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Abstract

This article describes the gformula command, an implementation of the g-computation
procedure, used to estimate the causal effect of time-varying exposure(s) on an out-
come in the presence of time-varying confounders that are themselves also affected by
the exposure(s). The procedure can also be used to address the related problem of
estimating controlled direct effects and natural direct/indirect effects when the causal
effect of the exposure(s) on an outcome is mediated by intermediate variables, and
in particular when confounders of the mediator-outcome relationships are themselves
affected by the exposure(s). A brief overview of the theory and a description of the com-
mand and its options are given, and an illustration using two simulated examples is provided.

Keywords: gformula, causal inference, g-computation formula, time-varying confound-
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1 Introduction

1.1 Time-varying confounding

1.1.1 The setting

Longitudinal studies, where data are collected at several points in time, are common in many areas
of research, including epidemiology, clinical trials, ecology, sociology, econometrics, and many
more. More specifically, this article deals with the situation in which an explanatory variable (or
variables) of interest evolves over time, and is measured at several different fixed points in time
on each of a number of units (or subjects). Interest lies in the causal effect of this time-changing
explanatory variable on either (1) an outcome of interest, measured at the end of the study, or
(2) the time to some event of interest, which could occur at any time during follow-up, but is
measured in discrete time, i.e. at each visit, when the assessment of whether or not the event has
occurred since the last visit is made.

In attempting to measure this causal effect, it is important to consider the role of confounding
variables, i.e. (informally, with more details below) variables that influence both the explanatory
variable and the outcome. Failure to do so typically results in a biased estimator of the causal
effect of interest.

Much has been written on the general subject of confounding (Pearl, 2009; Rothman et al.,
2008; Morgan and Winship, 2007; Angrist and Pischke, 2009). This paper focusses on the specific
problem of time-varying confounders, i.e. factors that potentially confound the causal relationship
between time-varying explanatory variable and outcome, and that themselves evolve over time and
are measured repeatedly throughout the study. In particular, when the time-varying confounder
is itself affected by the time-varying explanatory variable of interest, standard methods (i.e.
regression adjustment) for dealing with confounding can no longer be applied (Robins, 1986;
Robins and Hernan, 2009).

This scenario is best illustrated using a causal diagram (Greenland et al., 1999) such as the one
depicted in Fig. 1. The arrows in this diagram represent the assumed direction of causal influence.
Ap—Ar represent the explanatory variable(s) of interest measured at time-points 0,1,...,7. Ly
Ly represent the potential confounder(s) measured at time-points 0,1, ...,7, where it is assumed
that L; occurs just before A;. In this diagram, Y is the outcome of interest, measured at the
end of the study (visit 7+ 1), and U is a set of unmeasured factors that influence Ly—Ly and
Y. Notice that there are no arrows from U to Ay—Ar, and no other common causes (V, say) of
Ap—Ar and Y. This represents the (untestable) assumption that, conditional on {Lg, Ly, ..., L;}
and {Ag, A1,...,A;_1}, in the absence of a causal effect of A; on Y, A; is independent of Y.
This is known as the no unmeasured confounders assumption, since it means that at each visit
t, a sufficient set of confounders of the relationship between A; and Y are measured. Notice also
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Figure 1: A causal diagram depicting time-varying confounders affected
by exposure, when the outcome is measured at the end of follow-up.

the arrows from A; to L;;1; these represent the fact that the confounder at one time-point may
be influenced by the explanatory variable at the previous time-point. (Note that we could have
included arrows from Ag to Lo, from Lg to Ay etc. These were left out simply to make the diagram
more readable, but the omission of the arrows from U to Ay—Ar is crucial).

Suppose instead that the outcome is time-to-event, measured at the discrete time-points
1,2,..., T4+1. Then, the appropriate causal diagram is the one shown in Fig. 2, where each Y}
is a binary variable signifying whether or not the event occurred in the time interval (¢t — 1,¢].
(Again, we could have included arrows from Ag to Lo, from Lo to Aj, from Ly to Y, etc. but not
from U to A()*AT).

1.1.2 Limitation of standard methods

The standard method for adjusting for confounding due to L is to condition on Lo—Ly in a
regression analysis. Were it not for the arrows from A; to L;,;, this strategy would succeed in
blocking all the so-called backdoor paths (Greenland et al., 1999) from A to Y, allowing us to
estimate consistently the joint causal effect of Ag—Az on Y (or Yy, ..., Y, in the case of a time-
to-event outcome). However, in the situation depicted by Figs. 1 and 2, where the confounder is
influenced by past values of the explanatory variable(s), conditioning on Ly—L7 is not valid for
two reasons. Consider, for example, the causal effect of Ay on Y (Fig. 1). By conditioning on
Ly, we have successfully blocked the backdoor (non-causal) path Ay < Ly <~ U — Y. However,
in conditioning on L; (and all future L;) we have blocked the path Ay = L1 — Ly — ... = Y
(and many others) which represents part of the causal effect of Ay on Y. Furthermore, since U
and Ay both influence L, conditioning on L; induces a non-causal association between A, and
U (see Greenland et al., 1999), thereby opening up a new backdoor path from A, through U to
Y. This is called collider-stratification bias and is a form of selection bias as classified by Hernan
et al. (2004). The problem applies similarly to Fig. 2.



Figure 2: A causal diagram depicting time-varying confounders affected
by exposure, when the outcome is time-to-event.

1.1.3 Example |

In a longitudinal study of antiretroviral therapy (ART) in HIV research, A; is a binary variable
indicating whether or not a subject is prescribed ART at time-point ¢, L; is CD4 count measured
at time ¢, and Y; is a binary variable indicating whether or not the subject develops AIDS in the
interval (¢ — 1,¢]. In an observational study, we would expect the decision as to whether or not to
treat with ART at a given time-point to be influenced by the current CD4 count of the patient.
Also, ART works by raising a patient’s CD4 count, and thus adjusting for CD4 in a standard
regression analysis is not sensible for the reasons outlined above. We return to this example in
section 4.1.

1.2 Mediation

1.2.1 The setting

A substantively different, yet methodologically closely related, problem arises when we wish to
decompose the causal effect of an exposure X on an outcome Y into an indirect effect, acting
through a mediator M, and a direct effect not mediated by M.
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Figure 3: A causal diagram depicting mediation with mediator-outcome
confounders affected by the exposure.

1.2.2 Limitation of standard methods

A standard approach in this case would be (i) to fit a regression model for Y conditional on X
(and any confounders C' of the X-Y relationship) and then (ii) to add M into the same model.
Looking at how the coefficient of X changes between models (i) and (ii) is sometimes interpreted
as the extent to which the effect of X on Y is mediated by M. More formally, the coefficient of
X in model (i) represents the total effect of X on Y, and in model (ii) is often taken to represent
the direct effect of X on Y not mediated by M.

This approach is invalid if (as shown in Fig. 3) there are confounders L of the M-Y relationship,
since the second model will not consistently estimate the direct effect of X on Y. Conditioning
on M induces an association between X and L, opening up a backdoor path from X to L to Y.

Conditioning on L blocks this backdoor path. But if (as shown in Fig. 3) L is affected by X,
conditioning on L also blocks the path X — L — Y, which is part of the direct effect of X on Y
(since it is not mediated by M). Thus conditioning on L does not solve the problem arising from
conditioning on M whenever L is affected by X.

In addition, the standard regression approach requires that there be no effect modification by X
of the effect of M on Y.



1.2.3 Relationship to time-varying confounding

To see the link between the two settings, note that Fig. 3 is the same as Fig. 1, with T" = 1,
Ly=C, Ay = X, Ay = M and L; = L. Thus, in the time-varying confounding example, the
causal effect of Ag—Ar on Y consists of 7"+ 1 direct effects: the direct effect of Ay on Y not
mediated by A;—Ar, the direct effect of A; on Y not mediated by As—A+, and so on.

1.2.4 More on direct/indirect effects

To discuss precisely what we mean by direct and indirect effects, we use some counterfactual
notation (Robins and Greenland, 1992; Pearl, 2001). Let Y (z,m) be the potential outcome if,
possibly contrary to fact, X were set (by intervention) to x and M were set (by intervention) to
m. The controlled direct effect (CDE,,) is a comparison of E{Y (x,m)} for different values of z,
whilst keeping m fixed. For example, if X is univariate and binary, we might specifically consider
the controlled direct effect (at m) to be

CDE,, = E{Y (1,m)} — E{Y (0,m)}

Now let M (z) be the potential value of the mediator if, possibly contrary to fact, X were set
to x. The total causal effect (TCE) is a comparison of E [Y {x, M (z)}] for different values of x.
Again, for binary X, we would have

TCE=E[Y{1,M(1)}] - E[Y {0, M (0)}]

It would be desirable to use these quantities to infer an indirect effect as the difference between
the total effect and the direct effect. The fact that the controlled direct effect is a function of m
makes this difficult. CDE,, is potentially different for each value of m.

For this reason, the natural direct effect (NDE,, ) is defined to be a comparison of E [Y {x, M (z¢)}]
for different values of x, keeping ¢ fixed (usually at the ‘baseline’ value of X, if such a natural
choice exists). In other words, it is the effect of X on Y, were M to take on its natural value
under the baseline intervention. For binary X, we would have

NDE, = E[Y {1, M (0)}] — E[Y {0, M (0)}]

Then the natural indirect effect (NIE,,) can be defined as the difference between the total causal
effect and the natural direct effect. Thus it is a comparison of E [Y {z1, M (z)}] for different values
of z, whilst keeping z; fixed (at a natural choice of ‘non-baseline’ value). This is best illustrated
by thinking again of a binary X, when the natural indirect effect becomes

NIE; = E[Y {1, M (1)}] — E[Y {1, M (0)}]
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There has been some controversy over whether or not natural direct and indirect effects are
well-defined (Robins, 2003; Didelez, 2006; Hafeman, 2009). These (interesting and important)
philosophical concerns are beyond the scope of this article, however, and we proceed under the
premise that these effects are well-defined in the situations we consider.

1.2.5 Example Il

It is widely believed that alcohol consumption has a causal effect on systolic blood pressure (SBP),
but the mechanisms through which this causal effect acts are poorly understood. One hypothesis
is that alcohol intake affects the level of a liver enzyme, GGT, which, in turn, affects SBP. It
would therefore be of interest to know how much of the causal effect of alcohol intake on SBP
is mediated by GGT. BMI is thought to affect both GGT and SBP, and socio-economic position
(SEP) is thought to affect alcohol intake, BMI and SBP. In addition, alcohol intake has a causal
effect on BMI. This situation is depicted by Fig. 3, with X = alcohol intake, M = GGT, Y =
systolic blood pressure, L. = BMI, and C' = SEP. We return to this example in section 4.2.

1.3 A way forward

An alternative to standard regression adjustment is needed to deal with confounding in the two
situations described above. One such method is the g-computation procedure, first suggested by
Robins (1986) and further discussed by Robins and Herndn (2009) and Taubman et al. (2009).
In the next section, we give a brief overview of this method, before describing (in section 3)
our implementation of it using a new command (gformula) in Stata. In section 4, we give
an illustration using the two examples described above, before ending (in section 5) with some
concluding remarks.

2 The g-computation procedure

2.1 Time-varying confounding

2.1.1 The basic idea

The g-computation procedure works by first modelling the relationships between the variables
seen in the observational data. Using these models, we simulate what would have happened to
the subjects in the study had the variables Ap—A7 been determined by intervention, rather than



been allowed to evolve naturally as in the observational data. The modelling and simulation is
carried out ‘forward’ in time. That is, we start by modelling the time 1 data given the time 0
data, which allows us to simulate the data at time 1 under various hypothetical interventions (on
the time 0 exposure) to be compared. Then we model the time 2 data given the time 0 and time
1 data in order to simulate the data at time 2 under the various interventions (on time 0 and time
1 exposures), and so on. All post-baseline confounders and outcome(s) are simulated under each
intervention. Causal inference can then be pursued by comparing the outcome(s) under different
interventions as if these had been generated from a randomised experiment.

2.1.2 Fitting the models

We specify a parametric model for the conditional distribution of L; given Ly and Ag. (If there are
time-fixed confounders, these are included in Ly.) If L; is continuous, then fi,1,.4, (i |lo, ao; 1)
is the probability density function from this model. If Ly is binary, then fi, 1,4, (I1 [lo, ao; 1) is
a conditional probability.

By fitting this model to our observational data on Lq, Ly and Ay we obtain estimates &; of a;.

Similarly, for each ¢t € [2,T], a model for the conditional distribution of L; given Lg, Ay, ...,
L; 4 and A, is specified, and the estimates &; of the parameters o, from the density/probability
JriLo, A0y i 401 (I )los @0, - -, li—1, a¢—1; 0y ) are obtained from the observational data.

In the case of one outcome Y measured at the end of follow-up, a model for the conditional
distribution of Y given Lg, Aq, ..., L7 and Ar is specified, and the estimates 3 of the parameters
B from fy|rg,a0,....L0.47 (Y |lo; 0, ..., lr,ar; B) are obtained from the observational data.

When the outcome is time-to-event, i.e. described by a series of binary variables Y7, Ys, ... Y q,
then, for each ¢ € [1,7 + 1], a model for the conditional probability of ¥; = 1 given Ly, Ay,
..., Ly_1 and A;_; and Y;_; = 0 is specified, and the estimates Bt of the parameters (3; in
Ivilto,AoyoiLe1,4i (Yt [lo, ao, - . li—1, as-1; B¢ ) are obtained from the subset of the observational
data with Y;_; = 0 (i.e. those still in the risk set).

At present, only regress and logit are supported by gformula in the fitting of these models.
There is an option either to fit the models separately at each time-point (although even with this
option, the model must be the same at each time-point) or to pool the data across all time-points
to estimate the parameters. More details are given in section 3.



2.1.3 Simulating under one hypothetical intervention: the case of a single outcome mea-
sured at the end of follow-up

Suppose we wish to simulate what would have happened to the study subjects had the treatment
been withheld from all subjects at all times, i.e. under the intervention Ag = 0, A1 =0, ...,

Ar =0.

We use L, L, ..., L} to denote the (simulated) values of Lo, L1, ..., Ly under the intervention
being considered. Lg precedes Ay and is therefore unaffected by any intervention on Ag—As. Thus,
La == Lo.

L7 is simulated from the distribution defined by fr,|5,,4, (I1 | L5, 0; &1) (see the previous section:
Fitting the models). In other words, we take the conditional distribution of L; given Ly and A as
estimated from the observational data, then we simulate L} from this distribution, after replacing
Ap by 0 and Ly by L, i.e. the values of Ay and Ly under the intervention being considered.
If L; is continuous, then Lj is a stochastic draw from the distribution defined by the density
Jri1Lo,40 (L | L5, 0560 ). If Ly is binary, then L7 is a stochastic draw from a Bernoulli distribution
with probability fr,|ro,4, (1]Lg,0;6G1).

Similarly, L; is simulated from fr,i1, 40,0, 1,4,, (b |L(’§, 0,...,L; ,,0;G;) for each t € [2,T].

Finally, Y™ is simulated from fy|ry o.....05 A7 (y ‘LS, 0,...,L},0; B) Y™ is known as a potential
outcome, since it represents what the outcome would have been under the hypothetical intervention
being considered.

Thus, we have simulated all post-baseline variables, including the potential outcome (given the
no unmeasured confounders assumption and the modelling assumptions made during the model-
fitting stage) under the hypothetical intervention in which treatment is withheld from all subjects
at all times. Note that at each stage, the conditional density used for simulation conditions only on
past values of the exposure and confounder. This is essentially the difference between this approach
and standard regression adjustment for the time-varying confounder. In the latter approach, we
condition on the future as well as the past, and this introduces the problems discussed in the
Introduction.

Since U is unmeasured, the simulation is done marginally over the unobserved distribution of U,
but since U is not a confounder of the A-Y relationships, this does not introduce bias (Daniel
et al., 2010).



2.1.4 Simulating a time-to-event outcome

In the case of a time-to-event outcome, Y;* is simulated from a Bernoulli distribution with proba-
bility fy|r,,40 (1 ‘LS, 0; 5 ) . For those with Y;* = 0, Y5 is simulated from a Bernoulli distribution

with probability fy,r,40,01,4, (1 ‘La, 0, L7, 0; Bg> etc. Finally, for those with Y7 = 0, Y| is sim-

ulated from a Bernoulli distribution with probability fy,.. |5, 40,....L0,A¢ (1 ‘LS, 0,...,L%,0; BT+1 >

Together, {Yl*, N ¢ +1} represent the potential time-to-event outcome under the hypothetical
intervention which withholds treatment from all subjects at all times.

2.1.5 Comparing many hypothetical interventions

We can change the intervention being studied above from ‘never treat’ to ‘always treat’ and repeat
the simulation. In this case, we would replace each of Ag—Ar by 1, rather than 0. Similarly, many
more hypothetical interventions can be compared using this principle; for example, we could
simulate under the intervention ‘treat at alternate time-points’ or ‘treat after time-point 3’ etc.
When Ay—Ar are continuous (and/or multivariate), different hypothetical interventions that set
Ag to ag, ..., Ar to ar can be compared, for different combinations of values of ag—ar.

In the case of a single outcome measured at the end of follow-up we can then compare the
hypothetical interventions by calculating the average potential outcome across all subjects for
each intervention. Since the average is taken over all subjects, it is marginal over all background
variables. In this sense, the g-computation formula should be seen as a form of standardisation
that is valid for time-varying exposures.

In the case of a time-to-event outcome, the average incidence rate and the cumulative incidence
under different hypothetical interventions can be compared, and Kaplan-Meier curves plotted for
the different interventions. Again, since these are based on comparing all subjects under different
interventions, they are marginal with respect to all other variables.

Under the no unmeasured confounders assumption and the parametric modelling assumptions used
in the model-fitting stage, any difference (beyond that expected by finite sample and Monte Carlo
simulation error) between the mean potential outcomes / average incidence rates / cumulative
incidences / Kaplan-Meier curves can be attributed to the causal effect of the exposure.
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2.1.6 The number of subjects simulated

In order to speed up the computation, the simulated subjects can be a random subset of the
original dataset. As long as the chosen subset is truly random, this does not introduce bias,
but increases the Monte Carlo simulation error and hence decreases precision. This is not to
be recommended unless the original dataset is very large, causing the computation time to be
unacceptably large.

2.1.7 Standard errors and inference using the bootstrap

Standard errors and confidence intervals are obtained by bootstrapping. The bootstrap samples
are taken at the subject level from the original dataset. If the number of Monte Carlo simulations
is chosen to be less than the original sample size, the Monte Carlo subset is chosen from the
boostrap sample.

2.1.8 Comparing dynamic regimes

The interventions considered so far are all termed static, since (in the hypothetical universe in
which these interventions are implemented) the treatment trajectory is known fully from the
beginning of the (hypothetical) study. Although the hypothetical behaviour of the study partici-
pants under these regimes has been constructed using the observational data (in which exposure
depends on the past values of the confounder), our aim has been to simulate data free from this
dependence.

Another category of interventions is the so-called dynamic regimes, where the treatment trajectory
is allowed to depend on the confounder trajectory in a pre-specified manner. An example of
a dynamic regime in the HIV study would be ‘treat once CD4 count falls below z’. The g-
computation procedure can be used exactly as outlined above to simulate what would happen to
the study participants under different values of x. By trying a range of values of x, an optimal
regime (in this class) can be sought (e.g. in the HIV study, the optimal regime might be defined
as the regime which maximises expected AIDS-free survival). Instead of being fixed from the
outset, the intervention values A; of A; now depend on Lg, Ag, ..., A, L;. Suppose that for
a particular subject, L§ > x,..., Ly | > x, but L} < x, then A = A} =--- = Ay ;, =0 and A
is set to 1. This is an example of a deterministic dynamic regime, since given past values of the
confounder and treatment, the rule defining the dynamic regime assigns a value to the exposure
with probability 1. See below (the section on Simulating under the observational regime) for
an example of a stochastic dynamic regime.
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2.1.9 Estimating the parameters of a Marginal Structural Model

Thus far, we have described the g-computation procedure as a method for simulating the distri-
bution of Y (or, in the case of a time-to-event outcome, Y;, ..., Yy, 1) under different hypothetical
interventions; and, indeed, this is essentially what it is. However, we may need a more parsimo-

nious way of summarising the comparison. This can be done using a Marginal Structural Model
(Robins et al., 2000).

A marginal structural model (MSM) expresses some feature of the distribution of a potential
outcome as a function of the hypothetical intervention variables. For example, in the case of an
outcome measured at the end of follow-up, if Y (ag,ay,...,ar) is used to denote the potential
outcome under the hypothetical intervention that sets the binary variable Ag to ag, A; to aq, and
so on, then a possible MSM might be expressed as

T
E{Y(GOaaly-"vaT)} :’7+¢Zat
t=0

Thus, given the assumptions made by this MSM, the causal effect of Ay,..., Ar on Y can be
summarised in terms of one parameter (¢) rather than the (large) set of pairwise comparisons
between all the different potential outcomes. By simulating under a large number of different
hypothetical interventions, and fitting a regression of Y* on ZtT:o A} to the combined simulated
dataset (formed by concatenating each of the simulated intervention datasets), estimates of v and
¢ can be obtained. At present, only MSMs fitted using regress and logit are supported by
gformula.

In the case of a time-to-event outcome, if the parameters of the model for Y;—Y ., are estimated
from a pooled logistic regression over all time-points, then the natural choice of MSM is a marginal
structural Cox model (D’Agostino et al., 1990), and gformula supports the fitting of such a MSM
using stcox.

Standard errors and confidence intervals are again obtained by bootstrapping.

According to our definition of a MSM, it is necessarily used to compare static regimes, and thus
this option cannot be specified in gformula when dynamic regimes are being compared. Dynamic
MSMs have been developed (Cain et al., 2010), but are not supported by gformula at present.

12



2.1.10 Dealing with loss to follow-up

In longitudinal studies such as the ones considered here, it is always likely that some subjects
drop out before the end of follow-up. Under the assumption that this drop-out occurs at random
(Little and Rubin, 2002), i.e. that drop-out is conditionally independent of the unobserved data
given the observed data (observed prior to drop-out), then such loss to follow-up can be very
easily allowed for in the g-computation analysis. Dropping out can be seen as one of the potential
treatment trajectories, and then the simulations are made for trajectories such as ‘always receive
treatment and do not drop out’. The missing at random assumption is then implicit in the no
unmeasured confounders assumption. The fact that drop-out need not be explicitly modelled is
an example of ignorability as defined for likelihood analyses under MAR (Little and Rubin, 2002).

2.1.11 Dealing with censoring due to death

An exception to what is written above occurs when censoring is due to death. It seems unnatural
(and indeed potentially misleading) to simulate data under a hypothetical intervention for a
subject after the time at which that subject would have died under that intervention. Therefore,
survival can be seen as an additional outcome process to be simulated in the same way as described
for AIDS-free survival above. First, the question is asked ‘did this subject survive the interval
(t — 1,¢]?” and then, conditional on the answer to this being simulated as ‘yes’, the second question
‘did the subject develop AIDS in the interval (¢t — 1,¢]? is asked, and the answer simulated.

2.1.12 Dealing with missing values in time-fixed variables and intermittent missingness of
outcome and time-varying variables using single stochastic imputation

As well as drop-out (where subjects leave the study and never return), longitudinal studies often
suffer from intermittent (or non-monotone) missingness, that is, some subjects miss a particular
visit or visits but return at a subsequent visit. In addition, a subject may have a missing value
for a subset of the observations at time-point ¢, whilst others are observed. Or, a subject may be
missing some baseline (time-fixed) variables.

Under the missing at random assumption (which is somewhat contentious for non-monotone
patterns of missingness (Robins and Gill, 1997)), such non-monotone patterns of missingness can
be dealt with via the method of multiple imputation using chained equations (van Buuren et al.,
1999). The method as described by van Buuren et al. draws multiple proper imputations in the
sense described by Little and Rubin (2002). The imputations are termed proper since they are not
drawn from the distribution of the missing data given the observed under the maximum likelihood
estimates of the parameters of this distribution (which would be termed improper) but rather from
this distribution under Bayesian draws from the posterior distributions of these parameters, with
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draws from these posterior distributions taken separately for each of the multiple imputations.
By drawing multiple proper imputations, Rubin’s rules (Little and Rubin, 2002) can then be used
to estimate the standard errors of the final parameter estimates.

Since we are not estimating standard errors analytically, but via the bootstrap, the imputation
method included in gformula is a single stochastic imputation using chained equations. The
method is identical to that described by van Buuren et al. (1999) except that we draw only one
imputation for each missing values, and that imputation is improper. This has been shown to be
a valid approach when Rubin’s variance estimator is not being used (Tsiatis, 2006, chapter 14).

At present, only regress, logit and mlogit are supported as imputation commands in gformula.

2.1.13 Simulating under the observational regime

In addition to simulating what would have happened to the study participants under a number
of hypothetical interventions, it is also possible to simulate what would have happened under
no intervention, that is if the subjects chose their treatments under the same mechanism as was
present in the observational data. For this to be possible, a parametric model for treatment
assignment given treatment and confounder history must also be specified, and the values of
Aj-A% under this regime are simulated analogously to what was described for Lj—L%. above.

In the absence of significant loss to follow-up, a comparison of the actual observed data and the
simulated data under the observational regime can give some indication as to the success of the
procedure. If these two were very different, it would indicate that at least some of the parametric
modelling assumptions, or the no unmeasured confounding assumption, do not hold. But good
agreement between the actual observed data and the simulated data under the observational
regime does not guarantee that the assumptions hold.

The observational regime is an example of a dynamic regime (see above). In fact, since each A}
is a draw from a distribution (to mimic the variation seen in an observational setting), this is an
example of a stochastic dynamic regime.

A comparison between a given intervention and the observational regime is often of interest when
assessing the likely impact of such an intervention if implemented in the population being studied
(Taubman et al., 2009).
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2.2 Mediation

The g-computation procedure for the mediation example works in a similar way, except that
for the natural direct and indirect effects, simulations under different hypothetical interventions
need to be combined. Suppose that X is binary, then M is simulated under both X = 1 and
X =0, giving M (1) and M (0), respectively. To simulate Y {1, M (0)} (needed to estimate the
natural direct effect), X is set to 1 at the same time as M is set to the simulated value under the
intervention X = 0, i.e. M (0).

If X is not binary and/or if X is multivariate, there may not be a natural comparison (such as
1 vs. 0) for calculating the total causal effect, controlled direct effect or natural direct/indirect
effects. In this case, the formulae in section 1.2 are replaced by

CDE,, = E{Y (X,m)} — E{Y (0,m)}

TCE = E{Y (X, M (X))} — E{Y (0, M (0))}
NDE, = E[Y {X, M (0)}] — E[Y {0, M (0)}]

and
NIEx = E[Y {X, M (X)}] = E[Y {X, M (0)}]

where 0 is still the ‘baseline’ value(s) of X, but is now compared with the distribution of X arising
naturally in the observational data. Such a comparison often corresponds to the causal question
of interest.

Missing data in any of the variables can be dealt with via single stochastic imputation using
chained equations as described above.

3 The gformula command

3.1 Syntax

gformula mainvarlist [if] [in}, outcome (varname) commands(string) equations(siring)
[;dvar(varnanuﬂ tvar (varname) varyingcovariates(warlist) intvars(varlist) interventions(string)
dynamic eofu pooled death(varname) derived(warlist) derrules(string) fixedcovariates (varlist)
laggedvars(varlist) lagrules(string) msm(string) mediation exposure(varlist) mediator (varlist)
control(string) baseline(string) base_confs(wvarlist) post_confs(varlist) impute(varlist)
imp_cmd(string) imp_eq(string) imp_cycles(#) simulations(#) samples(#) seed(#) obe all graph

saving(string) replace]
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where mainvarlist contains all the variables to be used by the command. Please note that neither
the abbreviation of variable names nor the use of variable lists (such as x1-x3 to denote x1 x2
x3) is supported. Categorical variables should be listed using only their names (e.g. agecat)
without using the prefix i. (e.g. i.agecat).

3.2 The data structure

For the time-varying confounding option (as opposed to the mediation option—see below), the
data must be in long format (see [p] reshape), i.e. there should be a separate record for each
subject at each time-point. If the outcome is time-to-event, the outcome data for each subject
should be given as a series of binary variables measured at each time-point, as suggested by Fig. 2.
No records should be included in the dataset for subjects who have been censored before that
time, due to death or loss to follow-up, or (in the case of a time-to-event outcome) due to having
experienced the event before that time.

Any value which is to be imputed (including those at intermittent missing visits, for which a
record must be included) should be denoted by a “.”, according to Stata’s convention.

For the mediation option, there should be exactly one record per subject. Again, missing values
to be imputed should be denoted by a “.”.

Examples of how the data should be structured in each situation are given in section 4.

3.3 Options

3.3.1 Time-varying confounding options

outcome (varname) specifies that varname is the outcome variable.

commands (string) specifies which command (either regress or logit) should be used when
fitting each of the parametric models. The variable name is followed by a colon (:), which is
followed by the command name, with a comma (,) separating the different variables (see the
example syntax in section 4).

Commands should be specified for the models for the outcome variable, time-varying con-

founders and the time-varying exposure. If there is censoring due to death, then the command
used for the model for death should also be specified.
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For a time-to-event outcome (and death, if applicable), logit is the sensible command to
choose, since the outcome (or death) is given (and simulated) as a sequence of binary variables.

equations (string) specifies the right-hand side of the equations used when fitting the models
listed above. The name of the dependent variable is followed by a colon (:), which is followed by
the list of independent variables. A comma (,) should separate the equations for the different
dependent variables (see the example syntax in section 4).

Since the data are stored in long format, lagged variables will need to be used (see below)
to incorporate the dependence on data from previous visits.

The equation for any particular variable, for example a time-varying confounder L, must
be the same at each visit.

Variables that are to be treated as categorical variables on the RHS of any equation should be
preceded by “i.”.

idvar (varname) specifies that varname is the numeric variable identifying the subject.
tvar (varname) specifies that varname is the numeric variable identifying the time-point.

varyingcovariates (varlist) specifies that varlist are the time-varying covariates. If lagged ver-
sions of these variables are to be used, only the unlagged versions should be included in this
list.

intvars (varlist) specifies that varlist are the variables on which interventions are to be specified.
If lagged versions of these variables are to be used, only the unlagged versions should be included
in this list.

interventions (string) specifies the exact interventions to be compared. Different interventions
should be separated by a comma (,) and different commands within one intervention should be
separated by a backwards slash (\) (see the example syntax in section 4).

dynamic specifies that the regimes to be compared are dynamic. If this option is not specified, it
is assumed that the regimes to be compared (except for the observational regime) are all static.

eofu specifies that the outcome is measured only at the end of follow-up. If this option is not
specified, it is assumed that the outcome is time-to-event.

pooled specifies that the models defined by the command and equation options above (along with
the models defined by the imp_cmd and imp_eq options below, if applicable) should be fitted to
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data from all visits at once, pooling across time-points. If this option is not specified, the models
are fitted separately at each visit.

death(varname) gives the name of the variable (a sequence of binary variables at each time-
point) which takes the value 0 if a subject is still alive at that time-point and 1 if a subject died
between the previous and current time-points. (No further records following death should be
included in the original dataset.)

It is assumed that all censoring (before the final visit) where death=0 is due to loss to
follow-up. Simulations are then drawn to mimic a situation in which there are deaths but no
losses to follow-up.

If the death option is not specified, all censoring (before the final visit) is assumed to be
due to loss to follow-up and simulations are drawn to mimic no losses to follow-up.

derived (warlist) lists all the variables which are to be derived from other variables, such as
interactions. Lagged variables themselves should not be included here, but variables derived
using one or more lagged variables should be included. The derived variables must exist in the
original dataset.

derrules(string) describes how the derived variables are to be obtained from the other vari-
ables. For example, if the variable al is to be created as the product of a and 1, the code is
derrules(al:axl) (and al should be included in derived(warlist) above). The rules for gener-
ating more than one derived variable should be separated using a comma.

fixedcovariates (wvarlist) lists the time-fixed covariates. These do not depend on the time-
varying exposure and thus are not simulated.

laggedvars (varlist) lists the lagged variables. The lagged variables must exist in the original
dataset.

lagrules(string) gives further details of the lagged variables. For example, if the variable a_lag
is the lagged version of a, and a_lag?2 is the double-lagged version of a, this would be denoted as
lagrules(a_lag:a 1,a_lag2:a 2).

msm(string) specifies the form of the marginal structural model, for example,
msm(regress y a_lag a_lag2) or msm(stcox a_lag a_lag2). Only regress, logit and
stcox are supported at present. This option cannot be specified in conjunction with dynamic.

impute (varlist) gives a list of the variables that contain missing values to be imputed via the
method of single stochastic imputation using chained equations.
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imp_cmd (string) specifies which command (either regress, logit or mlogit) should be used
when fitting each of the imputation models. The syntax is the same as for the commands option
described above.

imp_eq(string) specifies the RHS of each of the equations to be used for fitting each of the
imputation models. The syntax is the same as for the equations option described above.

imp_cycles (#) specifies the number of cycles of chained equations to be used in the imputation
procedure. The default is 10.

simulations (#) specifies the size of the Monte Carlo simulated dataset. The default is the same
size as the observed dataset, but for computational reasons, it can be smaller.

samples (#) specifies the number of bootstrap samples. The default is 1,000.
seed (#) sets the random-number seed to #.

all specifies that all bootstrap confidence intervals are to be displayed (normal, percentile, bias
corrected, and bias corrected and accelerated). The default is to give normal-based bootstrap
confidence intervals only. See [r] bootstrap.

graph specifies that a Kaplan-Meier plot of the survival curves under each intervention be dis-
played. This option is only relevant for a time-varying confounding analysis with a time-to-event
outcome.

saving(string) saves the dataset containing the original observational data and all the Monte
Carlo simulations in a Stata dataset named string. The dataset contains a variable _int which
takes the value 0 for the observational data, the value 1 for the simulations corresponding to
intervention 1, and so on for each of the m specified interventions. Finally, the Monte Carlo
simulations under the ‘no intervention’ regime appear at the end of the dataset, with _int taking
the value m + 1.

replace specifies that if the .dta file given in the option saving(string) already exists, it should
be overwritten.

3.3.2 Mediation options

mediation specifies that the analysis is a mediation analysis. If this option is not specified, then
a time-varying confounding analysis is assumed.
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outcome (varname) specifies that varname is the outcome variable.

commands (string) specifies which command (either regress or logit) should be used when
fitting the parametric models used as a basis for simulation. The variable name is followed by a
colon (:), which is followed by the command name, with a comma (,) separating the different
variables (see the example syntax in section 4).

Models must be specified for the mediator(s), outcome, and the post-baseline confounders
of the mediator-outcome relationship that are affected by the exposure.

equations (string) specifies the right-hand side of the equations used when fitting the models
listed above. The name of the dependent variable is followed by a colon (:), which is followed by
the list of independent variables. A comma (,) should separate the equations for the different
dependent variables (see the example syntax in section 4).

Variables that are to be treated as categorical variables on the RHS of any equation should be
preceded by “i.”.

derived (warlist) lists all the variables which are to be derived from other variables, such as
interactions.

derrules(string) describes how the derived variables are to be obtained from the other vari-
ables. For example, if the variable al is to be created as the product of a and 1, the code is
derrules(al:ax1l) (and al should be included in derived(warlist) above). The rules for gener-
ating more than one derived variable should be separated using a comma.

exposure (varlist) specifies the exposure variable(s).
mediator (varlist) specifies the mediator variable(s).

control(string) specifies the value(s) at which the mediator(s) should be controlled for the
controlled direct effect (see the example syntax in section 4). If this option is not specified,
only natural direct/indirect effects are estimated.

baseline (string) specifies the value(s) of the exposure(s) to be taken as baseline value(s) (see the
example syntax in section 4). base_confs(varlist) specifies the confounder(s) of the exposure-
outcome relationship(s).

post_confs (varlist) specifies the confounder(s) of the mediator-outcome relationship(s).

impute (varlist) gives a list of the variables that contain missing values to be imputed via the
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method of single stochastic imputation using chained equations.

imp_cmd (string) specifies which command (either regress, logit or mlogit) should be used
when fitting each of the imputation models. The syntax is the same as for the commands option
described above.

imp_eq(string) specifies the RHS of each of the equations to be used for fitting each of the
imputation models. The syntax is the same as for the equations option described above.

imp_cycles (#) specifies the number of cycles of chained equations to be used in the imputation
procedure. The default is 10.

simulations (#) specifies the size of the Monte Carlo simulated dataset. The default is the same
size as the observed dataset.

samples (#) specifies the number of bootstrap samples. The default is 1,000.
seed (#) sets the random-number seed to #.

obe specifies that there is only one binary exposure, and that the comparisons should be made
between X = 1 and X = 0. If this is not specified, comparisons are made between the natural
distribution of X in the observed data, and the baseline value(s).

all specifies that all bootstrap confidence intervals are to be displayed (normal, percentile, bias
corrected, and bias corrected and accelerated). The default is to give normal-based bootstrap
confidence intervals only. See [r] bootstrap.

saving(string) saves the dataset containing the original observational data and all the Monte
Carlo simulations in a Stata dataset named string.

replace specifies that if the .dta file given in the option saving(string) already exists, it should
be overwritten.
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4 |llustration using two simulated examples

4.1 Example I: time-varying confounding

4.1.1 The data

Two datasets are simulated with T" = 9, according to the description given in section 1.1.3. In
the first dataset, Ay—Ag are binary treatment variables with A; = 1 if a subject is prescribed
antiretroviral therapy (ART) at visit ¢, and 0 otherwise. Lo—Lg are the values of the logarithm
of CD4 count at each visit. Y;—Y)( are binary variables, where Y; = 1 if a subject develops AIDS
during the time-interval (¢ — 1,¢] and 0 otherwise. All subjects are AIDS-free at baseline (hence Y}
is the first recorded measurement of Y') and if Y; = 1, no records are included for that individual
from time ¢ + 1 onwards. Here are the data for the first three subjects in the first dataset.

o +
I id t ¥y 1 a cuma a_lag cuma_lag 1_lag |
| |
I 1 0 . 5.1956231 1 1 0 0 0 |
| 1 1 0 5.524413 1 2 1 1 5.195231 |
I 1 2 0 5.813174 O 2 1 2 5.524413 |
I 1 3 0 5.322465 O 2 0 2 5.813174 |
| 1 4 0 4.547185 1 3 0 2  5.322465 |
I 1 5 0 4.963298 O 3 1 3  4.547185 |
I 1 6 0 4.389211 O 3 0 3 4.963298 |
I 1 7 0 3.977597 1 4 0 3 4.389211 |
I 1 8 0 4.533944 1 5 1 4  3.977597 |
I 1 9 0 5.023493 1 6 1 5 4.533944 |
| 1 10 O 1 6 5.023493 |
|--—-- I
I 2 0 . 4.686166 O 0 0 0 0|
I 2 1 0 4.05956 O 0 0 0 4.686166 |
I 2 2 0 3.569694 O 0 0 0 4.05956 |
| 2 3 0 3.038292 1 1 0 0 3.569694 |
I 2 4 0 3.584502 1 2 1 1 3.038292 |
I 2 5 0 4.249334 1 3 1 2  3.584502 |
I 2 6 O 4.817859 1 4 1 3 4.249334 |
I 2 7 1 5.353656 1 5 1 4 4.817859 |
|--—- I
I 3 0 . 6.051494 O 0 0 0 0|
I 3 1 0 5.407419 O 0 0 0 6.051494 |
I 3 2 0 4.841232 O 0 0 0 5.407419 |
I 3 3 0 4.412408 O 0 0 0 4.841232 |
I 3 4 0 4.074246 O 0 0 0 4.412408 |
| 3 5 0 3.754061 1 1 0 0 4.074246 |
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| 3 6 0 4.415367 1 2 1 1 3.754061 |
I 3 7 0 4.870831 0 2 1 2 4.415367 |
| 3 8 0 4.272728 0 2 0 2  4.870831 |
I 3 9 0 3.979522 1 3 0 2 4.272728 |
| 3 10 O 1 3 3.979522 |

Subjects 1 and 3 remained AIDS-free until the end of follow-up. Subject 2 developed AIDS
between times 6 and 7. a_lag is the lagged version of a, i.e. it contains the previous value of a,
except at time 0 when a is O for all subjects. Similarly, 1_lag is the lagged version of 1. cuma at
time ¢ is the sum of all the values of a for that subject up to and including time ¢, and cuma_lag
is its lag.

The data (consisting of 1,000 subjects) were generated as follows.

e U is a normal random variable with mean 0 and variance 0.25.
e [ is a normal random variable with mean 5.5 + U and variance 0.04.

e A is generated from a Bernoulli distribution with probability

exp (5 — Lo)
1+ exp (5 — Lo)

e Then for each ¢ € [1,9], and for those with Y; 1 = 0, Y;, L; and A; are generated as follows.
Y, is generated from a Bernoulli distribution with probability
exp (—8+ L1 — 0334 A, — U)
1+exp(—8+ Ly —03Y A, — )
L; is generated from a normal distribution with mean 0.9L;_; + A;_1 + 0.1U and variance

0.01. A; is generated from a Bernoulli distribution with probability

exp (Ai—1 +4.5L)
1+ exp (A1 +4.5L;)

e Finally, for those with Yy = 0, Y] is generated from a Bernoulli distribution with probability
exp (=8 + Ly — 0330 A, —U)
1+exp (=84 Ly — 03> A, —U)

The second dataset is generated in exactly the same way, except that there is censoring, both
due to death and due to losses to follow-up. Everyone is observed at time 0. Thereafter, loss to
follow-up at time ¢ is generated as a Bernoulli random variable with mean

exp (=6 +0.5L,1 — 0.1 A, — U)
1+exp(—6+0.5L,; — 0.1 A, —U)
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If loss to follow-up has not occurred, then death is simulated at time ¢ as a Bernoulli random
variable with mean

exp (—10+ L1 — 03304 A, — U)
1+exp (=10 + Ly — 0330y A, — U)

If neither death nor loss to follow-up has occurred, then Y;, L, and A; are generated as shown
above.

Here are the data for four subjects from this second dataset (d is the variable denoting death).

o +
| id t 4 vy 1 a cuma a_lag cuma_lag 1_lag |
| -—=-—— |
| 1 0 . . 5.195231 1 1 0] 0 0 |
| 1 1 0 0] 5.594172 1 1 5.195231 |
| 1 2 1 . . . . 0] 1 5.594172 |
|--- |
| 2 0 . . 4.686166 0 0 0 0 0 |
| 2 1 0 0 4.151603 1 1 0 0 4.686166 |
| 2 2 0 0 4.702286 1 2 1 1 4.151603 |
| 2 3 0 0 5.079803 1 3 1 2 4.702286 |
| 2 4 0 0 5.504702 0 3 1 3 5.079803 |
| 2 5 0 0 4.979135 1 4 0 3 5.504702 |
| 2 6 0 0 5.3479 1 5 1 4 4.979135 |
| 2 7 0 0 5.840528 0 5 1 5 5.3479 |
| 2 8 0 0 5.09903 0 5 0 5 5.840528 |
| 2 9 0 0 4.505893 0 5 0 5 5.09903 |
| 2 10 0 0 0 5 4.505893 |
ettt |
| ———=——m |
| 9 0 . 5.392478 0 0 0 0 0 |
| 9 1 0 0 4.849835 1 1 0 0 5.392478 |
| 9 2 0 0 5.218192 1 2 1 1 4.849835 |
| 9 3 0 0 5.610555 0 2 1 2 5.218192 |
| 9 4 0 0 5.12606 0 2 0 2 5.610555 |
| 9 5 0 0 4.474302 1 3 0 2 5.12606 |
| 9 6 0 1 5.07163 1 4 1 3 4.474302 |
|- |
[ —m o e |
| 30 0 . . 5.347866 1 1 0 0 0 |
| 30 1 0 0 5.937762 0 1 1 1 5.347866 |
| 30 2 0 0 5.463366 0 1 0 1 5.937762 |
| 30 3 0 0 4.786379 0 1 0 1 5.463366 |
| 30 4 0 0 4.581161 1 2 0 1 4.786379 |
| 30 5 0 0 5.193888 0 2 1 2 4.581161 |
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| 30 6 0 O 4.856616 1 3 0 2 5.193888 |
| 30 7 0 O 5.479577 O 3 1 3 4.856616 |

Subject 1 died between visits 1 and 2. Subject 2 remained AIDS-free to the end of follow-up.
Subject 9 developed AIDS between visits 5 and 6. Subject 30 was lost to follow-up after visit 7.

4.1.2 The command

The g-computation procedure was applied to the first dataset using the following command:

gformula y a 1 a_lag 1_lag cuma cuma_lag id t, out(y) com(y:logit, ///
l:regress, a:logit) eq(y:1l_lag cuma_lag, 1l:1_lag a_lag, a:1 a_lag) ///
id(id) t(t) var(l) intvars(a) interventions(a=1 if t<10, ///
a=0 if t<=1 \ a=1 if t>1 & t<10, a=0 if t<=3 \ a=1 if t>3 & t<10, ///
a=0 if t<=5 \ a=1 if t>5 & t<10, a=0 if t<=7 \ a=1 if t>7 & t<10, ///
a=0 if t<=9) pooled lag(l_lag a_lag cuma_lag) lagrules(l_lag: 1 1, ///
a_lag: a 1, cuma_lag: cuma 1) msm(stcox cuma_lag) derived(cuma) ///
derrules(cuma:cuma_lag+a) seed(79)

Six static regimes are being compared:

A07 Ala A27 A3a A4a A57 A67 A?) A87 Ag) = 17 1a 17 ]-7 17 17 1a ]-7 17 1

[\

A07A17A27A37A47A5’A67A77A87 9 0707171717171717171

w

A07 A17 A27 A37 A47 A57 A67 A77 A87

9 0707070717171717171

(S8

A07 Al; A27 A37 A4a A57 AG) A77 A87

0,0,0,0,0,0,0,0,1,1

( )
( )
( )
(0,0,0,0,0,0,1,1,1,1)
o) = ( )
( )

-
- Ag)
- Ag)

4. (Ao, Ay, Ag, Az, Ay, As, Ag, Az, Ag, Ag)
- ( Ag)
- )

A07 A17 A27 A37 A47 A57 A67 A77 A87 A9

0,0,0,0,0,0,0,0,0,0

In the second analysis, we use the same dataset, but we compare dynamic regimes. Here is the
code:

gformula y a 1 a_lag 1_lag cuma cuma_lag id t, out(y) com(y:logit, ///
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l:regress, a:logit) eq(y:1l_lag cuma_lag, 1:1_lag a_lag, a:1 a_lag) ///
id(id) t(t) var(l) intvars(a) interventions(a=0 if t<10 & 1>6.9 ///

\ a=1 if t<10 & 1<=6.9, a=0 if t<10 & 1>6.55 \ a=1 if t<10 & 1<=6.55, ///
a=0 if t<10 & 1>6.2 \ a=1 if t<10 & 1<=6.2, a=0 if t<10 & 1>5.3 \ ///

a=1 if t<10 & 1<=5.3, a=0 if t<10 & 1>4.6 \ a=1 if t<10 & 1<=4.6) ///
dynamic pooled lag(l_lag a_lag cuma_lag) lagrules(l_lag: 1 1, ///

a_lag: a 1, cuma_lag: cuma 1) derived(cuma) derrules(cuma:cuma_lag+a) ///
seed(801)

The dynamic regimes being compared are all of the type ‘treat at time ¢ if and only if L; < 2,
with x taking the values 6.9, 6.55, 6.2, 5.3 and 4.6 in the five different regimes being compared.

Finally, we analyse the second dataset (with losses to follow-up and censoring due to death), and
compare the same six static regimes as listed above using the following code:

gformula y a 1 a_lag 1_lag d cuma cuma_lag id t, out(y) com(y:logit, ///
l:regress, a:logit, d:logit) eq(y:1l_lag cuma_lag, 1:1_lag a_lag, ///
a:1 a_lag, d:1_lag cuma_lag) id(id) t(t) var(l) intvars(a) ///
interventions(a=1 if t<10, a=0 if t<=1 \ a=1 if t>1 & t<10, ///
a=0 if t<=3 \ a=1 if t>3 & t<10, a=0 if t<=5 \ a=1 if t>5 & t<10, ///
a=0 if t<=7 \ a=1 if t>7 & t<10, a=0 if t<=9) pooled ///
lag(l_lag a_lag cuma_lag) lagrules(l_lag: 1 1, a_lag: a 1, ///
cuma_lag: cuma 1) msm(stcox cuma_lag) derived(cuma) ///
derrules(cuma:cuma_lag+a) death(d) seed(79)

4.1.3 The output

Here is the (abridged) output from the first analysis (the comparison of static regimes with no
losses to follow-up and no deaths):

G-computation formula estimates for the parameters of the specified marginal
structural model

Specified MSM: stcox cuma_lag

| G-computation

|  estimate of Bootstrap Normal-based
y | Coef. Std. Err. zZ P>|z]| [95% Conf. Intervall]
+



cuma_lag |

-.2170718

.0394803

-5.

5

-.2944518

-.1396919

G-computation formula estimates of the average log incidence rates under each of
the specified interventions and under no intervention (i.e. as simulated under
the observational regime). For comparison, the average log incidence rate in the
observed data is also shown.

Specified interventions:

Intervention
Intervention
Intervention
Intervention
Intervention
Intervention

1:

O WN

a=1
a=0
a=0
a=0
a=0

if t<10
if t<=1
if t<=3
if t<=b
if t<=7
if t<=9

a=1

=1
a=1
a=1

~

if
if
if
if

t>1 & t<10
t>3 & t<10
t>56 & t<10
t>7 & t<10

Obs. regime

simulated

observed

G-computation
estimate of

av. log I

R

Bootstrap

Std. Err.

Normal-based

[95% Conf.

Intervall

-3.922883
-3.451616

-3.143188
-3.045274
-2.909873

.1207616
.0898725
.0882479
.0938219
.0974953

.102833

-4.159572
-3.627763
-3.329212
-3.327076
-3.236361
-3.111422

-3.686195
-3.275469
-2.983286
-2.959301
-2.854187
-2.708324

-3.244703

I
I
I
+
I
I
| -3.156249
I
I
I
+
I
I
|  -3.374291

G-computation formula estimates of the cumulative incidence under each of the
specified interventions and under no intervention (i.e. as simulated under the
observational regime). For comparison, the cumulative incidence in the observed
data is also shown.

G-computation
estimate of

cum. incidence

Bootstrap
Std. Err.

.0211655
.0203068
.0230262
.0269586
.0299038
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Normal-based

[95% Conf.

.1325164
.2231995
.2948695
.2961622
.3213895

Intervall

.2154836
.3028005
.3851305
.4018378
.4386105



Int. 6 | .426 .032928 12.94 0.000 .3614623 .4905377
_____________ e
Obs. regime |

simulated | .318 .0207657 15.31 0.000 2773 3587
observed | .28

All three tables point towards a beneficial effect of treatment: the more treatment a subject
receives the longer s/he survives AIDS-free. This is seen from the negative log hazard ratio asso-
ciated with cumulative treatment (corresponding to a HR of 0.805, 95% CI [0.745,0.870]) from the
results of the MSM, and from the increasing average log incidence rates and cumulative incidences
seen as we move down the other two tables. 43% of the study participants were simulated as hav-
ing developed AIDS during the hypothetical study in which treatment was withheld (intervention
6), whereas only 17% were simulated to have developed AIDS when treatment was prescribed at
all times.

There is a small difference (31% vs. 28% for the cumulative incidences and —3.24 vs. —3.37 for
the average log incidence rates) between the simulated and observed data under the observational
regime. However, these differences are small relative to the standard error, and thus there is no
cause for concern due to this check.

Here is the (abridged) output from the second analysis, comparing dynamic regimes:

G-computation formula estimates of the average log incidence rates under each of
the specified interventions and under no intervention (i.e. as simulated under
the observational regime). For comparison, the average log incidence rate in the
observed data is also shown.

Specified interventions:

Intervention 1: a=0 if t<10 & 1>6.9 \ a=1 if t<10 & 1<=6.9
Intervention 2: a=0 if t<10 & 1>6.55 \ a=1 if t<10 & 1<=6.55
Intervention 3: a=0 if t<10 & 1>6.2 \ a=1 if t<10 & 1<=6.2
Intervention 4: a=0 if t<10 & 1>5.3 \ a=1 if t<10 & 1<=5.3
Intervention 5: a=0 if t<10 & 1>4.6 \ a=1 if t<10 & 1<=4.6
| G-computation
| estimate of Bootstrap Normal-based
y | av. log IR Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ e e e
Int. 1 | -3.799534 .1200517 -31.65 0.000 -4.034831 -3.564237
Int. 2 | -3.603487 .1168704 -30.83 0.000 -3.832549 -3.374426
Int. 3 | -3.587729 .1152303 -31.14  0.000 -3.813577 -3.361882
Int. 4 | -3.412725 .091166 -37.43 0.000 -3.591407 -3.234043



Int. 5 | -3.148477 .0900034 -34.98 0.000  -3.324881 -2.972074
_____________ o
Obs. regime |

simulated | -3.344836 .0861595 -38.82 0.000 -3.513706 -3.175967
observed | -3.374291

G-computation formula estimates of the cumulative incidence under each of the
specified interventions and under no intervention (i.e. as simulated under the
observational regime). For comparison, the cumulative incidence in the observed
data is also shown.

G-computation

|
| estimate of Bootstrap Normal-based
y | cum. incidence Std. Err. zZ P>|z]| [95% Conf. Intervall]
_____________ o
Int. 1 | .194 .0214549 9.04 0.000 .1519491 .2360509
Int. 2 | .23 .0214971 10.7 0.000 .1878664 .2721336
Int. 3 | .237 .0223084 10.62  0.000 .1932762 .2807238
Int. 4 | .276 .0220461 12.52  0.000 .2327903 .3192097
Int. 5 | .346 .0251734 13.74 0.000 .296661 .395339
_____________ e
Obs. regime |
simulated | 295 0212777 13.86  0.000 2532966 3367034
observed | .28

We are not able to estimate the parameters of a marginal structural model from this analysis, as
explained above. However, the results from the average log incidence rates and the cumulative
incidences confirm that treatment is beneficial, with higher AIDS-free survival achieved under the
dynamic regime in which x, the threshold below which ART is administered, is highest. There is
very good agreement between the simulated and observed data under the observational regime,

and the suggestion is that the observational regime is between regime 4 and regime 5 in terms of
AIDS-free survival.

Finally, here is the (abridged) output from the third analysis, with loss to follow-up and censoring

due to death:

G-computation formula estimates for the parameters of the specified marginal
structural model

Specified MSM: stcox cuma_lag
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G-computation
estimate of

Coef.

Bootstrap
Std. Err.

-4.03

Normal-based

P>zl [95% Conf.

0.000 -.2446126

Intervall

-.0845764

G-computation formula estimates of the average log incidence rates under each of
the specified interventions and under no intervention (i.e. as simulated under
the observational regime). For comparison, the average log incidence rate in the
observed data is also shown.

Specified interventions:

Intervention
Intervention
Intervention
Intervention
Intervention
Intervention

1:

D O W N

a=1
a=0
a=0
a=0
a=0
a=0

if t<10
if t<=1
if t<=3
if t<=b
if t<=7
if t<=9

=1

a=1

~ s

a=1

if
if
if
if

G-computation
estimate of

|
|
y | av. log IR

_____________ +

Int. 1 | -3.611751

Int. 2 | -3.317294

Int. 3 | -3.161453

Int. 4 | -2.967694

Int. 5 | -2.976457

Int. 6 | -2.846718
_____________ +
Obs. regime |

simulated | -3.218749

observed | -3.467099

Bootstrap
Std. Err.

.1323961
.0903419
.0861944
.0935757
.1048993
.1063066

Normal-based

t>1 & t<10

t>3 & t<10

t>5 & t<10

t>7 & t<10
P>|z] [95% Conf.
0.000 -3.871243
0.000 -3.494361
0.000 -3.330391
0.000 -3.151099
0.000 -3.182056
0.000 -3.055075
0.000 -3.390346

Intervall

-3.352259
-3.140228
-2.992615
-2.784289
-2.770858
-2.638361

G-computation formula estimates of the cumulative incidence under each of the

specified interventions and under no intervention (i.e. as simulated under the

observational regime). For comparison, the cumulative incidence in the observed

data is also shown.

G-computation
estimate of

|
|

y | cum. incidence
+

Bootstrap
Std. Err.

Normal-based

P>|z]| [95% Conf.

Intervall



Int. 1 (o) | .227

(@ | .023

Int. 2 (o) | .292

@ | .027

Int. 3 (o) | .329

@ | .049

Int. 4 (o) | .387

@ | .067

Int. 5 (o) | .385

@ | .081

Int. 6 (o) | .424

@ | .086
_____________ +
Obs. regime |

simulated (o) | .316

@i .051

observed (o) | .252

(@ | .042

) | .194

.0263101
.0100621
.0212259
.01005635
.0220347
.0116972
.0255554
.0145786
.0303132
.0164226

.0318
.0178607

.0217485
.010469

63 0.000
.29  0.022
76  0.000
69 0.007
93 0.000
19  0.000
14 0.000
6 0.000
7 0.000
93 0.000
33 0.000
0.

.1754331
.0032787

.250398
.0072955
.28568128
.0260739
.3369122
.0384264
.3255871
.0488123
.3616732
.0609937

.2733737
.0304811

. 2785669
.0427213

.333602

.0467045
.3721872
.0719261
.4370878
.0955736
.4444129
.1131877
.4863268
.1210063

.3586263
.0715189

Key: (o) = outcome, (d) = death,

The conclusions from this analysis are similar, but interpretation is now trickier, due to the fact
that death is seen as a competing event. It is also more difficult to compare the simulated and
observed data under the observational regime, since the former does not include any losses to

follow-up, whereas the latter does.

4.1.4 Comparison with standard analysis

We show below the standard Cox regression analysis for AIDS-free survival given the cumulative
treatment, with and without adjusting for the time-varying confounder log(CD4). These are the

(1) = lost to

53  0.000
87 0.000
follow-up

results for the first simulated dataset (without censoring due to death/loss to follow-up).

. stcox cuma_lag

[95% Conf. Intervall
_____________ +________________________________________________________________

1.088988 1.443407

_t | Haz. Ratio

cuma_lag |  1.253736

. stcox cuma_lag 1

Std. Err.

.0901163
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_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ +_—-—_—_—_-—_—_—_-—_—_—__-—_—_—_-—_—_—_-—_—_—__-______-_—__—_-—_—

cuma_lag | 1.149773 .1142843 1.40 0.160 .946248 1.397073
1| 1.191835 .1339614 1.56 0.118 .9561846 1.485562

Both analyses suggest a harmful effect of treatment (although the evidence for this effect is very
weak in the adjusted analysis). We know from the way that we simulated the data that treatment
is beneficial, and this was confirmed by the g-computation analyses. The unadjusted analysis
above is biased since it fails to take into account that the treated subjects at any given visit
are less healthy than the untreated subjects (since the decision of whether to treat depends on
CD4 count at that visit). However, adjusting for log(CD4), also wrongly suggests that treatment
is harmful, since conditioning on future CD4 count masks much of the beneficial effect of the
treatment.

A similar picture (in fact, more extreme) is seen when performing the standard analyses on the
second dataset (with censoring due to loss to follow-up and death).

. stcox cuma_lag

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ +________________________________________________________________

cuma_lag | 1.396623 .1046369 4.46 0.000 1.205885 1.61753

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ +________________________________________________________________
cuma_lag | 1.473824 .1464632 3.90 0.000 1.212987 1.79075

1| .9069914 .1055528 -0.84 0.402 . 7220096 1.139366
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4.2 Example Il: mediation

4.2.1 The data

A dataset comprising 10,000 subjects was simulated according to the description given in section
1.2.5 as follows:

e Socio-economic position (SEP) is generated as 1 (low) for 30% of subjects, 2 (middle) for
50% of subjects, and 3 (high) for the remaining 20%.

e Alcohol intake (A) in units per day is generated as a zero-inflated skewed distribution. A
Bernoulli random variable is generated with probability 0.8 (SEP = 1)+0.7] (SEP = 2)+
0.9/ (SEP = 3). If this binary variable is 0, then A = 0. Otherwise, log(A) is taken
from a normal distribution with mean I (SEP =1) + 0.7/ (SEP =2) + 1.2 (SEP = 3)
and variance 0.25.

e Body mass index log (BM]I) is generated from a normal distribution with mean 23 +
I(SEP =1)+ 0.4A and variance 4.

e The logarithm of GGT (measured in grams per litre) is generated from a normal distribution
with mean 2.5 4+ 0.02BM1I + 0.1A and variance 1.

e Finally, systolic blood pressure (SBP), measured in mmHg, is generated from a normal
distribution with mean 80+ 0.5BM I +6A+ 7log (GGT) —log (GGT) A—5(SEP — 3) and
variance 100.

Independently and completely at random, 5% of subjects have the alcohol variable missing, 5%
have the BMI variable missing and 5% have the GGT variable missing. As a result, 8,620 subjects
have complete data, 442 have GGT only missing, 424 have BMI only missing, and 427 have alcohol
only missing. A further 26 subjects are missing both alcohol and BMI (but have GGT observed),
26 are missing both alcohol and GGT (but have BMI observed), and 34 are missing both BMI and
GGT (but have alcohol observed). Finally, 1 subject has a missing value for all three variables.

The data for the first three subjects in the dataset (all with SEP = 1) are shown below.
log_ggt~c is an abbreviation of log_ggt_alc, the product of log_ggt and alc, alc_sbp is
the product of alc and sbp, and log_ggt~p is an abbreviation of log_ggt_sbp, the product of
log_ggt and sbp.

| 1 1.694112  25.23217 3.055158 128.4518 5.17578  217.6117 392.4406 |
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| 1 4.111055 . . 136.6855 . 561.9217 .
| 1 .9138322 22.54041 2.998993 126.3068 2.740576 115.4232 378.7932 |

4.2.2 The command

The g-computation procedure was applied using the following command:

gformula sep alc bmi log_ggt sbp log_ggt_alc alc_sbp log_ggt_sbp, ///
mediation out(sbp) eq(bmi:i.sep alc, log_ggt:bmi alc, sbp:bmi alc ///

log_ggt log_ggt_alc i.sep) com(bmi:regress, log_ggt:regress, sbp:regress) ///
ex(alc) mediator(log_ggt) control(log_ggt:3) baseline(alc:0) ///
post_confs(bmi) base_confs(sep) derived(log_ggt_alc alc_sbp log_ggt_sbp) ///
derrules(log_ggt_alc:log_ggt*alc, alc_sbp:alc*sbp, log_ggt_sbp:log_ggt*sbp) ///
impute(alc bmi log_ggt) imp_cmd(alc:regress, bmi:regress, log_ggt:regress) ///
imp_eq(alc:i.sep bmi log_ggt sbp log_ggt_sbp, bmi:i.sep alc log_ggt sbp ///
log_ggt_alc, log_ggt:i.sep alc bmi sbp alc_sbp) seed(79)

4.2.3 The output

Here is the (abridged) output:

G-computation formula estimates of the total causal effect, the natural
direct/indirect effects, and the controlled direct effect

| G-computation Bootstrap Normal-based
| estimate Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ o
TCE I 7.516356 .2206128 34.07 0.000 7.083963 7.948749
NDE | 6.389072 .2204688 28.98 0.000 5.956961 6.821183
NIE I 1.127283 .1681255 6.71 0.000 .T7977635 1.456803
CDE | 6.301131 .2068248 30.47  0.000 5.895762 6.7065

The conclusion here is that alcohol intake has a causal effect on systolic blood pressure. If everyone
were to stop drinking, the average SBP would fall by 7.51 units (95% CI [7.08,7.95]). Only a small
part of this reduction (1.13 units) is mediated through GGT. The majority of the effect is direct,
1.e. it acts through BMI and other pathways.
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4.2.4 Comparison with standard analysis

Here are the standard analyses we might have used on these data, as described in the Introduction.
We use multiple imputation using chained equations (with the same imputation models as above)
to deal with the missing data in a comparable way. 5 proper imputations for each missing value
are drawn (using ice in Stata) and the results are analysed and combined using the mim command.
Such multiple proper imputations are now required since we use analytical standard errors, rather
than bootstrapping.

. Xi:mim: regress sbp i.sep alc

i.sep _Isep_1-3 (naturally coded; _Isep_1 omitted)
Multiple-imputation estimates (regress) Imputations = 5
Linear regression Minimum obs = 10000
Minimum dof = 606.6
sbp | Coef. Std. Err. t P>t [95% Conf. Int.] FMI
_____________ +________________________________________________________________
_Isep_2 | -6.20147 .269765 -22.99 0.000 -6.73084 -5.6721 0.015
_Isep_3 | -11.1104 .336718 -33.00 0.000 -11.7712 -10.4497 0.022
alc | 3.27134 .066665 49.07  0.000 3.14041 3.40226 0.081
_cons | 123.994 .262807 471.81  0.000 123.478 124.51  0.023

. Xi:mim: regress sbp i.sep alc log_ggt bmi

i.sep _Isep_1-3 (naturally coded; _Isep_1 omitted)
Multiple-imputation estimates (regress) Imputations = 5
Linear regression Minimum obs = 10000
Minimum dof =  177.7
sbp | Coef. Std. Err t P>|t]| [95% Conf. Int.] FMI
_____________ +________________________________________________________________
_Isep_2 | -5.46916 .2561701 -21.73 0.000 -5.96308 -4.97523  0.043
_Isep_3 | -10.3605 .311652 -33.24  0.000 -10.972 -9.74891  0.051
alc | 2.53784 .067243 37.74 0.000 2.40514 2.67053 0.158
log_ggt | 4.82774 .103892  46.47  0.000 4.62386 5.03161 0.044
bmi | .435676 .051427 8.47 0.000 .334759 .536593 0.023
_cons | 99.0651 1.28187 77.28 0.000 96.5497 101.581 0.015
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These estimates are not directly comparable with those obtained using the g-computation proce-
dure, since the coefficient of alcohol in the analyses above are for a unit change in units consumed
per day. Since the average number of units consumed per day in the simulated dataset is 2.22, the
equivalent total effect estimated by standard regression would be approximately 3.27 x 2.2 = 7.25,
that is similar to the 7.51 obtained above, as we would expect. However, the coefficient of alcohol in
the second regression analysis, if interpreted naively, would be taken to represent the direct effect,
not mediated by GGT, with a derived indirect effect of approximately 7.25 — (2.54 x 2.22) = 1.62
appearing to be larger from this analysis than from the g-computation analysis. In other words,
the standard analysis would lead us to conclude that more of the effect is mediated by GGT than
is truly the case. This is to be expected, since some of the direct effect of alcohol on SBP (i.e.
that which is not mediated by GGT) acts through BMI, and this part of the effect is not correctly
apportioned in the standard analysis above, leading to the underestimation of the direct effect.

4.3 A warning on computation time

The gformula command is computationally very intensive, and computation time increases ex-
ponentially with increasing number of time-points. In the time-varying confounding example
above, with T" = 9, fitting the parametric models, simulating the data under each intervention
and then analysing each simulated datset, takes around 30 seconds on a standard PC. Thus, if
1,000 bootstrap samples are required, the whole analysis takes over 8 hours. However, boot-
strapping is ideally suited to task-sharing, and the command runs in a fraction of the time on a
high-performance computer cluster.

5 Final remarks

In problems concerning time-varying confounding and mediation, we have reiterated that standard
regression analyses are invalid when confounders are affected by the exposure. The g-computation
procedure is valid under a weaker set of assumptions that allow for confounders to be affected
by past exposure. The structural assumption needed for this procedure to be valid is that a
sufficient set of confounders have been measured. In addition, the procedure requires that correct
parametric models be postulated for the post-baseline variables in the observational data.

Alternative semiparametric models and estimation methods have been proposed (Robins et al.,
1992, 2000). These are g-estimation of structural nested models and inverse probability weighted
estimation of marginal structural models. These alternative methods rely on fewer parametric
modelling assumptions and are therefore less prone to model misspecification bias. In addition,
these semiparametric approaches do not require Monte Carlo simulation and are thus computa-
tionally less intensive. Their implementation in Stata has been demonstrated (Sterne and Tilling,
2002; Fewell et al., 2004).
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However, the g-computation procedure has some clear advantages over these methods: it can more
easily deal with complex multivariate (or joint) interventions, and can compare the hypothetical
interventions with the observational regime, which can be important in informing policy (Taubman
et al., 2009). These advantages are in addition to that of increased statistical efficiency which is
gained at the price of stronger modelling assumptions (Daniel et al., 2010).

We believe that the g-computation procedure is a valuable tool in many settings. Although
first proposed by Robins in 1986, it has not been very widely used, partly as a result of its
apparent complexity and the lack of software routines, until the recent GFORMULA macro in
SAS (Taubman et al., 2009). We hope that this Stata routine will help to make this method more
accessible to a wider audience of applied researchers.
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