
The Stata Journal (yyyy) vv, Number ii, pp. 1–27

Calibrating survey data using iterative

proportional fitting (raking)

Stanislav Kolenikov
Abt SRBI

kolenikovs@srbi.com

Abstract. This article introduces package ipfraking implementing weight cali-
bration procedures known as iterative proportional fitting, or raking, of complex
survey weights. The package is capable of handling a large number of control
variables and trimming the weights in various ways. It also provides diagnostic
tools for the weights it creates. Examples of its usage are given, and the suggested
workflow is discussed.

Keywords: st0001, survey, calibration, weights, raking

1 Introduction and background

Large scale social, behavioral and health data are often collected via complex survey
designs that may involve some or all of stratification, multiple stages of selection and
unequal probabilities of selection (Korn and Graubard 1995, 1999). In an ideal setting,
varying probabilities of selection are accounted for by using the Horvitz-Thompson esti-
mator of the totals (Horvitz and Thompson 1952; Thompson 1997), and the remaining
sampling fluctuations can be further ironed out by post-stratification (Holt and Smith
1979). However, on top of the planned differences in probabilities of obtaining a re-
sponse from a sampled unit, non-response is a practical problem that has been growing
more acute over the recent years (Groves et al. 2001; Pew Research Center 2012). The
analysis weights that are provided along with the public use microdata by data collect-
ing agencies are designed to account for unequal probabilities of selection, non-response,
and other factors affecting imbalance between the population and the sample, thus mak-
ing the analyses conducted on such micordata generalizable to the target population.
In this paper, I shall discuss the specific issue in the process of creating survey weights:
calibrating survey weights to known control totals to ensure that the resulting weighted
data are representative of the population of interest.

1.1 Population totals

For a given finite population U of units indexed i = 1, . . . , N , the interests of survey
statisticians often lie in estimating the population total of a variable Y

T [Y] =
∑

i∈U

Yi (1)

c© yyyy StataCorp LP st0001

2 Raking survey data

(As is customary in sampling texts, the population quantities will be denoted with
capital letters, and the sample quantities, with lowercase letters. The finite population is
denoted as U , and the sample drawn from it, as S. The indices of units in the population
are i ∈ U , and those of units in the sample, j ∈ S.) A lot of other analytical problems can
be cast in terms of estimating the totals of the existing or auxiliary variables, and then
expressing the quantities of substantive interest (means, ratios, regression coefficients)
as functions of these totals (Skinner 1989). For instance, the population mean, such as
mean income or the average number of hours per week spent watching TV, is the ratio
of the totals

Ȳ =
T [Y]

T [1]

where the denominator is a somewhat unusual total of a variable identically equal to
1, i.e., the estimator of the population size (if the latter is unknown). The mean for a
domain D (mean income of females; TV hours of teenagers) is also a ratio of totals

ȲD =
T [Y Z]

T [Z]

where Zi = 1 when the unit is in the domain, and 0 otherwise. Estimation of totals is
thus the cornerstone building block of survey statistics.

1.2 Probability weights

Suppose now that a sample S of n units indexed by j = 1, . . . , n is taken from U . If
the probability to select the i-th unit is known to be πi, then the probability weights, or
design weights, are given by the inverse probability of selection:

w1i = π−1

i (2)

With these weights, an unbiased (design-based, non-parametric) estimator of the total
(1) is (Horvitz and Thompson 1952)

t1[y] =
∑

j∈S

yj
πj

≡
∑

j∈S

w1jyj , (3)

The subindex 1 indicates that the weights w1i were used in obtaining this estimator.
Probability weights protect the end user from potentially informative sampling designs,
in which the probabilities of selection are correlated with outcomes, and the design-based
methods generally ensure that inference can be generalized to the finite population even
when the statistical models used by analysts and researchers are not specified correctly
(Pfeffermann 1993; Binder and Roberts 2003).

1.3 Calibrated weights

Often, survey statisticians have auxiliary information on the units in the frame. Some
of that information can be used at the sampling stage to inform stratification and

S. Kolenikov 3

clustering. When creating areal probability samples of human populations, the survey
designers have geographic information on the sampled units: from strata that can be
defined as regions, states or provinces, and the primary sampling units that can be
defined as districts, counties or census tracts; down to the address of the sampled
household. When creating establishment survey samples, the frame information that
survey statisticians may have at their disposal can include the industry classification
code(s) and size of establishment (number of employees or the total revenue). When
drawing samples from lists of persons, such as members of a professional organization or
patients of a hospital, the frame information can include age and gender of an individual.
If such additional information is available, it is usually beneficial to include it at the
sampling stage to create more efficient designs. Unequal probabilities of selection are
then controlled with probability weights, implemented as [pw=exp] in Stata (and can
be permanently affixed to the data set with svyset command).

In many situations, however, usable information is not available beforehand, and may
only appear in the collected data. In the above example with areal samples, the census
totals of the age and gender distribution of the population may exist, but age and gender
of the sampled units is unknown until the survey measurement is taken on them. It is
still possible to capitalize on this additional data by adjusting the weights in such a way
that the reweighted data conforms to these known figures. The procedures to perform
these reweighting steps are generally known as weight calibration (Deville and Särndal
1992; Deville et al. 1993; Kott 2006, 2009; Särndal 2007).

Suppose there are several (categorical) variables, referred to as control variables,
that are available for both the population and the sample (age groups, race, gender,
educational attainment, etc.). The post-stratification adjustment consists of breaking
down the population into post-stratification cells defined by specific levels of the control
variables (i.e., a cell in a multivariate contingency table), and adjusting the weights
within each cell so that the weights sum to the known total. Thus for the unit j in the
(population-level) post-stratification cells Ck, the post-stratified weight is

w2j = w1j

∑

i∈U
1I[i ∈ Ck]

∑

l∈S
w1l1I[l ∈ Ck]

(4)

where 1I[·] is an indicator function taking the value of one when its argument is true, and
zero otherwise. While the probability weight w1i is fixed, the post-stratified weight w2j

is random, as it depends on the random sample sizes of Ck∩S. The existing Stata svyset
options, poststrata() and postweight() (see [SVY] poststratification), handle this
situation and, in particular, provide appropriate standard errors. The total estimator
based on w2j will be naturally denoted as t2[y], and the expression for it coincides with
(3) by replacing the probability weights w1j with post-stratified weights w2j .

In more complex situations, using say five calibration variables, such as gender, age
groups, race/ethnicity, education, and urbanicity, leads to five-way contingency tables
that will likely have zero or very small count cells. Battaglia et al. (2009) suggest
collapsing the categories that contain less than 5% of either the sample cases or the
population units. For a sample of size n = 1, 000 typical for social science studies or

4 Raking survey data

public opinion polls, this recommendation translates to cells of size
∑

j∈S
1I[i ∈ Ck] ≤

50. Instead of adjusting every cell of a multi-way table, weight calibration can target
adjusting only the margins, or low level interactions, via an iterative optimization aimed
at satisfying the control totals for the control variables x = (x1, . . . , xp):

∑

j∈S

w3jxj = T [Xj] (5)

where the right hand side is assumed to be known from a census or a higher quality
survey. Deville and Särndal (1992) framed the problem of finding a suitable set of
weights as that of constrained optimization with the control equations (5) serving as
constraints, and optimization targeted at making the discrepancy between the design
weights w1j and calibrated weights w3j as close as possible, in a suitable sense. Again,
the appropriate total estimator can be denoted as t3[y].

1.4 Raking algorithm

An early algorithm to perform weight calibration is often attributed to Deming and Stephan
(1940) who used it to adjust the counts in a contingency table to satisfy the known
margins in log-linear analysis. In applications to the survey weights, the algorithm is
described below. At a basic level, this algorithm consists of an outer cycle that checks
convergence criteria, and an inner cycle that iterates over the control variables. The
multi-index notation of the intermediate weights, wk,v

j , indicates the weight of unit j
computed in the outer cycle k after post-stratifying with respect the v-th variable. Thus
k runs from 1 to a predefined maximum number of iterations K, and v runs from zero
(indicating the input weight to a given iteration) through 1 (indicating adjustment with
respect to the first control variable) to p (indicating adjustment with respect to the last
control variable).

Algorithm 1: basic raking

1. Initialize the iteration counter k ← 0 and the weights as w0,p
j ← w1j . (That is,

use the base weights to initialize the raked weight; the superscript 0, p is only used
for consistency with notation used in the next step.)

2. Increment the iteration counter k ← k + 1, update the weights wk,0
j ← wk−1,p

j .
(That is, use the end result of the previous outer cycle iteration to initialize the
weights for the current outer cycle iteration.)

3. Inner cycle: go over the control variables v = 1, . . . , p and update the weights

wk,v
j =











wk,v−1

j

T [Xv]
∑

l∈S
wk,v−1

l xvl

, xvj 6= 0

wk,v−1

j , xvj = 0

(That is, post-stratify with respect to the v-th control variable.)

S. Kolenikov 5

4. If discrepancies between the weighted totals
∑

j∈S
wk,p

j xv and the target totals
T [Xv] are within prespecified tolerances for all v = 1, . . . , p, declare convergence
and exit to step 7.

5. If the number of iterations k reaches a prespecified limitK, declare non-convergence,
issue corresponding warnings, and exit to step 7.

6. Otherwise, return to step 2. (That is, the achieved accuracy of the control targets
insufficient, and more work is needed.)

7. Return the weights wk,p
j at the final stage as the calibrated weights.

In practice, control totals are usually expressed as population counts or proportions
in categories of discrete variables (such as gender, race/ethnicity or education level
groups). The control variables are then 0/1 indicators representing the particular groups
or their low-level interactions. Effectively, the algorithm implements post-stratification
adjustment (4) treating each control variable as the post-stratification variable, and
cycling over these variables within each iteration. In terms of multivariate optimization,
this algorithm proceeds by optimizing over a each margin in sequence. While it is very
simple and very explicit in terms of the algebra involved, it is also much slower compared
to Newton-Raphson-based methods.

Deming and Stephan (1940) stated that the algorithm minimizes the quadratic dis-
crepancy

∑

j∈S

(w1j − w3j)
2

w1j

under the calibration constraints (5). However, the quadratic problem can be solved
explicitly to produce linear calibrated weights which lead to estimates identical to the
generalized regression (GREG) estimates (Deville and Särndal 1992, Case 1). The rak-
ing algorithm instead solves the optimization problem with objective function that can
be expressed as (Deville and Särndal 1992, Case 2)

∑

j∈S

w3j ln(w3j/w1j)− w3j + w1j (6)

1.5 Variance estimation

Besides the primary challenge of finding a good set of weights (which is generally solved
through iterative optimization), an additional methodological challenge with calibrated
estimators is variance estimation. If variables x1, . . . , xp were used for weight calibration,
then the asymptotic variance of the calibrated estimator of the survey variable y is

V
{

tm[y]
}

=
∑

k,l∈U

(πkl − πkπl)
Yk −X′

kB

πk

Yl −X′
lB

πl

,m = 2, 3, (7)

6 Raking survey data

where B is the vector of coefficients from the census regression,

B =
(

∑

i∈U

XiX
′
i)

−1
∑

i∈U

XiYi, (8)

This variance can be estimated with

v
{

tm[y]
}

=
∑

k,l∈S

πkl − πkπl

πkl

yk − x′
kb

πk

yl − x′
lb

πl

,m = 2, 3, (9)

where the regression coefficients now solve the sample regression problem:

b =
(

∑

j∈S

wjxjx
′
j)

−1
∑

j∈S

wjxjyj (10)

In regression (10), either the probability weights w1j or the calibrated weights w2j , w3j

can be used. The estimator (9) is difficult to use in practice, especially with the publicly
released versions of the data. First, this estimator utilizes the original design weights
w1i = π−1

i . Hence, the publicly released data set must include both the calibrated
weights and the design weights, which may create confusion. Second, the end user of
the data must be given the set of the control variables, which may not be possible if
confidential variables were used in calibration. Third, this estimator is not necessar-
ily implemented in survey packages (a third party package calibest implements (9)
in Stata). Finally, the estimator requires second order selection probabilities, which
are rarely computed in practice. The latter is a very general issue with the Horvitz-
Thompson estimator (3), as well. Its variance is

V
{

t1[y]
}

=
∑

k,l∈U

(πkl − πkπl)
Yk

πk

Yl

πl

(11)

While the second order selection probabilities are nominally required for this estimator,
in practice simplifications are taken, e.g., to approximate the actual design as the strat-
ified two-stage sample in which the primary sampling units are drawn with replacement
(as is done, for example, in nhanes2 [SVY] manual example dataset). Due to these
complications, variance estimation with calibrated data usually proceeds along the lines
of replicate variance estimation methods (Shao 1996; Kolenikov 2010).

When the control totals are obtained from another survey, the sampling variability
of the latter should be taken into account (Dever and Valliant 2010). For instance, to
calibrate population surveys conducted in the USA, the American Community Survey
(U.S. Census Bureau 2009) is often used for demographic variables, and the National
Health Interview Survey (Botman et al. 2000) for phone usage. These very large scale
surveys have sample sizes in the hundreds of thousands. For typical surveys with sample
sizes in hundreds to low thousands, the impact on the standard errors is in the second
or the third decimal point, and is usually ignored.

S. Kolenikov 7

1.6 Pros and cons of weight calibration

By comparing expressions (7) and (11), we can identify the source of efficiency gains
associated with weight calibration. If the survey variable y is associated with calibration
variables x1, . . . , xp, in the sense of having a non-trivial R2 in the census regression (8),
then the calibrated estimator is (asymptotically) more efficient than the direct Horvitz-
Thompson estimator by a factor of 1−R2.

Weight calibration can also reduce non-response and coverage errors (Chang and Kott
2008; Kott 2006; Lundström and Särndal 1999), which feature prominently as some of
the most important issues that survey community currently faces (Groves 2006). How-
ever, for weight calibration to be successful in reducing the non-response bias, the control
variables need to correlated with the response propensity and/or the outcome variables
(Bethlehem 2002; Judkins et al. 2007).

Weight calibration comes with some costs, too. From an analytic perspective, ma-
nipulating the weights almost inevitably leads to increase in their variation, which in
turn leads to increases in the design effects. For the unequal probability sample without
stratification or clustering, Korn and Graubard (1999) show that the design effect is

DEFFw =

∑

j∈S
w2

j
(

∑

j∈S
wj

)2
= 1 + CV2

w (12)

where CVw is the coefficient of variation of the weights (a simple standard deviation
divided by the simple mean). In practice, I have encountered increases of this coefficient
of variation between 20% and 100% on the relative scale, or between 0.2 and 1.5 on
the absolute scale, for design effects varying between 1 and 2 in the typical public
opinion surveys. From a practical perspective, weight calibration requires additional
time expenses by statisticians preparing the data, which increases the cost of the survey
and the time elapsing between the end of the data collection period and delivery of the
final data set. Additionally, as noted in section 1.5, variance estimation with calibrated
data tends to get complicated.

1.7 Weight trimming

As expression (12) shows, it is undesirable for a survey to have a large spread of weights
(Théberge 2000). Otherwise, many survey estimates are unduly affected by the observa-
tions with large weights, while those with small weights make but minimal contributions.
The impact of the observations with high weights will be exacerbated in the analysis of
domains, where these observations will stand apart even more given the smaller sizes
of domains. For these reasons, weights are often trimmed: the largest weights are re-
duced (say, all the weights greater than the largest allowable number are reduced to
that number), and the smallest weights are increased, so that for all j, L ≤ w3j ≤ U
for some absolute limits L and U . Alternatively, the relative change in weights can be
constrained: for all j, l ≤ w3j/w1j ≤ u for some ratio limits l and u. Weight trimming
may introduce bias, so the amount of trimming needs to be seen as a trade-off between

8 Raking survey data

an apparent efficiency improvement and latent bias (Elliott 2008).

With trimming, the modified algorithm implemented in ipfraking proceeds as fol-
lows. (See Section 2.1 for the syntax diagram, and in particular Section 2.2 for spec-
ification of the trimming options. If not specified otherwise, the default values are
U = u = +∞, L = l = 0.)

Algorithm 2: raking with simultaneous trimming

1. Initialize the outer cycle iteration counter k ← 0. Initialize the weights w0,p
j ←

w1j . Set D0 = ∞ (This is a notation introduced for consistency of notation in
step 9.)

2. Increment the outer cycle iteration counter k ← k+1, update the weights wk,0
j ←

wk−1,p
j .

3. Initialize the inner cycle over control variables: v ← 1

4. Update the weights using the v-th variable as the post-stratification variable:

wk,v
j =











wk,v−1

j

T [Xv]
∑

l∈S
wk,v−1

l xvl

, xvj 6= 0

wk,v−1

j , xvj = 0

5. If trimfrequency option is specified as often, perform weight trimming:

wk,v
j ← min

(

wk,v
j , U, uw0,p

j

)

,

wk,v
j ← max

(

wk,v
j , L, lw0,p

j

)

That is, trim the weights that are greater than U in absolute terms and/or have
increased by more than a factor of u from the initial weight; reduce such weights
to the largest allowed value. Likewise, trim the weights that are less than L in
absolute terms and/or have dropped by more than a factor of l from the initial
weight; increase such weights to the smallest allowed value.

6. Increment the internal cycle counter v ← v + 1

7. If v ≤ p, cycle back to step 4. Otherwise the inner cycle over the control variables
is completed; proceed to the next step.

8. If trimfrequency option is specified as sometimes, perform weight trimming:

wk,p
j ← min

(

wk,p
j , U, uw0,p

j

)

,

wk,p
j ← max

(

wk,p
j , L, lw0,p

j

)

S. Kolenikov 9

9. If the largest change in weights

Dk = max
j∈S

∣

∣

∣

wk,p
j

wk−1,p
j

− 1
∣

∣

∣

is less than or equal to tolerance δD (given in tolerance option), declare conver-
gence of weights and go to step 11. If Dk > Dk−1, k > 1, the algorithm may be
diverging; stop the outer cycle iterations, issue a non-convergence message and go
to step 11. Otherwise (i.e., if δD < Dk < Dk−1), move to the next step: there is
some room for weight improvement.

10. If the number of the outer cycle iterations k reaches a prespecified limit K, stop
the outer cycle iterations and issue a non-convergence message. Otherwise, cycle
back to step 2.

11. If trimfrequency option is specified as once, perform weight trimming:

wk,p
j ← min

(

wk,p
j , U, uw0,p

j

)

,

wk,p
j ← max

(

wk,p
j , L, lw0,p

j

)

12. If discrepancies between the weighted totals
∑

j∈S
wk,p

j xv and the target totals
T [Xv] are greater than prespecified tolerances δT (ctrltolerance option),

∣

∣

∣

T [Xv]−
∑

j∈S
wk,p

j xv

T [Xv] + 1

∣

∣

∣
> δT

for at least one v = 1, . . . , p, issue a warning message (see Section 4).

13. Return the weights wk,p
j as calibrated weights and exit.

The algorithm may be exited for three possible reasons: reaching the maximum
number of iterations (indicative of lack of convergence), finding that the changes in
weights started diverging, or by reaching the state where the weights do not change
from one iteration of post-stratification and possibly trimming to the next. Even in
the latter case, convergence of the weights does not imply convergence of the weighted
totals to their targets. Hence, there are qualitatively three possible outcomes of running
ipfraking:

1. The weights have converged as checked in step 9, and the weighted control to-
tals are within tolerances from their targets, as checked in step 12. The raked
weights are most likely safe to use, although additional quality control checks,
including computation of the DEFF (12), histograms and tabulations with the
main variables of interest would be recommended.

10 Raking survey data

2. The weights have converged as checked in step 9, but the weighted control totals
are not sufficiently close to their targets, as checked in step 12. The raked weights
should be reviewed, and may not be safe to use. This often happens when the
trimming options are too aggressive, when the data and the control totals are
incompatible, or when the control totals themselves are poor (e.g., the matrices
sum to different values, of which ipfraking will issue an error message).

3. The weights have not converged after the pre-specified number of iterations, or
started diverging. Again, the resulting weights are likely to be unsatisfactory. The
number of iterations should be increased, the tolerances should be decreased, or
nodivergence option can be specified if optimization aborted because the weight
convergence criteria went up.

1.8 Other weight calibration programs

There has been a number of packages with similar functionality that are circulating in
Stata community. Nick Winter’s survwgt (Winter 2002) is the most robust and versatile
of these, and its survwgt rake subcommand implements the same raking algorithm as
the basic algorithm of ipfraking. The functionality of survwgt also includes valuable
capabilities to create the balanced repeated replication (BRR) and jackknife replicate
weights (Kolenikov 2010), as well as non-response cell adjustments. One feature that
survwgt does not have is trimming.

A more recent raking package is ipfweight (Bergmann 2011). It implements the
basic raking, and provides relative trimming similar to trimfrequency(often).

Another user-contributed Stata package, maxentropy (Wittenberg 2010), imple-
ments Case 4 of Deville and Särndal (1992) using Newton-Raphson optimization with
analytical second derivatives, and is much faster than ipfraking described here.

Compared to these packages, ipfraking was developed to work in the weight pro-
duction environment of a survey company. To be an effective tool, the weight calibration
procedure should not only produce the correct figures, but also provide extensive diag-
nostics and robustness checks that can potentially be analyzed later in semi-automated
fashion, and be robust and fail softly with incorrectly specified inputs. For instance,
all of the above packages rely on the user to match the variables and their targets, and
some are relatively fragile numerically when the initial weights generate totals that are
far off their targets. In ipfraking, as you will shortly see, the match between variables
and their targets is implemented internally through metadata (variable names and val-
ues) stored in Stata target matrices, as the necessary variables and their categories are
picked up by ipfraking from the targets. Thus the number of necessary inputs, and
hence the likelihood of the user error (through incorrect ordering of variables and their
categories) is reduced. The targets, in turn, can be easily obtained from the calibration
data sets such as American Community Survey. Also, ipfraking defines convergence
in terms of values of weights rather than the target discrepancies as done in other pack-
ages. It thus allows the possibility of the raking procedure converging in computational
sense (weights stop changing from one iteration to the next), and then diagnoses the

S. Kolenikov 11

statistical convergence, i.e., whether the targets are being satisfied.

Besides the internal convergence diagnostics, the weights produced by ipfraking

were compared to those produced by survwgt and ipfweight as a certification step
(Gould 2001), and were found to be identical within numerical accuracy.

2 Package description

2.1 Syntax

ipfraking
[

if
] [

in
] [

weight
]

, ctotal(matname [matname . . .])
[

generate(newvarname) replace double iterate(#) tolerance(#)

ctrltolerance(#) trace nodivergence trimhiabs(#) trimhirel(#)

trimloabs(#) trimlorel(#) trimfrequency(once|sometimes|often) double

meta nograph
]

Note that the weight statement [pw=varname] is required, and must contain the initial
weights.

2.2 Options

Required options

ctotal(matname
[

matname . . .
]

) supplies the names of the matrices that contain the
control totals, as well as meta-data about the variables to be used in calibration.

❑ Technical note

The row and column names of the control total matrices (see [P]matrix rownames)
should be formatted as follows.

• rownames: the name of the control variable

• colnames: the values the control variables takes

• coleq: the name of the variable for which total is computed; typically it is iden-
tically equal to 1.

See examples in Section 3.
❑

generate(newvarname) contains the name of the new variable to contain the raked
weights.

replace indicates that the weight variable supplied in the [pw=varname] expression
should be overwritten with the new weights.

12 Raking survey data

One and only one of generate() or replace must be specified.

Options to control convergence

❑ Technical note

Convergence in ipfraking is defined in terms of the maximum relative change in
weights:

Dk = max
j∈S

|wk,p
j − wk−1,p

j |

wk−1,p
j

(13)

When Dk is small, Dk < δD, it means that the weights stop changing between iterations,
i.e., the algorithm came to its steady state. On the other hand, if Dk > Dk−1, it
means that the algorithm may start diverging, at which point it might be reasonable to
terminate it. See step 9 of Algorithm 2 in Section 1.7.

Once the algorithm terminates, it also checks whether the control totals are satisfied.
Specifically, for each of the control total matrices M1, . . . ,Mp, the relative difference vs.

the corresponding weighted sample totals M̂1, . . . , M̂p is computed:

mc = mreldif(M̂c,Mc) (14)

where the maximum relative difference of two matrices

mreldif(A,B) = max
ij

|aij − bij |

1 + |bij |

as defined in [D] functions. A control relation is satisfied if mc < δT ; otherwise, a
warning is issued. See step 12 of Algorithm 2 in Section 1.7.

Iterations continue until either k = K, a specified number of iterations; Dk < δD;
or Dk > Dk−1.

❑

tolerance(#) defines the Dk-convergence criterion, i.e., δD. The default is δD = 10−6.

iterate(#) specifies the maximum number of iterations K. The default is K = 2000.

nodivergence overrides the check that Dk > Dk−1, i.e., ignores this termination con-
dition.

ctrltolerance(#) defines the criterion δT to assess the accuracy of the control totals.
It does not impact iterations or convergence criteria; it only serves as the final quality
control check after the algorithm terminates as defined above. The default value is
δT = 10−6.

trace requests a trace plot to be added. See Section 3.4.

S. Kolenikov 13

Trimming options

trimhiabs(#) specifies the upper bound U on the greatest value of the raked weights.
The weights that exceed this value will be trimmed down, so that w3j ≤ U for every
j ∈ S.

trimhirel(#) specifies the upper bound u on the adjustment factor over the baseline
weight. The weights that exceed the baseline times this value will be trimmed down,
so that w3j ≤ uw1j for every j ∈ S.

trimloabs(#) specifies the lower bound L on the smallest value of the raked weights.
The weights that are smaller than this value will be increased, so that w3j ≥ L for
every j ∈ S.

trimlorel(#) specifies the lower bound l on the adjustment factor over the baseline
weight. The weights that are smaller than the baseline times this value will be
increased, so that w3j ≥ lw1j for every j ∈ S.

trimfreqency(keyword) specifies when the trimming operations are to be performed.
The following keywords are recognized:

often means that trimming will be performed after each marginal adjustment, i.e.,
within each iteration of the inner cycle inside Step 5 of Algorithm 2.

sometimes means that trimming will be performed after a full set of variables has
been used for post-stratification, i.e., at the end of each outer cycle iteration at step
8 of Algorithm 2. This is the default behavior if any of the numeric trimming options
above are specified.

once means that trimming will be performed after the outer loop converges at step
11 of Algorithm 2.

The numeric trimming options trimhiabs(#), trimhirel(#), trimloabs(#),
trimlorel(#) can be specified in any combination, or entirely omitted to produce
untrimmed weights. By default, there is no trimming. See Section 3.3 for examples.

Miscellaneous options

double specifies that the new variable named in generate() option should be generated
as double type. See [D] data types.

meta puts the name(s) of the control vectors and the achieved control accuracies mc as
characteristics stored with the variable specified in generate() option. See Section
3.5.

nograph omits the histogram of the calibrated weights, which can be used to speed
up ipfraking once the diagnostics on the weights are completed (e.g., in replicate
weight production).

14 Raking survey data

2.3 Utility programs

Besides the main weight calibration program, ipfraking package provides two addi-
tional utility programs to create and manipulate ipfraking-compatible matrices.

mat2do matrix name using do file name ,
[

replace append list type
]

mat2do stores the values and the attributes (row and column names) of a Stata
matrix as a do-file. By running this do-file, the matrix can be fully reproduced. The
names of the matrix and the do-file are required.

replace overwrites the existing file.

append adds the code the the existing do-file.

list adds matrix list command to the end of the do-file, so that when the do file name

is executed, the listing is provided for verification.

type lists the matrix and the resulting do-file.

xls2row matrix name using filename , cellrange([start]:[end]) sheet(name)

over(varname)
[

scale(#)
]

The utility program xls2row reads the calibration totals from the specified Excel file
and stores them in the matrixmatrix name. The name of the Excel file, the range of cells
and the name of the sheet to take the values from are required, and specified in the same
way as in import excel (see [D] import excel). Mathematically speaking, xls2row
performs a vec-transformation of the matrix read from an Excel sheet, i.e., stores the
result by columns. The matrix coleq of the resulting matrix is the convention name
one.

To optimize the performance, note that xls2row relies on preserve as an interme-
diate step. It is thus advisable to run xls2row upfront before loading potentially large
data sets that would otherwise be written to disk and restored back a number of times.

cellrange() specifies the range of cells in an Excel file, e.g., B2:D15.

sheet() specifies the name of the sheet in Excel file to take values from.

over(varname) is the variable corresponding to the control total being imported from
Excel. The columns of the resulting row vector matrix name will the labeled with
the values of varname(i.e., as the matrix colname of the matrix matrix name), and
varname itself will appear as the matrix rowname of the matrix matrix name. If
the number of categories of varname does not match the number of non-missing
imported values, an error message will be issued, and the target matrix will not be
created.

scale(#) optionally scales the entries of the resulting row vector so that they sum to
the specified value.

S. Kolenikov 15

3 Examples

3.1 Basic syntax and input requirements

In this very simple example, I shall demonstrate the basic mechanics of ipfraking,
its input requirements and output. These examples are intended to only demonstrate
the syntax and the output of ipfraking, and may or may not provide substantively
meaningful results.

Example 1

We shall work with the standard example of svy data, an excerpt from the NHANES
II data set available from Stata Corp. website. We shall introduce some small changes
to the data so that ipfraking will have some work to do.

. webuse nhanes2, clear

. generate byte _one = 1

.

. svy : total _one , over(sex, nolabel)
(running total on estimation sample)

Survey: Total estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31

1: sex = 1
2: sex = 2

Linearized
Over Total Std. Err. [95% Conf. Interval]

_one
1 5.62e+07 1377465 5.34e+07 5.90e+07
2 6.10e+07 1396159 5.82e+07 6.38e+07

. matrix NHANES2_sex = e(b)

. matrix rownames NHANES2_sex = sex

.

. svy : total _one , over(race, nolabel)
(running total on estimation sample)

Survey: Total estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31

1: race = 1
2: race = 2
3: race = 3

(Continued on next page)

16 Raking survey data

Linearized
Over Total Std. Err. [95% Conf. Interval]

_one
1 1.03e+08 2912042 9.71e+07 1.09e+08
2 1.12e+07 1458814 8213964 1.42e+07
3 2968728 1252160 414930.1 5522526

. matrix NHANES2_race = e(b)

. matrix rownames NHANES2_race = race

.

. matrix NHANES2_sex[1,1] = NHANES2_sex[1,1]*1.25

. matrix NHANES2_race[1,1] = NHANES2_race[1,1]*1.4

.

Let us now look at the matrices that will serve as an input to the raking procedure.

. matrix list NHANES2_sex, f(%12.0g)

NHANES2_sex[1,2]
_one: _one:

1 2
sex 70199350 60998033

. matrix list NHANES2_race, f(%12.0g)

NHANES2_race[1,3]
_one: _one: _one:

1 2 3
race 144199368.6 11189236 2968728

These input matrices are organized as follows. Input matrices always have a single
row, just as estimation results e(b) do. The column names follow the naming conven-
tions of e(b), namely, the name of the variable for which the total is being computed
(here, one) and the numeric categories of the variable that was used in the over option
(here, sex, with values 1 for males and 2 for females; and race, with values 1 for whites,
2 for blacks, and 3 for other). These values must be in an increasing order. Since that
variable is not stored in the e(b) per se, it needs to be added to this matrix, which is
done in the form of the row name. The entries of the matrix are the totals that the
weights in the categories of the control variables need to sum up to. In this example,
they are scaled to be the population totals. Alternatively, these can be made to sum
up to the sample size, as is done sometimes in public opinion research, or to 1, which is
what proportion estimation command would produce.

The input requirements in terms of control totals are thus made as simple as possible.
If a higher quality survey is available, all the survey statistician needs to do is to obtain
the totals for the categories of the control variables using svy: total · · · , over(

· · · , nolabel) and save the name of that variable along with the matrix. Note that
the total is computed with over(..., nolabel) suboption to suppress the otherwise
informative labeling of the categories; ipfraking expects the numeric values of the
categories as column names (see [P] matrix rownames). The name of the matrix
itself is immaterial, but it is a good programming practice to have informative names

S. Kolenikov 17

(McConnell 2004). Thus the names of the matrices in the examples generally follow the
convention data source variable.

We are now ready to run ipfraking and see what it produces.

. ipfraking [pw=finalwgt], ctotal(NHANES2_sex NHANES2_race) gen(rakedwgt1)

Warning: the totals of the control matrices are different:
Target 1 (NHANES2_sex) total = 131197383
Target 2 (NHANES2_race) total = 158357332.6

Iteration 1, max rel difference of raked weights = .56227988
Iteration 2, max rel difference of raked weights = .00073288
Iteration 3, max rel difference of raked weights = 2.356e-07
Warning: the controls NHANES2_sex did not match

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 15299 10274 1914 90831 .6716
Adjust factor 1.3490 0.8846 1.5614

In this simple case with just two control variables and the control totals that are not
very different from the existing sample totals, the procedure converged very quickly in
three iterations. A diagnostic message was produced upfront by ipfraking informing
about apparent differences in total population counts as obtained from the different
control total matrices. As a result, the control totals for the variable that was adjusted
first (sex) could not match the required control totals even after the weights converged in
the sense of differing little between iterations. Both of these warnings are only produced
when problems are encountered.

The summary table is always produced, and shows some relevant characteristics of
the original weights w1j , the raked weights w3j , and the raking ratios w3j/w1j . As
expected, the coefficient of variation went up from 0.645 to 0.672.

The graphic output produced by ipfraking is shown on Figure 1. Generally, we
would want to inspect these graphs to see if there any unexpected patterns, such as
highly outlying values, gaps in the distribution (here, there are only six distinct values
of the adjustment factor corresponding to the 2×3 combinations of the control variables)
or concentration near the limits of the weight range (as is typical for trimmed weights,
see below in section 3.3). Also, these graphs may inform later trimming decisions: the
trimming limits can be chosen to conform to the breaks in the distributions of the
untrimmed raked weights.

3.2 Preparing control matrices from scratch

In many situations, the control totals will be obtained from outside of Stata, and need
to be prepared to work with ipfraking.

Example 2

18 Raking survey data

0
50

0
10

00
15

00
F

re
qu

en
cy

0 20000 40000 60000 80000 100000
Raked weights

0
10

00
20

00
30

00
40

00
50

00
F

re
qu

en
cy

.8 1 1.2 1.4 1.6
Adjustment factor

Figure 1: Histograms of the raked weights and calibration ratios, Example 1.

Suppose I wanted to calibrate the NHANES II data set to the latest control totals
available from the US Census Bureau website. Using the tables S0101 from the 2011
American Community Survey 1-year estimates and NST-EST2011 from the US Census
Bureau population projections, the latest available at the time of writing this paper,
the figures displayed in Table 1 can be obtained.

Thus, we have information in the two-way age by sex table, as well as two additional
margins. We shall need an additional sex-by-age group variable, and we shall try to
make its values somewhat informative (e.g., the value 12 of the variable sex age means
the first group of sex and the second group of age):

. generate byte age_grp = 1 + (age>=40) + (age>=60) if !mi(age)

. generate sex_age = sex*10 + age_grp

With that, the matrices will have to be defined explicitly, and their labels need to be
hand-coded, too (see [P] matrix rownames). Note that the US Census Bureau 2011
projections relate to the total population, while the target population of the study is
the population age 20+. Assuming that the age structure is the same across regions and

S. Kolenikov 19

Table 1: Control totals for the 2011 US population.
Group Population

ACS 2011 1-year estimates, Table S0101
Male, total 153,267,860
Ages 20–39 27.4%
Ages 40–59 27.5%
Ages 60+ 17.3%
Female, total 158,324,057
Ages 20–39 26.0%
Ages 40–59 27.6%
Ages 60+ 20.7%
US Census Bureau 2011 projections, Table NST-EST2011-01

Northeast 55,521,598
Midwest 67,158,835
South 116,046,736
West 72,864,748
US Census Bureau 2011 projections, Table NC-EST2011-03

White 243,470,497
Black 40,750,746
Other 27,370,674
Total 311,591,917

races, the control totals for region and race need to be rescaled to the adult population
to avoid the warning messages. (More accurate figures can be obtained from ACS
microdata which can be downloaded from the U.S. Census Bureau website.)

. matrix ACS2011_sex_age = (///
> 153267860*0.274, 153267860*0.275, 153267860*0.173, /// males
> 158324057*0.260, 158324057*0.276, 158324057*0.207 /// females
>)

. matrix colnames ACS2011_sex_age = 11 12 13 21 22 23

. matrix coleq ACS2011_sex_age = _one

. matrix rownames ACS2011_sex_age = sex_age

. scalar ACS2011_total_pop = 311591917

. matrix ACS2011_adult_pop = ACS2011_sex_age * J(colsof(ACS2011_sex_age),1,1)

. matrix Census2011_region = ///
> (55521598, 67158835, 116046736, 72864748)

. matrix Census2011_region = Census2011_region * ACS2011_adult_pop / ACS2011_to
> tal_pop

. matrix colnames Census2011_region = 1 2 3 4

. matrix coleq Census2011_region = _one

. matrix rownames Census2011_region = region

. matrix Census2011_race = ///
> (243470497, 40750746, 27370674)

(Continued on next page)

20 Raking survey data

. matrix Census2011_race = Census2011_race * ACS2011_adult_pop / ACS2011_total_
> pop

. matrix colnames Census2011_race = 1 2 3

. matrix coleq Census2011_race = _one

. matrix rownames Census2011_race = race

Let us check the matrix entries and labels once again before producing the weights.
Note that the values of the control variable categories are given in an increasing order.

. matrix list ACS2011_sex_age, f(%10.0g)

ACS2011_sex_age[1,6]
_one: _one: _one: _one: _one: _one:

11 12 13 21 22 23
sex_age 41995394 42148662 26515340 41164255 43697440 32773080

. matrix list Census2011_region, f(%10.0g)

Census2011_region[1,4]
_one: _one: _one: _one:

1 2 3 4
region 40679030 49205289 85024007 53385843

. matrix list Census2011_race, f(%11.0g)

Census2011_race[1,3]
_one: _one: _one:

1 2 3
race 178383622 29856864.7 20053682.2

As the labels appear to be in place, let us run ipfraking:

. ipfraking [pw=finalwgt], gen(rakedwgt2) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .19495004
Iteration 3, max rel difference of raked weights = .02204455
Iteration 4, max rel difference of raked weights = .00315355
Iteration 5, max rel difference of raked weights = .00043857
Iteration 6, max rel difference of raked weights = .00006061
Iteration 7, max rel difference of raked weights = 8.365e-06
Iteration 8, max rel difference of raked weights = 1.154e-06
Iteration 9, max rel difference of raked weights = 1.593e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 19227 4050 338675 .8717
Adjust factor 2.1464 0.9264 18.3694

The diagnostic plots for these weights are given in Figure 2. They do appear to
have some outlying cases (which are not very clearly seen on these plots as they are
single count observations with outlying weights), and we shall address them in the next
section with trimming.

S. Kolenikov 21

0
10

00
20

00
30

00
40

00
F

re
qu

en
cy

0 100000 200000 300000 400000
Raked weights

0
50

0
10

00
15

00
20

00
25

00
F

re
qu

en
cy

0 5 10 15 20
Adjustment factor

Figure 2: Histograms of the raked weights and calibration ratios, Example 2.

3.3 Trimming options

As discussed in Section 1.7 above, if variability of the weights becomes excessive, the
weights can be trimmed by restricting the extremes. Using ipfraking options, upper
and/or lower limits can be defined for either the absolute values of the weights or the
relative changes from the base weights. The frequency of the trimming operations can
also be controlled. Trimming can be applied once to the final data (trimfreq(once))
at step 11 of Algorithm 2. Alternatively, trimming can be applied after every full cycle
over variables at step 8 of Algorithm 2. Finally, trimming can be applied after each
sub-iteration at step 5 of the algorithm.

Example 3

Inspecting the histograms on Figure 2, it appears reasonable to restrict the upper
tail of the raked weights. A more detailed investigation of the histogram reveals a
somewhat greater concentration of the raked weights around the value of 160,000, and
sparse bars beyond 200,000. This latter number will be used as the top cut-off point
for trimming, and is provided as an input to ipfraking via option trimhiabs. Also,

22 Raking survey data

I specified the absolute lower bound of 2,000, which is the minimum of the original
weights, but, as the output in the previous example suggested, the calibrated weights
tend to run above 4,000, so specifying the lower limit as trimloabs(2000) may not
really affect the calibration procedure.

. ipfraking [pw=finalwgt], gen(rakedwgt3) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256
Iteration 3, max rel difference of raked weights = .02754514
Iteration 4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
Iteration 6, max rel difference of raked weights = .00018036
Iteration 7, max rel difference of raked weights = .00003391
Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

The resulting coefficient of variation of weights, 0.857, is slightly better than that
with unrestricted range of weights, 0.872. The summary also shows that the weights
were capped at 200,000, as requested.

Setting the absolute limits on the range of the raked weights is often very subjective.
A somewhat better plan might be to set limits in terms of the range of the adjustment
factors, as shown in the next example. The relative change in the weights can be
bounded with trimlorel() and trimhirel() options. I also demonstrate here how
to use the results of summarize to feed into ipfraking. While ensuring that accurate
numbers are being carried over in the context of the code, the approach is fragile for
interactive work: simply running the single line with the sole ipfraking command that
refers to the r() return values may break down if summarize was not the immediately
preceding command.

. sum finalwgt

Variable Obs Mean Std. Dev. Min Max

finalwgt 10351 11318.47 7304.04 2000 79634

. ipfraking [pw=finalwgt], gen(rakedwgt4) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(`=2.5*r(max)´) trimloabs(`=r(min)´) trimhirel(6)

(Continued on next page)

S. Kolenikov 23

Iteration 1, max rel difference of raked weights = 5
Iteration 2, max rel difference of raked weights = .25592859
Iteration 3, max rel difference of raked weights = .0626759
Iteration 4, max rel difference of raked weights = .0158786
Iteration 5, max rel difference of raked weights = .00299304
Iteration 6, max rel difference of raked weights = .00070812
Iteration 7, max rel difference of raked weights = .00016401
Iteration 8, max rel difference of raked weights = .00003734
Iteration 9, max rel difference of raked weights = 8.434e-06
Iteration 10, max rel difference of raked weights = 1.898e-06
Iteration 11, max rel difference of raked weights = 4.265e-07
Warning: the controls ACS2011_sex_age did not match
Warning: the controls Census2011_region did not match
Warning: the controls Census2011_race did not match

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 21830 18115 4113 199085 .8298
Adjust factor 2.1323 0.8973 6.0000

Setting the trimming options too aggressively may lead to adverse consequences.
First, it may bias the estimates, as discussed in Section 1.6. Second, as this example
demonstrates, it can impede (statistical) convergence: the output contains multiple
warnings about targets not being achieved within desired accuracy, while no problems
were encountered without trimming.

3.4 Tracking convergence

Let us now look in more detail into the issue of trimming frequency, and demonstrate
another diagnostic plot that can be produced by ipfraking.

Example 4

We return to the first set of options of Example 3, and re-run the raking procedure.

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], gen(rakedwgt3) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000) trimfreq(sometimes) trace

Iteration 1, max rel difference of raked weights = 14.95826
(output omitted)
Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

24 Raking survey data

The option trace requests that trace plots be added to the diagnostic plots, as shown
on Figure 3. The trace plots are presented on the absolute scale and on the log scale.
The exponentially declining discrepancy appears to be a general phenomenon. In other
words, after the first few iterations, discrepancy between the currently weighted totals
to the control totals roughly follows the rate of const × αk for some α < 1, where k is
the (outer cycle) iteration number. When convergence is very slow or the sample size is
very large, this rule may be helpful in determining the number of iterations necessary to
achieve the required accuracy, and hence the expected computing time. Zero cross-cells
and collinearity between the control variables may make the convergence factor α close
to 1 thus hampering convergence. This happens when the control variables have very
similar meaning, such as age and grade of children: it is impossible to have children of
age 8 in grade 10. Also, sets of interactions of categorical variables, such as interactions
of age group and education along with age group and race, are guaranteed to produce
zero cells in the cross-tabulation: it is impossible to have any observations in the cells
defined say by (age under 40 interacted with higher education) on one margin against
(age above 60 interacted with white race) on the other.

0
50

0
10

00
15

00
20

00
25

00
F

re
qu

en
cy

0 50000 100000 150000 200000
Raked weights

0
10

00
20

00
30

00
F

re
qu

en
cy

0 5 10 15 20
Adjustment factor

0
.2

.4
.6

.8

0 2 4 6 8 10
Iteration

Census2011_region

Census2011_race

1.000e−09

1.000e−07

.00001

.001

.1

0 2 4 6 8 10
Iteration

ACS2011_sex_age

Figure 3: Diagnostic plots for Example 4.

While trimfreq(sometimes) is the default in presence of other trimming options,

S. Kolenikov 25

the behavior can be changed with explicit specification of trimming frequency. Note
that slightly different weights will be produced that way.

. ipfraking [pw=finalwgt], gen(rakedwgt5) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000) trimfreq(often) trace

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21613885
Iteration 3, max rel difference of raked weights = .02673316
Iteration 4, max rel difference of raked weights = .00480164
Iteration 5, max rel difference of raked weights = .00086195
Iteration 6, max rel difference of raked weights = .00015444
Iteration 7, max rel difference of raked weights = .00002762
Iteration 8, max rel difference of raked weights = 4.940e-06
Iteration 9, max rel difference of raked weights = 8.832e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18905 4033 200000 .8572
Adjust factor 2.1487 0.9220 18.9844

. compare rakedwgt3 rakedwgt5

difference
count minimum average maximum

rakedwgt3<rakedwgt5 3638 -15.27963 -1.226753 -.0128687
rakedwgt3=rakedwgt5 4
rakedwgt3>rakedwgt5 6709 .0011514 .6652557 2471.578

jointly defined 10351 -15.27963 .0000264 2471.578

total 10351

In this example, trimming the weights after adjusting each of the margins led to
fewer iterations. This may or may not translate to lower overall computing times as
more computing is performed within each iteration.

3.5 Metadata

The results of raking operations can be stored with the newly created weight variables
for later review and reproduction of the results. Let us reproduce the example in the
previous section adding all the metadata available:

Example 5

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], gen(rakedwgt3) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000) meta

(Continued on next page)

26 Raking survey data

Iteration 1, max rel difference of raked weights = 14.95826
(output omitted)
Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

. char li rakedwgt3[]
rakedwgt3[command]: [pw=finalwgt], gen(rakedwgt3) ctotal(ACS2011_s

> ex_age Ce..
rakedwgt3[trimloabs]: trimloabs(2000)
rakedwgt3[trimhiabs]: trimhiabs(200000)
rakedwgt3[trimfrequency]: sometimes
rakedwgt3[objfcn]: 2.25435521346e-07
rakedwgt3[maxctrl]: 3.00266822363e-08
rakedwgt3[converged]: 1
rakedwgt3[Census2011_race]: 7.48567503861e-09
rakedwgt3[Census2011_region]:

3.00266822363e-08
rakedwgt3[ACS2011_sex_age]: 4.13778410340e-09
rakedwgt3[note1]: Raking controls used: ACS2011_sex_age Census2011_

> region Ce..
rakedwgt3[note0]: 1

The following characteristics are stored with the newly created weight variable (see
[P] char).

command The full command as typed by the user
matrix name The relative matrix difference from the corresponding

control total, see [D] functions
trimhiabs, trimloabs, Corresponding trimming options, if specified
trimhirel, trimlorel,
trimfrequency

maxctrl the greatest mreldif between the targets
and the achieved weighted totals

objfcn the value of the relative weight change Dk (13) at exit
converged whether ipfraking exited due to convergence (1)

vs. due to an increase in the objective function
or reaching the limit on the number of iterations (0)

Also, ipfraking stores the notes regarding the control matrices used, and which of
the margins did not match the control totals, if any. See [D] notes.

3.6 Replicate weights

As discussed in Section 1.5, one of the greater challenges of weight calibration is ensuring
that variance estimates take into account the greater precision achieved by adjusting
the sample towards the fixed population quantities. As estimating the variances using

S. Kolenikov 27

linearization is cumbersome, replicate variance estimation may be more attractive.

Example 6

The simplest code for calibrated replicate weights is obtained by calling ipfraking

from within bsweights (Kolenikov 2010) which can pass the name of a replicate weight
variable to an arbitrary calibration routine. In this example, we shall use the same
settings as in Section 3.2 and thus we shall have the calibrated weight rakedwgt2 which
was produced in that example as the main weight for which the bootstrap weights
provide the measure of sampling variability.

. set seed 2013

. set rmsg on
r; t=0.00 14:50:44

. bsweights bsw , reps(310) n(-1) balanced dots ///
> calibrate(ipfraking [pw=@], replace nograph meta ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race))
Balancing within strata:
...............................

Rescaling weights
.. 50
.. 100
.. 150
.. 200
.. 250
.. 300
..........

r; t=178.79 14:53:43

. forvalues k=1/310 {
2. _dots `k´ 0
3. assert `: char bsw`k´[converged]´ == 1
4. assert `: char bsw`k´[maxctrl]´ < 10*c(epsfloat)
5. }

.. 50

.. 100

.. 150

.. 200

.. 250

.. 300

..........r; t=0.32 14:53:43

. set rmsg off

. svyset [pw=rakedwgt2], vce(bootstrap) bsrw(bsw*) dof(31)

pweight: rakedwgt2
VCE: bootstrap
MSE: off

bsrweight: bsw1 bsw2 bsw3 bsw4 bsw5 bsw6 bsw7 bsw8 bsw9 bsw10 bsw11 bsw12
(output omitted)

bsw301 bsw302 bsw303 bsw304 bsw305 bsw306 bsw307 bsw308 bsw309
bsw310

Design df: 31
Single unit: missing

Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>

28 Raking survey data

The options of bsweights request 310 replicate weights (a multiple of 31 strata), re-
sample one less PSU than available in a given stratum, and obtain the first-order balance
within a stratum. With the 2 PSU/stratum design and these options, bsweights pro-
duces random half-samples of data. The at-character @ is a placeholder for the name of
the replicate weight variable. For explanations of these and other options of bsweights,
see Kolenikov (2010). The procedure took about 3 minutes on a laptop computer, which
can be considered moderately computationally intensive beyond interactive. A new op-
tion of ipfraking in the above code is nograph that suppresses the histograms. The
additional asserts (Gould 2003) following the bootstrap weight generation demonstrate
how the minimal quality assurance can be done on the bootstrap weights in the weight
production workflow.

A more compact set of weights can be developed based on the existing BRR weights
and a slightly more explicit code cycling over the weight variables:

. webuse nhanes2brr, clear

. svy : proportion highbp
(running proportion on estimation sample)

BRR replications (32)
1 2 3 4 5

................................

Survey: Proportion estimation Number of obs = 10351
Population size = 117157513
Replications = 32
Design df = 31

BRR
Proportion Std. Err. [95% Conf. Interval]

highbp
0 .8941859 .0067023 .8805165 .9078553
1 .1058141 .0067023 .0921447 .1194835

. generate byte _one = 1

. generate byte age_grp = 1 + (age>=40) + (age>=60) if !mi(age)

. generate sex_age = sex*10 + age_grp

. ipfraking [pw=finalwgt], gen(rakedwgt2) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .19495004
Iteration 3, max rel difference of raked weights = .02204455
Iteration 4, max rel difference of raked weights = .00315355
Iteration 5, max rel difference of raked weights = .00043857
Iteration 6, max rel difference of raked weights = .00006061
Iteration 7, max rel difference of raked weights = 8.365e-06
Iteration 8, max rel difference of raked weights = 1.154e-06
Iteration 9, max rel difference of raked weights = 1.593e-07

(Continued on next page)

S. Kolenikov 29

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 19227 4050 338675 .8717
Adjust factor 2.1464 0.9264 18.3694

. forvalues k=1/32 {
2. quietly ipfraking [pw=brr_`k´], gen(brrc_`k´) nograph ///

> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
3. _dots `k´ 0
4. }

................................

. svyset [pw=rakedwgt2], vce(brr) brrw(brrc*) dof(31)

pweight: rakedwgt2
VCE: brr
MSE: off

brrweight: brrc_1 brrc_2 brrc_3 brrc_4 brrc_5 brrc_6 brrc_7 brrc_8 brrc_9
brrc_10 brrc_11 brrc_12 brrc_13 brrc_14 brrc_15 brrc_16
brrc_17 brrc_18 brrc_19 brrc_20 brrc_21 brrc_22 brrc_23
brrc_24 brrc_25 brrc_26 brrc_27 brrc_28 brrc_29 brrc_30
brrc_31 brrc_32

Design df: 31
Single unit: missing

Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>

. svy : proportion highbp
(running proportion on estimation sample)

BRR replications (32)
1 2 3 4 5

................................

Survey: Proportion estimation Number of obs = 10351
Population size = 228294169
Replications = 32
Design df = 31

BRR
Proportion Std. Err. [95% Conf. Interval]

highbp
0 .8730544 .0081501 .8564323 .8896766
1 .1269456 .0081501 .1103234 .1435677

The data can be analyzed with the standard svy prefix, and the standard errors will
appropriately capture the efficiency gains from weight calibration. No additional action
is required for the analyst or researcher.

CAUTION: the input weights for the replicate weight calibration must be the
probability replicate weights. The existing NHANES II weights have been adjusted for
non-response and calibrated by the data provider, and are used above for demonstration
purposes only.

30 Raking survey data

4 Error messages and troubleshooting

4.1 Critical errors

The following critical errors will stop execution of ipfraking.

pweight is required

The [pweight=...] component of ipfraking syntax is required. Probability
weights must be specified as inputs to ipfraking.

ctotal() is required

The ctotal() component of ipfraking syntax is required. Names of the matrices
containing the control totals must be specified.

one and only one of generate() or replace must be specified

Either generate() option with the name of the new variable must be supplied to
ipfraking, or replace to replace the variable specified in [pw=...] statement.

raking procedure appears diverging

The maximum relative difference of weights Dk has increased from the previous
iteration. This may or may not indicate a problem. Re-run ipfraking with
nodivergence option to override the warning.

cannot process matrix matrix name

For whatever reason, ipfraking could not process this matrix. The matrix may not
have been defined or the variables in this matrix cannot be found.

variable varname corresponding to the control matrix matrix name

not found

The variables contained in row or column names of this matrix cannot be found.

varname1 and varname2 variables are not compatible

When running total varname1, over(varname2), an error was encountered. One
of the variables may be a string variable or have missing values resulting in empty
estimation sample.

categories of varname do not match in the control matrix name

and in the data (nolab option)

There was a mismatch in the categories of varname found in the data and in the
control matrix matrix name. This could happen for any of the following reasons: (i)
there were more categories in one than in the other; (ii) the entries are in the wrong
order in the control matrix; (iii) the labels in the control matrix do not correspond
to the category values in the data set; (iv) the control matrix was obtained via total
varname2, over(varname), but nolabel suboption of over()was omitted, and the
labels of the control matrix may include some unexpected text. Tabulate varname

S. Kolenikov 31

without labels, and compare the results to the matrix listing of the matrix name.

cannot compute controls for matrix name over varname with the current

weights

This is a generic error message that something bad happened while ipfraking was
computing the totals for the current set of weights. This error message should gen-
erally be very rare, but as computing the totals may be the slowest operation of the
iterative optimization process, stopping ipfraking with a Ctrl+Break combination
or the Break GUI button may produce this error message.

trimhiabs|trimloabs|trimhirel|trimlorel must be a positive number

One or more of the trimming options are given as a non-positive number or a non-
number.

trimhiabs must be greater than trimloabs

trimhirel must be greater than trimlorel

The trimming parameters are illogical (the lower bound is greater than the upper
bound). Respecify the values of the trimming parameters.

4.2 Other errors and warnings

The following warning messages may be produced by ipfraking. The program will
continue running, but you must double-check the results for potential problems.

the totals of the control matrices are different

The sum of values of the control matrices are different. These sums will be listed for
review. Convergence is still possible, but some of the control total checks are likely
to fail.

trimfrequency() option is specified without numeric settings; will be

ignored

The option trimfrequency() was specified without any numeric trimming options.
There is no way to interpret this, and ipfraking will proceed without trimming.

trimfrequency() option is specified incorrectly, assume default value

(sometimes)

Something other than often, sometimes or once was supplied in trimfrequency,
and the default value is being used instead.

raking procedure did not converge

The maximum number of iterations was reached, but weights never met the con-
vergence criteria (see step 9 of Algorithm 2 in Section 1.7). The user may want to
increase the number of iterations or relax convergence criteria.

32 Raking survey data

the controls matrix name did not match

After convergence of weights was declared, ipfraking checked again the control
totals, and found that the results differed from the target for one or more of the
control total matrices. Any of the following can cause this: (i) the sum of entries
of this particular matrix differs from the others; (ii) the trimming options are too
restrictive, and do not allow the weights to adjust enough; (iii) the problem may not
have a solution due to incompatible control totals or a bad sample.

division by zero weighted total encountered with matrix name control

The weights for a category of the control variable summed to zero. ipfraking will
skip calibration over this variable and proceed to the next one.

missing values of varname encountered; convergence will be impaired

A control variable has missing values in the calibration sample. There is little way
for ipfraking to figure out how to deal with the weights for the observations with
missing values. The user would need either to restrict the sample to non-missing
values of all control variables, to impute the missing values or to create a sepa-
rate category for the missing values of a given control variable (which may lead to
difficulties in defining valid population control totals for it).

Acknowledgements

The author is grateful to Ben Phillips, Andrew Burkey and Brady West, as well as the
editor and an anonymous referee, who suggested additional functionality and provided
helpful comments to improve the readability of this article. The opinions stated in this
paper are of the author only, and do not represent the position of Abt SRBI.

5 References
Battaglia, M. P., D. Izrael, D. C. Hoaglin, and M. R. Frankel. 2009.
Practical considerations in raking survey data. Survey Practice,
http://surveypractice.wordpress.com/2009/06/29/raking-survey-data/.

Bergmann, M. 2011. IPFWEIGHT: Stata module to create adjustment weights for
surveys. Statistical Software Components, Boston College Department of Economics.
RePEc:boc:bocode:s457353.

Bethlehem, J. 2002. Weighting Nonresponse Adjustments Based on Auxiliary Informa-
tion. In Survey Nonresponse, ed. R. M. Groves, D. A. Dillman, J. L. Eltinge, and
R. J. A. Little, 375–288. New York: Wiley.

Binder, D. A., and G. R. Roberts. 2003. Design-based and Model-based Methods for
Estimating Model Parameters. In Analysis of Survey Data, ed. R. L. Chambers and
C. J. Skinner, chap. 3. New York: John Wiley & Sons.

S. Kolenikov 33

Botman, S., T. Moore, C. Moriarity, and V. Parsons. 2000. Design and estimation for
the National Health Interview Survey, 1995–2004. Technical Report 130, National
Center for Health Statistics.

Chang, T., and P. S. Kott. 2008. Using calibration weighting to adjust for nonresponse
under a plausible model. Biometrika 95(3): 555–571.

Deming, E. W., and F. F. Stephan. 1940. On a Least Squares Adjustment of a Sam-
pled Frequency Table When the Expected Marginal Totals are Known. Annals of

Mathematical Statistics 11(4): 427–444.

Dever, J. A., and R. Valliant. 2010. A comparison of variance estimators for poststrat-
ification to estimated control totals. Survey Methodology 36(1): 45–56.

Deville, J. C., and C. E. Särndal. 1992. Calibration Estimators in Survey Sampling.
Journal of the American Statistical Association 87(418): 376–382.

Deville, J. C., C. E. Särndal, and O. Sautory. 1993. Generalized Raking Procedures
in Survey Sampling. Journal of the American Statistical Association 88(423): 1013–
1020.

Elliott, M. R. 2008. Model Averaging Methods for Weight Trimming. Journal of Official

Statistics 24(4): 517–540.

Gould, W. 2001. Statistical software certification. Stata Journal 1(1): 29–50.

———. 2003. Stata tip 3: How to be assertive. Stata Journal 3(4): 448–449.

Groves, R. M. 2006. Nonresponse Rates and Nonresponse Bias in Household Surveys.
Public Opinion Quarterly 70(5): 646–675.

Groves, R. M., D. A. Dillman, J. L. Eltinge, and R. J. A. Little. 2001. Survey Nonre-

sponse. Wiley Series in Survey Methodology, Wiley-Interscience.

Holt, D., and T. M. F. Smith. 1979. Post Stratification. Journal of the Royal Statistical
Society, Series A 142(1): 33–46.

Horvitz, D. G., and D. J. Thompson. 1952. A Generalization of Sampling Without
Replacement From a Finite Universe. Journal of the American Statistical Association

47(260): 663–685.

Judkins, D. R., D. Morganstein, P. Zador, A. Piesse, B. Barrett, and P. Mukhopadhyay.
2007. Variable selection and raking in propensity scoring. Statistics in Medicine 26(5):
1022–1033.

Kolenikov, S. 2010. Resampling inference with complex survey data. The Stata Journal

10: 165–199.

Korn, E. L., and B. I. Graubard. 1995. Analysis of Large Health Surveys: Accounting
for the Sampling Design. Journal of the Royal Statistical Society, Series A 158(2):
263–295.

34 Raking survey data

———. 1999. Analysis of Health Surveys. John Wiley and Sons.

Kott, P. S. 2006. Using Calibration WeightingtoAdjust for Nonresponse andCoverage
Errors. Survey Methodology 32(2): 133–142.

———. 2009. Calibration Weighting: Combining Probability Samples and Linear Pre-
diction Models. In Sample Surveys: Inference and Analysis, ed. D. Pfeffermann and
C. R. Rao, vol. 29B of Handbook of Statistics, chap. 25. Oxford, UK: Elsevier.

Lundström, S., and C.-E. Särndal. 1999. Calibration as a Standard Method for Treat-
ment of Nonresponse. Journal of Official Statistics 15(2): 305–327.

McConnell, S. 2004. Code Complete: A Practical Handbook of Software Construction.
2nd ed. Microsoft Press.

Pew Research Center. 2012. Assessing the Representativeness of Public Opinion Sur-
veys. Technical report, Pew Research Center for People and Press. Available
at http://www.people-press.org/files/legacy-pdf/Assessing the Representativeness of
Public Opinion Surveys.pdf.

Pfeffermann, D. 1993. The role of sampling weights when modeling survey data. Inter-
national Statistical Review 61: 317–337.

Särndal, C.-E. 2007. The calibration approach in survey theory and practice. Survey

Methodology 33(2): 99–119.

Shao, J. 1996. Resampling Methods in Sample Surveys (with discussion). Statistics 27:
203–254.

Skinner, C. J. 1989. Domain Means, Regression and Multivariate Analysis. In Analysis

of Complex Surveys, ed. C. J. Skinner, D. Holt, and T. M. Smith, chap. 3, 59–88.
New York: Wiley.

Théberge, A. 2000. Calibration and restricted weights. Survey Methodology 26(1):
99–107.

Thompson, M. E. 1997. Theory of Sample Surveys, vol. 74 of Monographs on Statistics

and Applied Probability. New York: Chapman & Hall/CRC.

U.S. Census Bureau. 2009. American Community Survey: Design and Methodology.
Technical report, U.S. Census Bureau, U.S. Government Printing Office, Washington,
DC.

Winter, N. 2002. SURVWGT: Stata module to create and manipulate survey
weights. Statistical Software Components, Boston College Department of Economics.
RePEc:boc:bocode:s427503.

Wittenberg, M. 2010. An introduction to maximum entropy and minimum cross-entropy
estimation using Stata. Stata Journal 10(3): 315–330.

S. Kolenikov 35

Appendix: Common notation

Ck Sec. 1.3 Calibration cell
Dk (13) Maximum relative difference of weights from iteration k− 1 to

iteration k
δD Sec. 1.7 Convergence criteria for Dk

δT Sec. 1.7 Quality control criteria for control totals
i Sec. 1.1 Subscript i usually applies to units in population
j Sec. 1.1 Subscript j usually applies to units in sample
k Sec. 1.7 The outer cycle iteration number
K Sec. 1.7 The maximum number of the outer cycle iterations
l Sec. 1.7 Relative limit on weights: all the weights will be made ≥ (l×

the input weight)
l summation index, where I run out of other traditional integer

letters
L Sec. 1.7 Absolute limit on weights: all the weights will be made ≥ L
n Sample size; number of sampled units
N Population size; number of units in population or frame
πi Probability of selection of unit i specified by the sampling de-

sign
S Sec. 1.1 Sample; set of sampled units
T [y] (1) Population-based total of variable [y]
tm[y] (3) Sample-based weighted estimate of the total T [y]; subscript

m = 1, 2, 3 indicates the type of weights used in computing
the total

u Sec. 1.7 Relative upper limit on weights: all the weights will be made
≤ (u× the input weight)

L Sec. 1.7 Absolute upper limit on weights: all the weights will be made
≤ U

U Sec. 1.1 Universe or population; set of units in population
w1i (2) Probability (design) weights; inverse probability of selection
w2j (4) Post-stratified weights; random; depend on group sizes in sam-

ple; analytically computable
w3j Sec. 1.3 Calibrated (raked) weights; random; require iterative opti-

mization
xv Sec. 1.4 the v-th calibration (control) variable, v = 1, . . . , p. The pop-

ulation total T [xv] is known.

About the author

Stanislav (Stas) Kolenikov is a Senior Survey Statistician at Abt SRBI. His research interests in-

clude applications of statistical methods in public opinion research, such as advanced sampling

techniques, survey weighting, calibration, missing data imputation, and variance estimation.

Besides survey statistics, Stas has extensive experience developing and applying statistical

methods in social sciences, with focus on structural equation modeling and microeconometrics.

He has been writing Stata programs since 1998 when Stata was version 5.

	Calibrating survey data using iterative proportional fitting (raking)to.44em.to.44em.S. Kolenikov

