Estimation of integrals using Gauss Hermite quadratures
gausshermite function , sigma(#) mu(#) nodes(#) display
Description
gausshermite estimate the integrals of the form f(x)g(x/mu,sigma) on all the reals where g(x/mu,sigma) is the gaussian distribution function with mean mu and variance sigma^2.
Options
function define f(x). For example, if f(x)=x^2, function is x^2. It is necessary to use x for the variable of integration.
mu define the mean of x (0 by default).
sigma define the standard deviation of x (1 by default).
nodes define the number of quadrature nodes (12 by default).
display allow to automatically display the estimation.
Note that the quadrature nodes and the associated weights are computed using the ghquadm Stata command. Find this command with findit ghquadm.
Example
. gausshermite x^2
. gausshermite x^4+exp(x)-2, sigma(1.5) mu(-.4) d n(10)
Outputs
The estimated value of the integral is saved in r(int).
Author
Jean-Benoit Hardouin, Regional Health Observatory (ORS) - 1, rue Porte Madeleine - BP 2439 - 45032 Orleans Cedex 1 - France. You can contact the author at jean-benoit.hardouin@orscentre.org and visit