{smcl} {* *! version 1.0.0 19feb2025}{...} {title:Title} {p2colset 6 19 25 2}{...} {p2col:{bf:goprobit2} {hline 2}}Generalized ordered probit regression{p_end} {p2colreset}{...} {title:Syntax} {p 8 16 2} {cmd:goprobit2} {depvar} [{indepvars}] {ifin} [{it:{help weight}}] {bind:[{cmd:,} {it:options}]} {synoptset 28 tabbed}{...} {synopthdr} {synoptline} {syntab :Model} {synopt :{opth dist:ribution(goprobit2##distname:distname)}}specify distribution for link function; default is {opt dist:ribution(normal)}{p_end} {syntab :SE/Robust} {synopt :{opth vce(vcetype)}}{it:vcetype} may be {opt oim}, {opt opg}, {opt r:obust}, {opt cl:uster} {it:clustvar}, {opt boot:strap}, or {opt jack:knife}{p_end} {syntab :Maximization} {synopt :{it:{help goprobit2##maximize_options:maximize_options}}}control the maximization process; seldom used{p_end} {synoptline} {p2colreset}{...} {p 4 6 2} {opt fweight}s, {opt iweight}s, and {opt pweight}s are allowed; see {help weight}.{p_end} {marker distname}{...} {synoptset 32 tabbed}{...} {synopthdr:distname} {synoptline} {syntab :SGT family} {synopt :{opt normal}}normal distribution; the default{p_end} {synopt :{opt snormal}}skewed normal distribution{p_end} {synopt :{opt laplace}}Laplace distribution{p_end} {synopt :{opt slaplace}}skewed Laplace distribution{p_end} {synopt :{opt ged}}generalized error distribution{p_end} {synopt :{opt sged}}skewed generalized error distribution{p_end} {synopt :{opt t}}t distribution{p_end} {synopt :{opt st}}skewed t distribution{p_end} {synopt :{opt gt}}generalized t distribution{p_end} {synopt :{opt sgt}}skewed generalized t distribution{p_end} {synoptline} {p2colreset}{...} {title:Description} {pstd} {opt goprobit2} is a community-contributed module which fits ordered response regression models of ordinal variable {depvar} on the independent variables {indepvars}. It extends {opt oprobit} by offering a variety of link functions based on the SGT family of statistical distributions. {title:Options} {dlgtab:Model} {phang} {opth dist:ribution(goprobit2##distname:distname)} specifies the distribution of the link function. This means the CDF of {it:distname} is the link function; with {opt dist(normal)}, the default, the Normal CDF is used, producing the same results as {bf:oprobit}. {dlgtab:SE/Robust} INCLUDE help vce_asymptall {marker maximize_options}{...} {dlgtab:Maximization} {phang} {it:maximize_options}: {opt dif:ficult}, {opth tech:nique(maximize##algorithm_spec:algorithm_spec)}, {opt iter:ate(#)}, [{cmd:no}]{opt log}, {opt tr:ace}, {opt grad:ient}, {opt showstep}, {opt hess:ian}, {opt showtol:erance}, {opt tol:erance(#)}, {opt ltol:erance(#)}, {opt nrtol:erance(#)}, and {opt nonrtol:erance}; see {helpb maximize:[R] Maximize}. These options are seldom used. {title:Examples} {hline} {pstd}Setup{p_end} {phang2}{cmd:. webuse fullauto}{p_end} {pstd}Ordered response regression with Skewed Generalized t CDF link function{p_end} {phang2}{cmd:. oprobit rep77 foreign length mpg, dist(sgt)}{p_end} {hline} {title:Stored results} {pstd} {cmd:goprobit2} stores the following in {cmd:e()}: {synoptset 23 tabbed}{...} {p2col 5 23 26 2: Scalars}{p_end} {synopt:{cmd:e(N)}}number of observations{p_end} {synopt:{cmd:e(k_cat)}}number of categories{p_end} {synopt:{cmd:e(k)}}number of parameters{p_end} {synopt:{cmd:e(k_aux)}}number of auxiliary parameters{p_end} {synopt:{cmd:e(k_eq)}}number of equations in {cmd:e(b)}{p_end} {synopt:{cmd:e(k_eq_model)}}number of equations in overall model test{p_end} {synopt:{cmd:e(k_dv)}}number of dependent variables{p_end} {synopt:{cmd:e(df_m)}}model degrees of freedom{p_end} {synopt:{cmd:e(ll)}}log likelihood{p_end} {synopt:{cmd:e(N_clust)}}number of clusters{p_end} {synopt:{cmd:e(chi2)}}chi-squared{p_end} {synopt:{cmd:e(p)}}{it:p}-value for model test{p_end} {synopt:{cmd:e(rank)}}rank of {cmd:e(V)}{p_end} {synopt:{cmd:e(ic)}}number of iterations{p_end} {synopt:{cmd:e(rc)}}return code{p_end} {synopt:{cmd:e(converged)}}{cmd:1} if converged, {cmd:0} otherwise{p_end} {p2col 5 23 26 2: Macros}{p_end} {synopt:{cmd:e(cmd)}}{cmd:goprobit2}{p_end} {synopt:{cmd:e(cmdline)}}command as typed{p_end} {synopt:{cmd:e(distribution)}}distribution entered in {opt distribution(distname)}{p_end} {synopt:{cmd:e(depvar)}}name of dependent variable{p_end} {synopt:{cmd:e(wtype)}}weight type{p_end} {synopt:{cmd:e(wexp)}}weight expression{p_end} {synopt:{cmd:e(title)}}title in estimation output{p_end} {synopt:{cmd:e(chi2type)}}{cmd:Wald} or {cmd:LR}; type of model chi-squared test{p_end} {synopt:{cmd:e(vce)}}{it:vcetype} specified in {cmd:vce()}{p_end} {synopt:{cmd:e(vcetype)}}title used to label Std. err.{p_end} {synopt:{cmd:e(opt)}}type of optimization{p_end} {synopt:{cmd:e(which)}}{cmd:max} or {cmd:min}; whether optimizer is to perform maximization or minimization{p_end} {synopt:{cmd:e(ml_method)}}type of {cmd:ml} method{p_end} {synopt:{cmd:e(user)}}name of likelihood-evaluator program{p_end} {synopt:{cmd:e(technique)}}maximization technique{p_end} {synopt:{cmd:e(properties)}}{cmd:b V}{p_end} {synopt:{cmd:e(predict)}}program used to implement {cmd:predict}{p_end} {p2col 5 23 26 2: Matrices}{p_end} {synopt:{cmd:e(b)}}coefficient vector{p_end} {synopt:{cmd:e(Cns)}}constraints matrix{p_end} {synopt:{cmd:e(ilog)}}iteration log (up to 20 iterations){p_end} {synopt:{cmd:e(gradient)}}gradient vector{p_end} {synopt:{cmd:e(cat)}}category values{p_end} {synopt:{cmd:e(V)}}variance-covariance matrix of the estimators{p_end} {synopt:{cmd:e(V_modelbased)}}model-based variance{p_end} {p2col 5 23 26 2: Functions}{p_end} {synopt:{cmd:e(sample)}}marks estimation sample{p_end} {p2colreset}{...} {title:Future Features} {pstd} This vesion of {bf:goprobit2} is fully functional, although not yet optimized in terms of computational performance. A future version will prioritize such optimization to make this program tractable with big data. If you would like to help, please contact the author. {title:Authors} {pstd} Jacob Triplett authored this program with help from authors of a paper describing this estimator (see Johnston, McDonald & Quist (2019), referenced below). Please contact Jacob with questions or comments. {phang}Jacob Triplett{p_end} {phang}The University of North Carolina{p_end} {phang}Kenan-Flagler Business School{p_end} {phang}jacob_triplett@kenan-flagler.unc.edu{p_end} {title:References} {phang} Johnston, C., McDonald, J., & Quist, K. (2019). A generalized ordered Probit model. Communications in Statistics - Theory and Methods, 49(7), 1712–1729. https://doi.org/10.1080/03610926.2019.1565780 {phang}Related software packages include:{p_end} {phang2}{bf:{stata help oprobit: oprobit}} {space 1}(Stata){p_end} {phang2}{bf:{stata help ologit: ologit}} {space 2}(Stata){p_end} {phang2}{bf:{stata ssc describe goprobit: goprobit}} (Community-contributed){p_end} {phang2}{bf:{stata ssc describe gologit: gologit}} {space 1}(Community-contributed){p_end} {phang2}{bf:{stata ssc describe gologit2: gologit2}} (Community-contributed){p_end}