomial logit models by specifying the

‘linear predictor’ V¢ a =1,---, A so that the multinomial probability of response category f (the

probability that f is chosen) is

Pr(f) = :’Xp&

Za:l eXP(Va)

This probability model can also be derived by assuming that associated with each alternative is

an unobserved ‘utility’ U® (latent response) and that the alternative with the highest utility is se-

lected. Depending on the situation, utility could means attractivess, usefulness (voting/purchasing),
or cost-effectiveness (clinical treatments) of the alternative. The utility is modelled as

(9.1)

U*=V*+ ¢ (9.2)
Alternative f is selected if
Ul >U9 forall g £ f (9.3)
or, equivalently,
Ul U=V -Vt (f —¢9) >0. (9.4)

If the error term €* has an extreme value distribution of type I (Gumbel), then the differences
(e/ — €9) have a logistic distribution and equation (9.1) follows (McFadden, 1973).
For subject-specific covariates, a different coefficient vector g is estimated for each alternative
except a reference alternative:
Ve =g (9.5)

Although the multinomial logit or polytomous logistic regression model usually only includes subject
specific covariates, we can also include alternative specific covariates in gllamm. This is done by
expanding the data so that for each subject there is one record for each alternative available to that
subject (different alternative sets for different individuals are possible) and creating an indicator
for the variable actually selected. Alternative (and subject) specific variables or random effects can
then easily be specified. When running gllamm, the expanded () option must be used to specify the
clusters of observations (subjects) representing a single alternative set so that gllamm computes

101
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a single likelihood contribution for each alternative set equal to the multinomial probability in
equation (9.1).

Consider the example where the outcome is the choice of mode of transport used for commuting.
Person 1 can choose between a train, bus or car, and person 2 can only choose between a bus or a
car because there is no train available to him. The alternative sets therefore have different sizes. We
know the people’s ages and the cost of their journey from home to work for each mode of transport
(an alternative and subject specific covariate). The data would have to be set up as follows:

person age mode cost choice
1 23 train 2 1

23 bus 1.6

23 car 2

30 bus 0.8

30 car 1.2

N DN ==
_o O O

where ‘choice’ indicates the mode of transport chosen.

9.2 Multinomial logit model for rankings

Rankings are orderings of alternatives (parties, clinical treatments, brands) according to preference
or some other characteristic. (A nominal response represents an incomplete ranking where only the
first choice is specified.) As in the previous section, we assume that associated with each alternative
a there is a utility U®

Us =V 4 ¢ (9.6)

and again assume that €* has an extreme value distribution of type I (Gumbel). Let r° be the

alternative with rank s. Then the ranking R = (r!,r2,---74) is obtained if
Ut >U” > > U (9.7)
and the probability of a ranking R is (Luce, 1959)
pr(r) = < 0R) V) eV (9.9
Ymexp(V7)  Yiigexp(V™) Ys=a—1exp(V")

This probability can be interpreted as arising from a sequential choice process where the subject
initially makes a first choice among all alternatives. In the second ‘stage’, a first choice is made
among all alternatives except the first since this is no longer available. At each subsequent stage,
a first choice is made among the alternatives still remaining at that stage. The likelihood looks
like the partial likelihood of Cox’s regression model where the ranks are the survival times and
the alternative sets remaining at each stage represent the ‘risk sets’. We can expand the data to
alternative sets and then estimate the model in the same way as for the first choice case. The
likelihood contribution of each alternative set is the same as that of a subject in the first choice
case (with different alternative sets for different ‘individuals’). If these alternative sets are specified
in gllamm using the expanded() option, their product is automatically evaluated yielding the
expression in equation (9.8).

Consider the commuting example given in the previous section, but this time the respondents
could rate the modes of transport in order of preferance. Person 1 ranks the modes in the order
train, bus, car and person 2 ranks the two modes available to him in the order bus, car. The data
would have to be expanded or “exploded” as follows:
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person age stage alternative set mode cost choice

1 23 1 1 train 2 1
1 23 1 1 bus 1.6 0
1 23 1 1 car 2 0
1 23 2 2 bus 1.6 1
1 23 2 2 car 2 0
2 30 1 3 bus 08 0
2 30 1 3 car 1.2 1

Here, person 1 has two ‘decision stages’ - in the first, all three alternatives are available and in
the second, a choice is made between bus and car. Person 2 only has one ‘decision stage’ because
only one alternative is left after making the first choice. It is clear how incomplete rankings can
be handled, where individuals only rank the top few alternatives. Multilevel models for first choice
and ranking data are discussed in Skrondal and Rabe-Hesketh (2001).

9.3 Nominal response: Multinomial logit with a random intercept

In this section we use the Junior School Project data used to illustrate the multilevel multinomial
logit model in the MLwiN Advanced Macros manual (Yang et al., 1999).

The teachers’ rating of pupils’ behaviour is available on 3939 pupils () in 48 schools (i). Al-
though the rating is ordinal with scores 1,2,3 representing the top 25%, the middle 50%, and the
bottom 25%, respectively, we will repeat the analysis of the Advanced Macros manual so that we
can compare the estimates using quadrature with the MQL/PQL estimates used in MLwiN.

The linear predictor, or utility, includes a subject-specific covariate, the sex of subject j in
school i, x;; as well as random intercepts for school, ~f;:

Vii = 96 + 9imij + 7o (9.9)

where all effects are set to 0 for a = 1, i.e. g} = g = 0 and 3, = 0, making the first alternative
the ‘reference category’. There are therefore two random effects, v3; and +§; for alternative 2 and
3 and these random effects will be assumed to be correlated.

9.3.1 Data preparation
The data are available as an ASCII file jspmiz.dat. We read the file using infile:

infile scy3 id sex stag ravi fry3 tby using jspmix.dat, clear

Here scy3 is the school index, tby is the response variable and sex will be used as an explanatory
variable. (The other variables will not be used). Since many pupils in the same school are likely
to have the same response and sex, we can collapse the data and form level 1 weights to speed up
the estimation.

gen cons=1
collapse (count) wtl=cons, by(scy3 sex tby )

The level 1 weight variable is wt1 and we will have to specify wt in the weight () option when
running gllamm. The first 12 observations now are (use sort scy3 sex tby if the observations
are in a different order):
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For example, 8 individuals in the first school had sex = 0 and tby = 1.
We can run the model without random effects using Stata’s mlogit command with frequency
weights and using the response tby=1 as the baseline category:

. mlogit tby sex [fweight=wti],

Iteration
Iteration
Iteration
Iteration

w N = O

log likelihood
log likelihood
log likelihood
log likelihood

Multinomial regression

Log likelihood = -1331.9206
tby | Coef S
_____________ +___________________
2 I
sex | .4227768
_cons | .56381711
3 |
sex | .9436537
_cons | -.5460938

(Outcome tby==1 is the comparison group)

base (1)
= -1349.1298
= -1332.0463
= -1331.9206
= -1331.9206
Number of obs = 1313
LR chi2(2) = 34.42
Prob > chi2 = 0.0000
Pseudo R2 = 0.0128
td. Err z P>lz| [95% Conf. Intervall
.1368457 3.09 0.002 .1545643 .6909894
.0885475 6.08 0.000 .3646211 .7117211
.1632866 5.78 0.000 .6236178 1.26369
.1161788 -4.70 0.000 -.7737999 -.3183876

The gllamm command can be used to obtain the same estimates using the mlogit link and the
binomial family:

gllamm tby sex, i(scy3) init base(1) link(mlogit) family(binom) weight(wt) trace

Here we used the init option to obtain the ‘initial estimates’ where all random components are set
to 0. (Here the option i(scy3) serves no purpose but is used because the i() ‘option’ is required.)

Since different random intercepts apply to alternatives 2 and 3, we will expand the data so that
there is one record for each alternative for each observation in the current dataset. A dummy vari-
able, chosen will indicate which of the alternatives was selected. Note that this type of expansion
also allows alternative specific covariates to be included in the linear predictor as well as allowing
different alternative sets (sets of possible response categories) for different individuals.
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We create an identifier, patt, for the records in the current dataset which represent unique
combinations (or patterns) of scy3, sex and tby.

sort school sex tby
gen patt=_n

We now need to expand the data. This is easy because all individuals choose from the same
full set of three alternatives. First we replace each record with three replicates of itself and define
a new variable alt which takes on the possible values of tby for each value of patt. The variable
chosen indicates which of the values in alt equals the response actually given.

expand 3

sort patt

qui by patt: gen alt=_n
gen chosen=alt==tby

The data now look like this:

. sort patt alt
. list scy3 patt sex alt chosen tby in 1/21

scy3 patt sex alt chosen tby
1. 1 1 0 1 1 1
2. 1 1 0 2 0 1
3. 1 1 0 3 0 1
4. 1 2 0 1 0 2
5. 1 2 0 2 1 2
6. 1 2 0 3 0 2
7. 1 3 0 1 0 3
8. 1 3 0 2 0 3
9. 1 3 0 3 1 3
10. 1 4 1 1 1 1
11. 1 4 1 2 0 1
12. 1 4 1 3 0 1
13. 1 5 1 1 0 2
14. 1 5 1 2 1 2
15. 1 5 1 3 0 2
16. 1 6 1 1 0 3
17. 1 6 1 2 0 3
18. 1 6 1 3 1 3
19. 2 7 0 1 1 1
20. 2 7 0 2 0 1
21. 2 7 0 3 0 1

9.3.2 Parameter estimation

We now use alt as the dependent variable and must use the expanded() option to indicate that
the data are in expanded form. The arguments for this option are the identifier of the records in
the original, unexpanded dataset, here patt, the indicator variable for the alternative that was
selected and either o or m. The o option (stands for “one”) indicates that one fixed coefficient is to
be estimated for each explanatory variable and requires dummy variables to be used to estimate
separate parameters for alternatives 2 and 3. The m option (stands for “many”) indicates that A—1
parameters are to be estimated for each explanatory variable.

In either case, we must specify equations for the random intercepts 3 and ~§ using appropriate
dummy variables:
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tab alt, gen(a)
eq a2: a2
eq a3: a3

The shorter way of running gllamm is to use m in the expand () option:

gllamm alt sex, expand(patt chosen m) i(scy3) lin(mlogit) family(binom)/*
*/ nrf(2) eqs(a2 a3) nip(4) weight(wt) trace

but we will define the appropriate dummy variables and use o in the expand() option:

gen a2sex = a2*sex

gen a3sex = a3*sex

gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /*
*/ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) nip(4) weight(wt) /*
*/ trace

Here the nocons option is used since we do not want to include an overall constant in V¢ (the
constant would cancel out in equation (9.1) and is therefore not identified.) After estimating the
model with 4 quadrature points, (log-likelihood =-1300.9504) we use the commands

matrix a=e(b)

gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /*
*/ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) nip(8) weight(wt) /*
*/ from(a) trace

to estimate the model with 8 quadrature points (log-likelihood = -1299.4815) and finally, we esti-
mate the model with 12 quadrature points:

. gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /#
> */ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) from(a) nip(12) /*
> */ weight (wt) trace

General model information

dependent variable: alt
family: binom
link: mlogit
denominator: 1

equation for fixed effects a2 a3 a2sex a3sex

Random effects information for 2 level model

**xlevel 2 (scy3) equation(s):
(2 random effect(s))

diagonal element of cholesky decomp. of covariance matrix
scy31l : a2

diagonal element of cholesky decomp. of covariance matrix
scy32 : a3
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off-diagonal elements
scy32_1: _cons

3939
48

number of level 1 units
number of level 2 units

>>>>> iterations omitted
Condition Number = 4.9502936
gllamm model

log likelihood = -1299.6698

alt | Coef. Std. Err. z P>z [95% Conf. Interval]
a2 | .5925784 .1414131 4.19 0.000 .3154139 .8697428
a3 | -.5694212 .1805909 -3.15 0.002 -.9233729 -.2154695
a2sex | .5464019 .1456529 3.75 0.000 .2609274 .8318764
a3sex | 1.101336 .1747446 6.30 0.000 .7588433 1.443829

Variances and covariances of random effects

**xlevel 2 (scy3)

var(1): .49436301 (.18268588)
cov(1,2): .54890185 (.19080157) cor(1,2): .90634176

var(2): .74192403 (.24617685)

There are several reasons for gradually increasing the number of quadrature points: (1) estimation
with 12 quadrature points per dimension is very slow and it is good to have some preliminary results
quickly to make sure the model was specified correctly (2) the 12 quadrature point estimation will
require fewer iterations if the starting values are good (from a previous run with fewer quadrature
points) and (3) we need values of the maximised log-likelihood and parameter estimates for different
numbers of quadrature points to assess the adequacy of the approximations (see quadchk in Stata
Reference manual).

The effect of sex is to increase the odds of alternatives 2 and 3 compared with alternative 1. To
obtain the odds ratios, use the eform option when estimating the parameters or issue the command

gllamm, eform

after parameter estimation.

There is strong evidence for between school variation with a change in log-likelihood of 32
when the two random effects were introduced (3 parameters). The two random effects are highly
correlated.
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9.3.3 Comparison with MLwiN

Table 9.1 shows the parameter estimates obtained in MLwiN, using second order MQL (PQL did
not converge) next to those obtained in gllamm. There are large differences in the school level
variance estimates between gllamm and MLwiN.

For binary responses, MQL and PQL are known to underestimate the variances of the random
effects. The bias is greater for MQL than for PQL. We therefore carried out the following simulation
to find out whether gllamm overestimated the variances or MLwin underestimated the variances.
We replicated each school 10 times, each with the same number of pupils and number of boys
as in the data. We then simulated the behaviour rating using the MLwiN estimates as the ‘true
parameters’ and estimated models using both gllamm and MLwiN. Using the gllamm estimates as
‘true parameters’, we then resimulated the responses and again estimated the parameters using
both gllamm and MLwiN. The results are shown in Table 9.2. For both simulations, the gllamm
parameter estimates are closer to the true values than the MQL values (PQL did not converge).

9.4 A latent class model for rankings

Croon (1989) describe a latent class analysis of rankings. In 1974/1975, over 2000 German respon-
dents rated four political goals according to their desirability:

1. Maintain order in the nation

2. Give people more say in decisions of the government
3. Fight rising prices

4. Protect freedom of speech

The purpose of this ranking task was to investigate value orientations which may be classifiable
as materialistic or post-materialistic; materialists would be expected to give preference to goals 1
and 3 whereas post materialists would be expected to prefer goals 2 and 4. The heterogeneity in
value orientations can be modelled by assuming that subjects’ ‘utilities’ for the political goals vary
randomly from the overall mean, i.e.,

The model is a latent class model with

Vit=g"+7" a=123 (9.10)

Table 9.1: MLwin and gllamm estimates for Junior School Project data

MLwiN estimates gllamm estimates
(2nd order MQL) (12pts)
estimate SE estimate SE
cat. 2 cons 0.468 0.094 0.593 0.141
boy 0.445 0.112 0.546 0.181
cat. 3 cons -0.631 0.123 -0.569 0.145
boy 0.973 0.137 1.101 0.175

(2)  0.115 0.054 0.494 0.183
var(3)  0.189 0.082 0.741 0.246
(2,3) 0.019 0.048 0.549 0.191
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Table 9.2: Simulations of multinomial responses with estimated parameters using gllamm and
MLwiN.

gllamm estimates MLwiN estimates
(12pts) (2nd order MQL)
MLwiN param. True value estimate SE estimate SE
cat. 2 cons 0.468 0.456 0.033 0.468 0.029
boy 0.445 0.408 0.043 0.461 0.035
cat. 3 cons -0.631 -0.597 0.043 -0.588 0.038
boy 0.973 0.948 0.052 0.971 0.043
var(2) 0.115 0.117 0.022 0.105 0.016
var(3) 0.189 0.169 0.032 0.161 0.024
cov(2,3)  0.019 0.021 0.020 -0.114 0.017
gllamm param.
cat. 2 cons 0.593 0.587 0.056 0.481 0.030
boy 0.546 0.496 0.046 0.505 0.035
cat. 3 cons -0.569 -0.560 0.057 -0.656 0.038
boy 1.101 1.102 0.055 1.119 0.043
var(2) 0.494 0.519 0.053 0.119 0.017
var(3) 0.741 0.740 0.075 0.153 0.023
cov(2,3)  0.549 0.573 0.058 0.025 0.015
and
vt=o. (9.11)

If subjects fall into latent groups or types (e.g. materialistic and post-materialistic), then this can
be modelled by assuming that the random effects (7} ,72,7}) take on discrete values (z1.,29:,23r),
r =1,--- R with probabilities 7.

If gllamm is used with the ip(f) option, the g® represent the mean locations and the -}
represent deviations from the mean. If we use the ip(fn) option instead, the ~; are not centered
around their means and the constants g become redundant.

9.4.1 Data preparation

The rankings in the data are represented by four variables, iteml to item4, where iteml specifies
the most preferred alternative (goal in this case), item2 specifies the second preference, etc. The
data contain each of the 24 (4 x 3 x 2) rankings and the number of times they occurred.

We read the data and stack the alternatives into a single variable, item, defining the variable
rank which contains the ranking of the alternatives:

infile iteml item2 item3 item4 wt2 using materia.dat, clear
gen patt=_n
reshape long item, i(patt) j(rank)

The data now look like this:
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. sort patt rank
. list patt rank item wt2 in 1/8

patt rank item wt2
1. 1 1 1 137
2. 1 2 2 137
3. 1 3 3 137
4. 1 4 4 137
5. 2 1 1 29
6. 2 2 2 29
7. 2 3 4 29
8. 2 4 3 29

137 individuals gave the rank order 1,2,3,4 and 29 individuals the order 1,2,4,3. We now need to
expand the data further. Regarding the ranks as sequential decisions, where in each stage the best
remaining alternative is selected, we need to expand the data to ‘alternative sets’. Analogously to
risk sets in survival analysis representing all those who are still available (and can still fail) at a
given time, the alternative sets represent all alternatives that are still available at a given stage (and
can still be chosen). Using this analogy, we can simply use Stata’s stsplit command (available in
Stata 7) for expanding survival data to risk set data (see Chapter 7). Here the ‘survival times’ are
the rankings in the variable rank and we need to stratify by patt. The ‘failure’ indicator, which
we will call chosen, is always 1 because a choice was made at each stage. The individual records
in the current dataset correspond to ‘individuals’ in the survival setting. We first need to define
the data as surival data using stset. We can then expand the data using stsplit:

gen id=_n

gen chosen = 1

stset rank, fail(chosen) id(id)

stsplit, at(failures) strata(patt) riskset(set)

The data now look like this:

. sort patt set item
. list patt set rank item chosen wt2 in 1/20

patt set rank item chosen wt2
1. 1 1 1 1 1 137
2. 1 1 1 2 0 137
3. 1 1 1 3 0 137
4. 1 1 1 4 0 137
5. 1 2 2 2 1 137
6. 1 2 2 3 0 137
7. 1 2 2 4 0 137
8. 1 3 3 3 1 137
9. 1 3 3 4 0 137
10. 1 4 4 4 1 137
11. 2 5 1 1 1 29
12. 2 5 1 2 0 29
13. 2 5 1 3 0 29
14. 2 5 1 4 0 29
15. 2 6 2 2 1 29
16. 2 6 2 3 0 29
17. 2 6 2 4 0 29
18. 2 7 3 3 0 29
19. 2 7 3 4 1 29
20. 2 8 4 3 1 29
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At set (alternative set) 1 for patt 1, all four items were available and the fist was chosen as
indicated by the variable chosen. At set 2, the first item was no longer available, so only items 2,
3 and 4 are represented and the second is chosen. At set 4, only one alternative is left and this
observation is redundant (the multinomial probability for that ‘alternative set’ would be 1). We
therefore drop all observations with rank equal to 4:

. drop if rank==
(24 observations deleted)

We need to define dummy variables for the alternatives so that we can specify the model in
terms of alternative specific parameters:

tab item, gen(alt)

9.4.2 Parameter estimation

In equation (9.10), we need a constant g* and a random effect v* for each alternative except the
last. The constants can be included by listing the dummy variables for the first three alternatives
as explanatory variables and using the nocons option. The random effects are included by defining
three equations, one for each alternative, specifying that there are three random effects at level 2
using the nrf () option and listing the three equations in the eqs () option. The ip(f) option is
used to specify discrete random effects and initially, we will estimate the model with two latent
classes, i.e. using the nip(2) option:

. eq altl: altl
. eq alt2: alt2
. eq alt3: alt3

. gllamm item altl alt2 alt3, expand(set chosen o) i(patt) link(mlogit) /*
> */ family(binom) nrf(3) eqs(altl alt2 alt3) nocons weight(wt) nip(2) /*
> */ ip(f) trace

General model information

dependent variable: item
family: binom
link: mlogit
denominator: 1

equation for fixed effects altl alt2 alt3

Random effects information for 2 level model

**xlevel 2 (patt) equation(s):
(3 random effect(s))
class 1

location for random effect 1
z2_1_1: altl

location for random effect 2



112

CHAPTER 9. NOMINAL OR POLYTOMOUS RESPONSES AND RANKINGS

z2_2_1: alt2

location for random effect 3
z2_3_1: alt3

log odds for level 2
p2_1: _cons

>>> output omitted
Initial values for fixed effects
>>> output omitted

log likelihood = -6427.0497

item | Coef. Std. Err. z P>lz| [95% Conf. Intervall
altl | 1.164864 .0411781 28.29 0.000 1.084156 1.245572
alt2 | .2106669 .0387733 5.43 0.000 .1346727 .2866611
alt3 | 1.2767 .0412705 30.93 0.000 1.1956811 1.357589

>>> output omitted

number of level 1 units = 20358
number of level 2 units 2262

Condition Number = 10.249569
gllamm model

log likelihood = -6311.6859

item | Coef Std. Err z P>zl [95% Conf. Intervall
_____________ +___________________ ———— —— ———— —— ———— ——

altl | 1.362889 .0584633 23.31 0.000 1.248303 1.477475

alt2 | .2561528 .0408197 6.28 0.000 .1761477 .3361579

alt3 | 1.439707 .0548395 26.25 0.000 1.332224 1.547191

Probabilities and locations of random effects

**kxlevel 2 (patt)
prob: 0.2061, 0.7939

locl: -2.2346, .57995
var(1): 1.2959723
cov(1,2): -.10509489
cov(1,3): .95773595

loc2: .18121, -.04703
var(2): .00852251
cov(2,3): -.07766613
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loc3: -1.6514, .42859
var(3): .70777605

On average, the materialistic goals were preferred (the coefficients of alt1 and alt3 are larger than
that of alt2 and 0 (the implied coefficient of alt4)). About 21% of the population fall into the
post-materialistic category with negative effects for goals 1 and 3 (latent class 1) and about 79%
of the population fall into the materialistic category (latent class 2).

Croon (1989) assesses the adequacy of different numbers of latent classes using the deviance. The
deviance is twice the difference in log-likelihoods between a given model and the full or saturated
model. The latter can be obtained from the original data by estimating the probability of each of
the 24 possible rankings:

infile iteml item2 item3 item4 wt2 using materia.dat, clear
(24 observations read)

. summ wt2
Variable | Obs Mean Std. Dev. Min Max
_____________ +___________________ ———— —————
wt2 | 24 94.25 97.60312 21 330

. disp r(sum)
2262

. gen 1=wt2¥1n(wt2/2262)
. summ 1

Variable | Obs Mean Std. Dev. Min Max

+

1| 24  -261.2302 171.8756 -635.2209 -98.26913

. disp r(sum)
-6269.5248

In the initial gllamm output for the two class solution, the ‘fixed effects estimates’ are given.
These are the estimates when the random effects are set to 0 and therefore correspond to the one
class solution. Therefore, the deviances for the one class and two class solutions are

. disp 2*(6427.0497 - 6269.5248)
315.0498

. disp 2%(6311.6859 - 6269.5248)
84.3222

which agrees with the values given in Croon.

The locations in the output represent the deviations of the individual latent classes from the
means. To stop gllamm from centering the locations around their means, we can use the ip(fn)
option (and specify no fixed effects):

. gllamm item, expand(set chosen o) i(patt) link(mlogit) family(binom)/*
> %/ nrf(3) eqs(altl alt2 alt3) nocons weight(wt) nip(2) ip(fn) trace
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General model information

dependent variable: item
family: binom
link: mlogit
denominator: 1

equation for fixed effects mnone

Random effects information for 2 level model

**xlevel 2 (patt) equation(s):
(3 random effect(s))
class 1

location for random effect 1
z2_1_1: altil

location for random effect 2
z2_2_1: alt2

location for random effect 3
z2_3_1: alt3

log odds for level 2
p2_1: _cons

class 2

location for random effect 1
z2_1_2: altl

location for random effect 2
z2_2_2: alt2

location for random effect 3
z2_3_2: alt3

>>> output omitted

20358
2262

number of level 1 units

number of level 2 units
Condition Number = 9.3329566
gllamm model

log likelihood = -6311.6859

No fixed effects

Probabilities and locations of random effects

**kxlevel 2 (patt)
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prob:

locl:
var(1):
cov(l,2):
cov(1,3):

loc2:
var(2):
cov(2,3):

loc3:
var(3):

0.2061, 0.7939

.87172, 1.9428
1.295966
.10509344
.95773294

.43736, .20912
.00852232
-.07766519

-.2117, 1.8683
.70777505
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The log-likelihood is as before but the locations are not centred anymore making them easier

to interpret.

We now obtain the three latent class solution using the Gateaux derivative method. Here, the
log-likelihood is evaluated at the parameter estimates of the two point solution while a third point
with a very low probability is added and moved through a fine 3-dimensional grid of locations
(searching the range -5 to 5 in 20 steps in each dimension):

. matrix a=e(b)
. local k=e(k)

. local 11l=e(11)
. noi cap noi gllamm item, expand(set chosen o) i(patt) link(mlogit) /*

> #*/ family(binom) nrf(3) egs(altl alt2 alt3) nocons weight(wt) from(a) /*
> */ nip(3) ip(fn) trace gateaux(-5 5 20) 1f0(‘k’> ‘11°’)

>>> output omitted

number of level 1 units = 20358

number of level 2 units

2262

Condition Number = 11.369391

gllamm model

log likelihood = -6281.3611

No fixed effects

Probabilities and locations of random effects

**+xlevel 2 (patt)

prob:

locl:
var(1):
cov(1l,2):
cov(1,3):

loc2:
var(2):
cov(2,3):

0.225, 0.3211, 0.4538

-.76144, 3.1448, 1.8385
2.0418146
-.19209441
.83004357

.555638, .21003, .17141
.0238936
-.16114594
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loc3: -.08917, 1.1827, 2.9561
var(3): 1.5224173

The deviance now is

. disp 2%(6281.3611 - 6269.5248)
23.6726

Croon’s three class estimates are given in his Table 3 where he uses yet another parameterisation.
Instead of fixing v* = 0, he uses the constraint 3", , = 0. For the largest class with probability
0.45, this gives the following four locations:

. disp 1.8385-(1.8385+.17141+2.9561)/4
.5969975

. disp .17141-(1.8385+.17141+2.9561) /4
-1.0700925

. disp 2.9561-(1.8385+.17141+2.9561) /4
1.7145975

. disp -(1.8385+.17141+2.9561)/4
-1.2415025

which (almost) agrees with Croon’s result of 0.59,-1.07,1.73,-1.25.



Appendix A

A quick introduction to Stata

This section briefly discusses the most important Stata commands used in this manual, mostly
for preparing the data for gllamm. See Rabe-Hesketh and Everitt (2000) for a more complete
introduction to Stata.

The most important basic commands are use or infile for reading data and save for saving
data, list for listing data, generate, replace, egen and recode for transforming variables and
drop and keep for dropping observations. Basic data summary commands are tabulate, table and
summarize and basic estimation commands are regress, logit, glm, etc. If you are not already
familiar with these commands, look these up using Stata’s help or in the reference manual. Also
look in the Stata User’s Guide under Estimation and Post-estimation commands.

Many stata commands use variable lists (abbreviated varlist in syntax descriptions). These
are just lists of variables separated by spaces. For example, to regress y on x1, x2, x3, sp, st and
houses, use

regress y x1 x2 x3 sp st houses

Variables can be abbreviated as long as this is unambiguous (i.e. only one variable in the data has
the same abbreviation). Variable lists can also be abbreviated. If there are no other variables in
the dataset, the following commands are all equivalent:

regress y x1 x2 x3 sp st houses
regress y x1 x2 x3 sp st hous
regress y x1-x3 sp st hous
regress y x1-x3 s* hous

Numeric expressions (e.g. used in generate) look like they do in most packages, e.g.,

gen x =y + z

replace x = (y - z)#*5b
replace x = 10/x
replace x = x72
replace x = sqrt(x/2)

where + - *x / and ~ are the plus, minus, times, divide and power operators, respectively, and
sqrt () is the square root. See help for functions to find out about more functions.

Almost all Stata commands can be used with if followed by a logical expression in order to
apply the command to a subset of observations. The logical operators == and ~= stand for “equal
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to” and “not equal to”, < and <= for “less than” and “less than or equal to” and > and >= for
“greater than” and “greater than or equal to”. The characters ~, & and | represent “not”, “and”,
and “ or”, respectively. An example of the use of if is

gen x =y + z if t==

which sets x equal to y + z for all observations where t equals 1 and to missing otherwise.
Logical expressions evaluate to 1 (true) or 0 (false) and can be used to create dummy variables:

gen x =y == 2

One important thing to keep in mind when using logical expressions is that missing values (repre-
sented by a dot) are interpreted as very large numbers. The command

gen x =y >= 2

would result in x being equal to 1 when y is greater or equal to 2 or missing!
A very convenient way of creating dummy variables is to use the tabulate command:

tab item, gen(i)

This creates variables i1, i2, etc. which are dummy variables for the first, second, etc. largest
values of item, respectively. Within an estimation command, we can generate dummy variables
using the xi: syntax.

xi: regress y i.item

Here the dummy variables _Iitem 2, TIitem 3, etc. are generated because, in the regression com-
mand, the explanatory variable, item, is preceded by i.. These dummy variables are used as
explanatory variables in the regression. The suffix of a given dummy variable corresponds to the
value of item for which it is an indicator. No dummy variable is created for the lowest value of
item. (In Stata 6, the dummy variables are called Iitem 2, Iitem_3, etc.)

Stata stores the results of most commands. For example, after summarize, we can access the
mean using the expression r (mean), e.g.

summ x
display r(mean)

After estimation commands, we can also access many stored results. For example, we can use
e(b) to get the vector (actually a matrix with one row) of parameter estimates and e (V) to get
the covariance matrix of the parameter estimates. Run a regression followed by the commands

matrix a=e(b)
matrix list a
matrix v=e(V)
matrix list v

The correlation matrix of the estimated parameters can be obtained from the covariance matrix
using
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matrix c=corr(v)

Look up the relevant estimation command in the Reference manual to find out how to access
different results.

Very useful post-estimation commands include testparm, test and 1incom. Assume that group
is a categorical variable with values 1,2 or 3 and y is some continuous variable. We can use the
following commands

Xi: regress y i.group
testparm _Igroup*

test _Igroup_2=_Igroup_3
lincom _Igroup_2-_Igroup_3

to, respectively, run the regression, test the null hypothesis that the coefficients of both dummy
variables are 0 (i.e. there are no group difference in mean ), test that the coefficients of the dummy
variables for groups 2 and 3 are the same (no difference in means between groups 2 and 3) and
form a 95% confidence interval for the difference between the coefficients of dummy variables 2 and
3 (for the difference in means between groups 2 and 3).

In order to use gllamm, all responses need to be stacked into a single response vector. For
example, if we have measurement occasions j for subjects i, this may be viewed as a multivariate
dataset in which each occasion j is represented by a variable resultj and the subject identifier
is in the variable ind. However, for gllamm, we need one single, long, response vector containing
the responses for all occasions for all subjects, as well as two variables ind and t to represent the
indices ¢ and j, respectively. The two “data shapes” are called wide and long, respectively. We
start from the wide shape with variables ind, resultl and result2:

. list
ind resultl result2
1. 1 0 0
2. 2 0 1
3. 3 0 1

and convert this to the long shape with variables result, t, and ind using reshape:

. reshape long result, i(ind) j(t)
(note: j =1 2)

Data wide -> 1long
Number of obs. 3 -> 6
Number of variables 3 - 3
j variable (2 values) >t

xij variables:
resultl result2 -> result

Giving:

. list
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ind t result
1. 1 1 0
2. 1 2 0
3. 2 1 0
4. 2 2 1
5. 3 1 0
6. 3 2 1

(We could convert the data back to wide shape using

reshape wide result, i(ind) j(t)

but we will not)

This dataset becomes like the one used in the explanation of the weight () option in the syntax
for gllamm if we define occ, an identifier for the rows in the dataset. Here we can use generate,
abbreviated gen, together with Stata’s running observation index n:

. gen occ=_n
. list ind occ result

ind occ result

o ;e
W wWNN ==
OO WN -
O R, OOO

If we did not already have t, an index for occasions within individuals (equal to 1,2 for each
individual), we could create one using by varlist: as follows:

. sort ind t
. by ind: gen j=_n
. list ind occ result j

ind occ result j
1. 1 1 0 1
2. 1 2 0 2
3. 2 3 0 1
4. 2 4 1 2
5. 3 5 0 1
6. 3 6 1 2

Here, the data are first sorted in ascending order of ind and within groups having the same
value of ind, in ascending order of t. by varlist: is then used to repeat the same command for
each combination of values of varlist, i.e. for each value of ind in this case. (The data must
be sorted by ind for this to work.) A very useful feature of by varlist: is that it causes the
observation index n to count from 1 within each of the groups defined by the unique combinations
of the values of varlist. The macro _N represents the total number of observations, but when used
with by varlist:, it represents the number of observations within the groups. For example,

sort ind result
by ind: list result if _n==_
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lists the largest value of result for each value of ind.
We now collapse the data using the collapse command to form level 1 weights and list the
data:

. gen cons=1
. collapse (sum) wtl=cons, by(ind result)
. gen occpat = _n

. list ind result occpat wtil

ind result occpat wtl
1 1 0 1 2
2 2 0 2 1
3 2 1 3 1
4 3 0 4 1
5 3 1 5 1

In the collapse command, the list of variables specified in the by () option determines what groups
of observations will be represented by a single line of data in the collapsed dataset. Here, a row of
data has been created for each unique combination of values of ind and result within ind. The
aggregated variable here is be called wt1 and is equal to the sum (specified in brackets) of cons.
(The syntax for forming the mean of occ would be (mean) mnocc=occ.)

Here we could also form level 2 weights. However, in practice it is safest to create level 2 weights
(when the data are in wide form) followed by level 1 weights when the data are in long form. We
suggest the following exercise to the reader: Enter the data

ind resultl result2
1. 1 0 0
2. 2 0 1
3. 3 0 1

into Stata. Form level 2 weights, then reshape to long and form level 1 weights. You should end
up with dataset C in the weight () entry of the gllamm syntax.
Another command we will make use of is expand. The command

expand 3

replaces each line of data with three replicates of itself. If the multilevel data are stored in
separate files, filel.dta for the level 1 variables, file2.dta for the level 2 variables, etc., Stata’s merge
command can be used to merge the data as required by the gllamm command. Assume subj is the
level 1 identifier, class is the level 2 identifier and school is the level 3 identifier. First sort the
files :

use file2, clear
sort school class
save file2, replace
use file3, clear
sort school

save file3, replace

Then read the level 1 file and merge in the others:
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use filel, clear

sort school class

merge school class using file2
drop _merge

sort school

merge school using file3

The merge command automatically expands the class level data before adding it to the indi-
vidual level data, etc.



References

Albert, P. S., & Follmann, D. A. 2000. Modeling repeated count data subject to informative
dropout. Biometrics, 56, 667-677.

Bartholomew, D. J., & Knott, M. 1999. Latent Variable Models and Factor Analysis. London:
Arnold.

Bock, R. D., & Lieberman, M. 1970. Fitting a response model for n dichotomously scored items.
Psychometrika, 33, 179-197.

Bollen, K. A. 1989. Structural Equations with Latent Variables. New York: Wiley.

Breslow, N. E., & Clayton, D. G. 1993. Approximate inference in generalized linear mixed models.
Journal of the American Statistical Association, 88, 9-25.

Breslow, N. E., & Lin, X. 1995. Bias correction in generalised linear mixed models with a single
component of overdispersion. Biometrika, 82, 81-91.

Bryk, A. S., & Raudenbush, S. W. 1992. Hierarchical Linear Models, Applications and Data
Analysis Methods. Newbury Park, CA: Sage Publications.

Bryk, A. S., Raudenbush, S. W., & Congdon, R.T. 1996. HLM. Hierarchical Linear and Nonlinear
Modeling with the HLM/2L and HLM/3L Programs. Chicago: Scientific Software International.

Clayton, D. 1988. The analysis of event history data: a review of progress and outstanding problems.
Statistics in Medicine, 7, 819-841.

Croon, M. A. 1989. Latent class models for the analysis of rankings. Pages 99-121 of: De Soete, G.,
& Klauer, K. C. (eds), New Developments in Psychological Choice Modeling. North-Holland:
Elsevier.

Crouch, E. A. C., & Spiegelman, D. 1990. The evaluation of integrals of the form [ f(t)exp(—t2)dt:
Application to logistic-normal models. Journal of the American Statistical Association, 85,
464-469.

Dayvies, R. 1987. Mass point methods for dealing with nuisance parameters in longitudinal studies.
Pages 88-109 of: Crouchley, R. (ed), Longitudinal Data Analysis. Aldershot: Averbury.

Davies, R., & Pickles, P. 1987. A joint trip timing store-type choice model for grocery shopping,
including inventory effects and nonparametric control for omitted variables. Transportation
Research, 21 A, 345-361.

Dohoo, I.R., Tillard, E., Stryhn, H., & Faye, B. 2001. The use of multilevel models to evalu-
ate sources of variation in reproductive performance in dairy cattle. Preventative Veterinary
Medicine, in press.

123



124 REFERENCES

Dunn, G., Everitt, B., & Pickles, A. 1993. Modelling Covariances and Latent Variables using EQS.
London: Chapman & Hall.

Follmann, D. A., & Lambert, D. 1989. Generalizing logistic regression by nonparametric mixing.
Journal of the American Statistical Association, 84, 295-300.

Goldstein, H. 1995. Multilevel Statistical Models. London: Arnold.

Goldstein, H., Rasbash, J., Plewis, 1., Draper, D., Browne, W., Yang, M., Woodhouse, G., &
Healy, M. 1998. A User’s Guide to MLwiN. London: Multilevel Models Project, Institute of
Education, University of London.

Gould, W., & Sribney, W. 1999. Maximum Likelihood Estimation with Stata. College Station, TX:
Stata Press.

Heckman, J., & Singer, B. 1984. A method of minimising the impact of distributional assumptions
in econometric models for duration data. FEconometrica, 52, 271-320.

Hu, P., Tsiatis, A. A., & Davidian, M. 1998. Estimating the parameters in the Cox model when
the covariate variables are measured with error. Biometrics, 54, 1407-1419.

Kreft, 1., & De Leeuw, J. 1998. Introducing Multilevel Modeling. London: Sage Publications.

Leese, M. N., White, I. R., Schene, A.H., Koeter, M.W.J., Ruggeri, M., Gaite, L., & the EPSILON
Study Group. 2001. Reliability in Multi-Site Psychiatric Studies. International Journal of
Methods in Psychiatric Research, 10, in press.

Lesaffre, E., & Spiessens, B. 2001. On the effect of the number of quadrature points in a logistic
random-effects model: an example. Applied Statistics, 50, 325-335.

Lin, X., & Breslow, N. E. 1995. Analysis of correlated binomial data in logistic-normal models.
Journal of Statistical Computing and Simulation, 55, 133-146.

Lindsay, B. G., Clogg, C. C., & Grego, J. 1991. Semiparametric estimation in the Rasch model and
related exponential response models, including a simple latent class model for item analysis.
Journal of the American Statistical Association, 86, 96—107.

Little, R. J. A., & Rubin, D. B. 1987. Statistical Analysis with Missing Data. New York: Wiley.
Liu, Q., & Pierce, D. A. 1994. A note on Gauss-Hermite quadrature. Biometrika, 81, 624—629.
Longford, N. T. 1993. Random Coefficient Models. Oxford: Oxford University Press.

Luce, R. D. 1959. Individual Choice Behavior. New York: Wiley.

Magder, S.M., & Zeger, S. L. 1996. A smooth nonparamtric estimate of a mixing distribution using
mixtures of Gaussians. Journal of the American Statistical Association, 11, 86-94.

Maughan, B., Pickles, A., Rowe, A., Costello, R., & Angold, A. 2000. Developmental trajectories
of aggressive and non-aggressive conduct problems. Journal of Quantitative Criminology, 16,
199-221.

McCullagh, P., & Nelder, J. A. 1989. Generalized Linear Models. London: Chapman & Hall.

McCulloch, C. E., & Searle, R. S. 2001. Generalized, Linear and Mized Models. New York: Wiley.



REFERENCES 125

McFadden, D. 1973. Conditional logit analysis of qualitative choice behavior. Pages 105-142 of:
Zarembka, P. (ed), Frontiers in Econometrics. New York: Academic Press.

Morris, J. N., Marr, J. W., & Clayton, D. G. 1977. Diet and heart: postscript. British Medical
Journal, 2, 1307-1314.

Muthén, L. K., & Muthén, B. O. 1998. Mplus User’s Guide. Los Angeles, CA: Muthén & Muthén.

Naylor, J. C., & Smith, A. F. M. 1982. Applications of a method for the efficient computation of
posterior distributions. Applied Statistics, 31, 214-225.

Pickles, A., & Crouchley, R. 1994. Generalizations and applications of frailty models for survival
and event data. Statistics in Medicine, 3, 263-278.

Pickles, A., & Crouchley, R. 1995. A comparison of frailty models for multivariate survival data.
Statistics in Medicine, 14, 1447-1461.

Rabe-Hesketh, S., & Everitt, B. S. 2000. Handbook of Statistical Analyses using Stata (2nd Edition).
Boca Raton: Chapman & Hall/CRC.

Rabe-Hesketh, S., & Pickles, A. 1999. Generalised linear latent and mixed models. Pages 332-
339 of: Friedl, H., Berghold, A., & Kauermann, G. (eds), 14th International Workshop on
Statistical Modeling.

Rabe-Hesketh, S., & Pickles, A. 2001. Correcting for measurement error using a nonparametric
exposure distribution and non-normal errors. Submitted.

Rabe-Hesketh, S., & Skrondal, A. 2001. Parameterisation of multivariate random effects models
for categorical data. Biometrics, in press.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. 2001a. Generalized multilevel structural equation
modelling. Submitted.

Rabe-Hesketh, S., Pickles, A., & Skrondal, A. 2001b. GLLAMM: A general class of multilevel
models and a Stata program. Multilevel Modelling Newsletter, 13, 17-23.

Rabe-Hesketh, S., Touloupulou, T., & Murray, R. M. 2001c. Multilevel modeling of cognitive
function in schizophrenics and their first degree relatives. Multivariate Behavioral Research,
36, 279-298.

Rabe-Hesketh, S., Yang, S., & Pickles, A. 2001d. Multilevel models for censored and latent re-
sponses. Statistical Methods in Medical Research, in press.

Rabe-Hesketh, S., Pickles, A., & Skrondal, A. 200le. Reliable estimation of generalized linear
mixed models using adaptive quadrature. The Stata Journal, submitted, 0.

Rodriguez, B., & Goldman, N. 1995. An assessment of estimation procedures for multilevel models
with binary responses. Journal of the Royal Statistical Society, Series A, 158, 73-89.

Skrondal, A. 1996. Latent trait, multilevel and repeated measurement modelling with incomplete
data of mized measurement levels. Oslo: Section of Medical Statistics, University of Oslo.

Skrondal, A., & Rabe-Hesketh, S. 2001a. Analysis of clustered survival data with covariate mea-
surement error. In preparation, 0, 7



126 REFERENCES

Skrondal, A., & Rabe-Hesketh, S. 2001b. Multilevel logistic regression for polytomous data and
rankings. Submitted.

Snijders, T. A. B., & Bosker, R. J. 1999. Multilevel Analysis. London: Sage Publications.

Stata Manuals 1-4. 2001. Stata Reference Manuals. College Station, TX.

StataCorp. 2001. Stata Statistical Software: Release 7. College Station, TX.

Stryhn, H., Dohoo, I.R., Tillard, E., & Hagedorn-Olsen, T. 2000. Simulation as a tool of validation
in hierarchical generalized linear models. Pages 1136—-1138 of: International Symposium on
Veterinary Epidemiology and Economics.

Woodhouse, G. (ed). 1995. A guide to MLn for new users. London: Multilevel Models Project,
Institute of Education, University of London.

Yang, M., Rasbash, J., Goldstein, H., & Barbosa, M. 1999. MLwiN macros for advanced multilevel
modelling. University of Education, London: Multilevel Models Project.



Index

adapt option, 35 GLLAMM, 7
adaptive quadrature, 25, 35 gllapred command, 36, 46, 53
allc option, 33, 35 linpred option, 37

p option, 53

binomial family, 28, 83, 104 graph command

Cholesky decomposition, 15, 16, 33, 35 connect (L) option, 37

collapse, 82, 103 heteroscedasticity, 10, 12, 88
collapse command, 121

column name, 34, 88 i() option, 30

condition number, 18, 28, 51 init option, 104
constraints, 88 initial values, 30
contraints () option, 89 ip(£) option, 44, 49, 111
copy option, 52 ip(fn) option, 47, 109

item response model, 39, 80
deviance, 113

discrete random effect, 43 latent classes, 49, 108
level 1 residuals, 37
eform option, 31, 75, 107 level 1 variance, 33
empirical Bayes, see posterior mean level 1 weights, 32, 82, 103
empirical Bayes predictions, 23 level 2 residuals, 37
eq command, 32, 40 level 2 weights, 40, 86
egs () option, 32, 33, 40, 87, 111 1f0() option, 41, 45, 50, 51
equation name, 34, 88 likelihood ratio test, 33, 34, 41, 78
eval option, 78, 85 link() option, 61
expanded () option, 101, 105 log link, 73
_ logit link, 28
f&CtOI‘ loadlng, 41 1V() option, 61, 80, 90
factor model, 39
factor scores, 23 measurement error, 57
finite mixture model, 43 mixed response model, 57
fixed effects estimates, 113 mkspline command, 73
fracpoly command, 73 mlogit link, 104
frailty, 75 multilevel regression model, 27
from() option, 31, 34, 84 multinomial logit, see mlogit link

fv() option, 61
nip() option, 28, 44

Gateaux derivative, 13, 44, 50, 115 nocons option, 106, 111
gateaux () option, 45, 50 nocor option, 32, 78
generalised linear mixed model, see multilevel noest option, 88
regression model nominal responses, see mlogit link
geqs () option, 63, 94 nonparametric maximum likelihood, 13
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NPML, see nonparametric maximurmn likelihood
nrf () option, 32, 111

offset () option, 73

ologit link, 83

oprobit link, 86, 90

oprobit link, 84

ordinal responses, see ologit, oprobit, ocll
or soprobit link

orthpoly command, 72

piecewise exponential model, 67
Poisson family, 73

polytomous responses, see mlogit link
posterior mean, 16, 36, 53

posterior probability, 16, 53

posterior standard deviation, 16, 36
proportional hazards, 67

proportional odds, see ologit link

random coefficient model, 31
random slope, 33

rankings, 102

Rasch model, 39

reshape command, 59, 119

s () option, 44, 88
semi-parametric mixture, 66
shrinkage estimators, 37
skip option, 34, 64, 84
soprobit link, 81, 88
stsplit command, 71
survival model, 67

three level model, 30, 82
thresh() option, 80, 91, 98
trace option, 29, 31, 88

weight () option, 32, 86, 103

xtlogit command, 28
xtpois command, 76



