The Stata Journal (yyyy) vv, Number 3, pp. 1-52

Updates to the ipfraking ecosystem

Stanislav Kolenikov
Abt Associates
stas_kolenikov@abtassoc.com

Abstract. [Kolenikov| (2014) introduced package ipfraking for weight calibration
procedures known as iterative proportional fitting, or raking, of complex survey
weights. This article briefly describes the original package, and adds updates to
the core program, as well as a host of additional programs that are used to support
the process of creating survey weights in the authors’ production code.

Keywords: st0001, survey, calibration, weights, raking

1 Introduction and background

Large scale social, behavioral and health data are often collected via complex survey
designs that may involve some or all of stratification, multiple stages of selection and
unequal probabilities of selection (Korn and Graubard||1995}{1999). In an ideal setting,
varying probabilities of selection are accounted for by using the Horvitz-Thompson esti-
mator of the totals (Horvitz and Thompson||1952; Thompson![1997)), and the remaining
sampling fluctuations can be further ironed out by post-stratification (Holt and Smith
1979). However, on top of the planned differences in probabilities of obtaining a response
from a sampled unit, non-response is a practical problem that has been growing more
acute over the recent years (Groves et al.|2001; Pew Research Center|2012)). The anal-
ysis weights that are provided along with the public use microdata by data collecting
agencies are designed to account for unequal probabilities of selection, non-response, and
other factors affecting imbalance between the population and the sample, thus making
the analyses conducted on such microdata generalizable to the target population.

Earlier, I introduced (Kolenikov|2014)) a Stata package called ipfraking that imple-
ments calibration of survey weights to known control totals to ensure that the resulting
weighted data are representative of the population of interest. The process of calibra-
tion is aimed at aligning the sample totals of the key variables with those known for the
population as a whole. The remainder of this section provides a condensed treatment
of estimation with survey data using calibrated weights; full treatment was provided in
the original paper.

For a given finite population I/ of units indexed i = 1, ..., N, the interests of survey
statisticians often lie in estimating the population total of a variable Y

TY]=) Y (1)
ieU

A sample S of n units indexed by j = 1,...,n is taken from U. If the probability to
select the i-th unit is known to be m;, then the probability weights, or design weights,

© yyyy StataCorp LP st0001

2 Raking survey data: updates

are given by the inverse probability of selection:
wy =77 ' (2)

With these weights, an unbiased (design-based, non-parametric) estimator of the total
is (Horvitz and Thompson||1952])

t1y] :Z% Ezwuij (3)

jes " jes

The subindex 1 indicates that the weights wi; were used in obtaining this estimator.
Probability weights protect the end user from potentially informative sampling designs,
in which the probabilities of selection are correlated with outcomes, and the design-based
methods generally ensure that inference can be generalized to the finite population even
when the statistical models used by analysts and researchers are not specified correctly
(Pfeffermann||1993; Binder and Roberts [2003).

Often, survey statisticians have auxiliary information on the units in the frame,
and such information can be included it at the sampling stage to create more efficient
designs. Unequal probabilities of selection are then controlled with probability weights,
implemented as [pw=ezp] in Stata (and can be permanently affixed to the data set with
svyset command).

In many situations, however, usable information is not available beforehand, and may
only appear in the collected data. The census totals of the age and gender distribution of
the population may exist, but age and gender of the sampled units is unknown until the
survey measurement is taken on them. It is still possible to capitalize on this additional
data by adjusting the weights in such a way that the reweighted data conforms to these
known figures. The procedures to perform these reweighting steps are generally known
as weight calibration (Deville and Sarndal|[1992; Deville et al.|[1993; Kott| {2006, [2009;
Séarndal|2007)).

Suppose there are several (categorical) variables, referred to as control variables,
that are available for both the population and the sample (age groups, race, gender,
educational attainment, etc.). Weight calibration aims at adjusting the margins, or low
level interactions, via an iterative optimization aimed at satisfying the control totals for
the control variables x = (x1,...,2p):

> wsx; = T[X)) (4)

JjES

where the right hand side is assumed to be known from a census or a higher quality
survey. |Deville and Sarndal| (1992) framed the problem of finding a suitable set of
weights as that of constrained optimization with the control equations serving as
constraints, and optimization targeted at making the discrepancy between the design
weights wy; and calibrated weights ws; as close as possible, in a suitable sense.

In package ipfraking (Kolenikov|2014)), I implemented a popular calibration algo-
rithm, known as iterated proportional fitting, or as raking, which consists of iterative

S. Kolenikov 3

updating (post-stratification) of each of the margins. (For an in-depth discussion of dis-
tinctions between raking and post-stratification, see Kolenikov| (2016)).) Since 2014, the
continuing code development resulted in additional features that this update documents.

2 Updates to ipfraking program and package

Below, I provide full syntax, and list the new features in a dedicated section.

2.1 Syntax of ipfraking

ipfraking [zf} [m] [weight] , ctotal(matname [matname ...1) [
generate (newvarname) replace double iterate(#) tolerance(#)
ctrltolerance(#) trace nodivergence trimhiabs(#) trimhirel (#)
trimloabs(#) trimlorel(#) trimfrequency(oncel|sometimes|often) double

meta nograph }

Note that the weight statement [pw=varname] is required, and must contain the initial
weights.

Required options

ctotal (matname [matname .. .]) supplies the names of the matrices that contain the
control totals, as well as meta-data about the variables to be used in calibration.

O Technical note

The row and column names of the control total matrices (see [P] matrix rownames)
should be formatted as follows.

e rownames: the name of the control variable
e colnames: the values the control variables takes

e coleq: the name of the variable for which total is computed; typically it is iden-
tically equal to 1.

Q

generate (newvarname) contains the name of the new variable to contain the raked
weights.

replace indicates that the weight variable supplied in the [pw=varname] expression
should be overwritten with the new weights.

One and only one of generate() or replace must be specified.

4 Raking survey data: updates

Linear calibration

linear requests linear calibration of weights.

Options to control convergence

tolerance(#) defines convergence criteria (the change of weights from one iteration
to next). The default is 1076.

iterate(#) specifies the maximum number of iterations. The default is 2000.

nodivergence overrides the check that the change in weights is greater at the current
iteration than in the previous one, i.e., ignores this termination condition. It is
generally recommended, especially in calibration with simultaneous trimming.

ctrltolerance(#) defines the criterion to assess the accuracy of the control totals. It
does not impact iterations or convergence criteria, but rather only triggers alerts in
the output. The default value is 1076,

trace requests a trace plot to be added.

Trimming options

trimhiabs (#) specifies the upper bound U on the greatest value of the raked weights.
The weights that exceed this value will be trimmed down, so that ws; < U for every
jeSs.

trimhirel (#) specifies the upper bound u on the adjustment factor over the baseline
weight. The weights that exceed the baseline times this value will be trimmed down,
so that ws; < uw,; for every j € S.

trimloabs(#) specifies the lower bound L on the smallest value of the raked weights.
The weights that are smaller than this value will be increased, so that ws; > L for
every j € S.

trimlorel (#) specifies the lower bound [on the adjustment factor over the baseline
weight. The weights that are smaller than the baseline times this value will be
increased, so that ws; > lw,; for every j € S.

trimfreqency (keyword) specifies when the trimming operations are to be performed.
The following keywords are recognized:

often means that trimming will be performed after each marginal adjustment.

sometimes means that trimming will be performed after a full set of variables has
been used for post-stratification. This is the default behavior if any of the numeric
trimming options above are specified.

once means that trimming will be performed after the raking process is declared to
have converged.

S. Kolenikov 5

The numeric trimming options trimhiabs(#), trimhirel(#), trimloabs(#),
trimlorel(#) can be specified in any combination, or entirely omitted to produce
untrimmed weights. By default, there is no trimming.

Miscellaneous options

double specifies that the new variable named in generate () option should be generated
as double type. See [D] data types.

meta puts information taken by ipfraking as inputs and produced throughout the
process into characteristics stored with the variable specified in generate () option.
See details in Section 2.2l

nograph omits the histogram of the calibrated weights, which can be used to speed up
ipfraking (e.g., in replicate weight production).

2.2 New features of ipfraking

Since the first publication, the following features and options were added.

Reporting of results and errors by ipfraking was improved in several directions.

1. The discrepancy for the worst fitting category is now being reported.
2. The number of trimmed observations is reported.

3. If ipfraking determines that the categories do not match in the control totals
received from ctotals() and those found in the data, a full listing of categories
is provided, and the categories not found in one or the other are explicitly shown.

Linear calibration (Case 1 of Deville and Sarndal (1992)) is provided with linear
option. The weights are calculated analytically:

-1

wim = wi;(L+x50). A= (D wixx)) (T1X] - taly) (5)

jES

This works very fast, but has an undesirable artefact of producing negative weights, as
the range of weights is not controlled. (As raking works by multiplying the currents
weights by positive factors, if the input weights are all positive, the output weights
will be positive as well.) Negative weights are not allowed by the official svy com-
mands or commands that work with [pweights]. In author’s experience, running lin-
ear weights first, pulling up the negative and small positive weights (replace weight
= 1 if weight <= 1) and re-raking using the “proper” iterative proportional fitting
runs faster than raking from scratch. An example of linearly calibrated weights is given
below in Section [

Option meta saves more information in characteristics of the calibrated weight vari-
ables. Using Example 3 from |Kolenikov| (2014) with trimming options, we have:

capture drop rakedwgt3

Raking survey data: updates

ipfraking [pw=finalwgt], gen(rakedwgt3) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000) meta

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256

Iteration
Iteration

Iteration
Iteration

3, max rel difference of raked weights = .02754514
4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
6, max rel difference of raked weights = .00018036
7, max rel difference of raked weights = .00003391

Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07

The worst relative discrepancy of 3.0e-08 is observed for race ==

Target value = 20053682; achieved value = 20053682

Trimmed due to the upper absolute limit: 5 weights.

Summary of the weight changes

Mean Std. dev. Min Max Ccv
Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

char 1i rakedwgt3[]
rakedwgt3[source] :
rakedwgt3[objfcn] :
rakedwgt3[maxctrl] :
rakedwgt3[converged] :
rakedwgt3[worstcat] :
rakedwgt3[worstvar] :
rakedwgt3[command] :
rakedwgt3[trimloabs] :
rakedwgt3[trimhiabs]:
rakedwgt3[trimfrequency]:
rakedwgt3[hashi] :
rakedwgt3[mat3]:
rakedwgt3[over3]:
rakedwgt3[totalof3]:
rakedwgt3[Census2011_race] :
rakedwgt3[mat2] :
rakedwgt3[over2] :
rakedwgt3[totalof2]:

finalwgt
2.25435521346e-07
3.00266822363e-08
1

3

race
[pw=finalwgt], gen(rakedwgt3) ctotal(ACS2011_sex_age Census2011_reg
trimloabs (2000)
trimhiabs (200000)
sometimes
2347674164
Census2011_race
race

_one
7.48567503861e-09
Census2011_region
region

_one

rakedwgt3[Census2011_region]:

rakedwgt3[mati]:
rakedwgt3[overl]:
rakedwgt3[totalofl]:
rakedwgt3[ACS2011_sex_age]:
rakedwgt3[notel] :
rakedwgt3[note0] :

3.00266822363e-08

ACS2011_sex_age

sex_age

_one

4.13778410340e-09

Raking controls used: ACS2011_sex_age Census2011_region Census2011_rac
1

The following characteristics are stored with the newly created weight variable (see

[P] char).

lon ..

S. Kolenikov

command
matriz name

trimhiabs, trimloabs,
trimhirel, trimlorel,

The full command as typed by the user

The relative matrix difference from the corresponding
control total, see [D] functions

Corresponding trimming options, if specified

trimfrequency
maxctrl the greatest mreldif between the targets and the achieved
weighted totals
objfcn the value of the relative weight change at exit
converged whether ipfraking exited due to convergence (1)
vs. due to an increase in the objective function
or reaching the limit on the number of iterations (0)
source weight variable specified as the [pw=] input
worstvar the variable in which the greatest discrepancy between
the targets and the achieved weighted totals
(maxctrl) was observed
worstcat the category of the worstvar variable in which the
greatest discrepancy was observed
For the control total matrices #= 1,2, ..., the following meta-information is stored.
mat # the name of the control total matrix
totalof# the multiplier variable (matrix’ coleq
over# the margin associated with the matrix

(i.e., the categories represented by the columns)

Also, ipfraking stores the notes regarding the control matrices used, and which of
the margins did not match the control totals, if any. See [D] notes.

2.3 Utility programs

The original package ipfraking provided two additional utility programs, mat2do and
x1s2row. An additional utility program whatsdeff was added to compute the design
effects and margins of error, common tasks associated with describing survey weights.
Specifically, the Transparency Initiative of the American Association for Public Opinion
Research (AAPORJ2014) requires that

For probability samples, the estimates of sampling error will be reported,
and the discussion will state whether or not the reported margins of sampling
error or statistical analyses have been adjusted for the design effect due to
weighting, clustering, or other factors.

whatsdeff weight_variable [if | [in] , [by(varlist) |

The utility program whatsdeff calculates the apparent design effect due to un-
equal weighting, DEFFywg = 1 + CV?D =1 + r(Var)/(r(mean)) "2 from summarize

8 Raking survey data: updates

weight_variable. Additionally, it reports the effective sample size, n/DEFFywg, and also
returns the margins of error for the sample proportions that estimate the population

proportions of 10% and 50%.

. webuse nhanes2, clear

. whatsdeff finalwgt

Group ‘ Min ‘ Mean ‘ Max ‘ cv ‘ DEFF ‘ N ‘ N eff
Overall ‘ 2000.00 ‘ 11318.47 ‘ 79634.00 ‘ 0.6453 ‘ 1.4164 ‘ 10351 ‘ 7307.97
. return list
scalars:
r(N) = 10351
r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974
r(Neff_Overall) = 7307.97435325364
r(DEFF_Overall) = 1.416397964696134
. whatsdeff finalwgt, by(sex)
Group Min Mean Max Cv DEFF N N eff
sex
Male 2000.00 11426.14 79634.00 0.6578 1.4326 4915 | 3430.94
Female 2130.00 11221.12 61534.00 0.6333 1.4010 5436 | 3880.01
Overall 2000.00 11318.47 79634.00 0.6453 1.4164 | 10351 | 7307.97
. return list
scalars:
r(N) = 10351
r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974

r(Neff_Overall) = 7307.97435325364
r (DEFF_Overall) = 1.416397964696134
r(Neff_Female) = 3880.00710397866
r(DEFF_Female) = 1.40102836266093
r(Neff_Male) = 3430.938195872213
r(DEFF_Male) = 1.432552765279559

2.4 New programs in the package

Two new programs are added to the package: ipfraking report and wgtcellcollapse,
and are documented in the subsequent sections of this article. The former provides re-
ports on the raked weights, including summaries of the unweighted data, data with the
input weights, and data with the raked weights. The latter creates a mostly automated
flow of collapsing weighting cells that are too detailed (and hence have low sample sizes).

3 Excel reports on raked weights: ipfraking report

ipfraking report using filename , raked _weight(varname) [

matrices(namelist) by(varlist) xls replace force }

S. Kolenikov

9

The utility command ipfraking report produces a detailed report describing the
raked weights, and places it into filename.dta file (or, if x1s option is specified, both
filename .dta and filename.x1s files).

Along the way, ipfraking report runs a regression of the log raking ratio ws; /w1
on the calibration variables. This regression is expected to have R? very close to 1, and
the regression coefficients provide insights regarding which categories received greater
vs. smaller adjustments.

. ipfraking_report using rakedwgt3-report, raked_weight(rakedwgt3) replace by(_one)
Margin variable sex_age (total variable: _one; categories: 11 12 13 21 22 23).
Margin variable region (total variable: _one; categories: 1 2 3 4).
Margin variable race (total variable: _one; categories: 1 2 3).

Auxiliary variable _one (categories: 1).

file rakedwgt3-report.dta saved

Source SS df MS Number of obs = 10,351
F(10, 10340) > 99999.00
Model 2086.13859 10 208.613859 Prob > F = 0.0000
Residual .78315703 10,340 .000075741 R-squared = 0.9996
Adj R-squared = 0.9996
Total 2086.92175 10,350 .201634952 Root MSE = .0087
__000003 Coef. Std. Err. t P>t [95% Conf. Intervall
sex_age
11 .0644365 .0002775 232.21 0.000 .0638925 . 0649804
12 . 4545577 .0003154 1441.25 0.000 .4539395 .455176
13 .6782466 .0002804 2418.71 0.000 .6776969 .6787963
22 .3966406 .0003049 1300.84 0.000 .3960429 .3972383
23 .7304392 .0002726 2679.97 0.000 . 7299049 .7309734
region
NE -.4455127 .0002536 -1756.49 0.000 -.4460099 -.4450155
MW -.4428144 .0002335 -1896.53 0.000 -.4432721 -.4423567
W -.6672675 .0002407 -2772.21 0.000 -.6677393 -.6667957
race
Black .3360321 .0002848 1180.08 0.000 .3354739 .3365902
Other 1.613276 .0006303 2559.34 0.000 1.612041 1.614512
_cons .5864801 .0002455 2388.48 0.000 .5859988 .5869614

Raking adjustments for sex_age variable:
the smallest was
the greatest was

Raking adjustments

the smallest was
the greatest was

Raking adjustments

the smallest was
the greatest was

1.798 for category 21 (21)
3.732 for category 23 (23)

for region variable (1=NE, 2=MW, 3=S, 4=W):
0.922 for category 4 (W)

1.798 for category 3 (S)

for race variable (1=white, 2=black, 3=other):
1.798 for category 1 (White)

9.023 for category 3 (Other)

It looks like ipfraking had to work harder to adjust the weights of older females,
and especially other race individuals.

10 Raking survey data: updates

3.1 Options of ipfraking report

raked_weight (varname) specifies the name of the raked weight variable to create the
report for. This is a required option.

matrices(namelist) specifies a list of matrices (formatted as the matrices supplied
to ctotal () option of ipfraking) to produce weighting reports for. In particular,
the variables and their categories are picked up from these matrices; and the control
totals/proportions are compared to those defined by the weight being reported on.

by (varlist) specifies a list of additional variables for which the weights are to be tabu-
lated in the raking weights report. The difference with the matrices () option is that
the control totals for these variables may not be known (or may not be relevant). In
particular, by (_one), where _one is identically one, will produce the overall report.

x1s requests exporting the report to an Excel file.

replace specifies that the files produced by ipfraking report (i.e., the .dta and the
xls file if x1s option is specified) should be overwritten.

force requires that a variable that may be found repeatedly (between the calibration
variables supplied originally to ipfraking, the variables found in the independent
total matrices(), and the variables without the control totals provided in by ()
option) is processed every time it is encountered. (Otherwise, it is only processed
once.)

3.2 Variables in the raking report

The raking report file contains the following variables.

Variable name Definition
Weight_Variable The name of the weight variable, generate ()
C_Total Margin Variable_Name The name of the control margin,

rowname of the corresponding ctotal () matrix
C_Total Margin Variable Label The label of the control margin variable
Variable_Class The role of the variable in the report:

Raking margin: a variable used as a calibration margin
(picked up automatically from the ctotal()
matrix, provided meta option was specified)
Other known target: supplied with matrices()
option of ipfraking report
Auxiliary variable: additional variable supplied
with by () option of ipfraking report
C_Total_Arg Variable_Name The name of the multiplier variable
C_Total_Arg Variable_Label The label of the multiplier variable

S. Kolenikov 11

Variable name Definition
C_Total Margin Category_Number Numeric value of the control total category
C_Total Margin Category_Label Label of the control total category
Category_Total _Target The control total to be calibrated to

(the specific entry in the ctotal() matrix)
Category_Total Prop Control total proportion

(the ratio of the specific entry in the ctotal ()
matrix to the matrix total)

Unweighted _Count Number of sample observations in the category
Unweighted Prop Unweighted proportion
Unweighted Prop_Discrep Difference Unweighted Prop - Category_Total Prop
Category_Total _SRCWGT Weighted category total, with source weight
Category_Prop_SRCWGT Weighted category proportion, with source weight
Category_Total Discrep_SRCWGT Difference Category_Total SRCWGT -
- Category_Total _Target
Category_Prop_Discrep SRCWGT Difference Category_Prop_SRCWGT -
- Category_Total_Prop
Category_RelDiff _SRCWGT reldif (Category_Total _SRCWGT,
Category_Total_Target)
Overall Total SRCWGT Sum of source weights
Source The name of the matrix from which the totals
were obtained
Comment Placeholder for comments, to be entered during

manual review

For each of the input weights (SRCWGT suffix), raked weights (RKDWGT suffix) and
raking ratio (the ratio of raked and input weights, RKDRATIO suffix), the following sum-
maries are provided.

Variable name Definition

Min_WEIGHT Min of source weights

P25_WEIGHT 25th percentile of source weights
P50_WEIGHT Median of source weights

P75_WEIGHT 75th percentile of source weights
Max_WEIGHT Max of source weights

Mean WEIGHT Mean of source weights

SD_WEIGHT Standard deviation of source weights
DEFF_WEIGHT Apparent UWE DEFF of source weights

3.3 Example

. use rakedwgt3-report, clear
(Weighting report on rakedwgt3)

. list C_Total_Margin_Variable_Name C_Total_Margin_Category_Label ///
> Category_Total_Target Category_Total RKDWGT DEFF_SRCWGT DEFF_RKDWGT , ///
> sepby(C_Total_Margin_Variable_Name)

12 Raking survey data: updates

C_Tota.. ~y_Label Categor-~t Categor. . DEFF_SR~T DEFF_RK-~T
1 sex_age 11 41995394 41995394 1.2148059 1.6259899
2 sex_age 12 42148662 42148662 1.2462168 1.5716613
3. sex_age 13 26515340 26515340 1.2241095 1.5460785
4. sex_age 21 41164255 41164255 1.2325105 1.5639529
5 sex_age 22 43697440 43697440 1.1937826 1.5175312
6 sex_age 23 32773080 32773080 1.233902 1.664307
7. region NE 40679030 40679030 1.3056639 1.3657837
8. region MW 49205289 49205289 1.3475551 1.4909581
9 region S 85024007 85024006 1.4950056 1.4912995
10. region W 53385843 53385844 1.459859 2.3772667
11. race White 1.784e+08 1.784e+08 1.4059259 1.4337901
12. race Black 29856865 29856865 1.5173846 1.5092533
13. race Other 20053682 20053682 1.3179136 1.2264706
14. _one 1 . 2.283e+08 1.4164382 1.7349278

Functionality of ipfraking report is aimed at manual quality control review, which
typically involves (i) categories with raking factors that differ the most (in the output),
and (ii) the resulting report file in Excel, although for some aspects of automated quality
control, it can be useful, as well.

4 Collapsing weighting cells: wgtcellcollapse

An additional new component of ipfraking package is a tool to semi-automatically
collapse weighting cells, in order to achieve a required minimal size of the weighting
cell. (A typical recommendation is to have cells of size 30 to 50.)

wgtcellcollapse task [lf} [m] , [task,options}

where task is one of:
define to define collapsing rules explicitly
sequence to create collapsing rules for a sequence of categories
report to list the currently defined collapsing rules
candidate to find rules applicable to a given category
collapse to perform cell collapsing

label to label collapsed cells using the original labels after wgtcellcollapse collapse

4.1 Syntax of wgtcellcollapse report

wgtcellcollapse report , variables(warlist) [break]

S. Kolenikov 13

variables (varlist) is the list of variables for which the collapsing rule are to be reported

break requires wgtcellcollapse report to exit with error when technical inconsisten-
cies are encountered

4.2 Syntax of wgtcellcollapse define

wgtcellcollapse define , variables(varlist) [from(numlist) to(#)

label(string) max(#) clear]

variables (varlist) is the list of variables for which the collapsing rule can be used
from(numlist) is the list of categories that can be collapsed according to this rule
to(#) is the numeric value of the new, collapsed category

label(string) is the value label to be attached to the new, collapsed category

max (#) overrides the automatically determined max value of the collapsed variable
clear clears all the rules currently defined

Individual collapsing rules can be defined as follows.

. clear

. set obs 4
number of observations (_N) was O, now 4

. gen byte x = _n

: label define x_1bl 1 "One" 2 "Two" 3 "Three" 4 "Four"
: label values x x_1bl

: wgtcellcollapse define, var(x) from(i 2 3) to(123)

wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (123)
WARNING: unlabeled value x == 123

Note how break option of wgtcellcollapse can be used to abort the execution
when technical deficiencies in the rules or in the data are encountered. In this case, the
label of the new category 123 was not defined, and this is considered a serious enough
deficiency to stop.

14 Raking survey data: updates

. wgtcellcollapse report, var(x) break

Rule (1): collapse together

X == (One)

x == 2 (Two)

x == 3 (Three)

into x == 123 (123)

ERROR: unlabeled value x == 123
assertion is false
r(9);

. wgtcellcollapse define, var(x) clear
. wgtcellcollapse define, var(x) from(l 2 3) to(123) label("One through three")

. wgtcellcollapse report, var(x) break

Rule (1): collapse together

x == 1 (One)

x == 2 (Two)

x == 3 (Three)

into x == 123 (One through three)

4.3 Syntax of wgtcellcollapse sequence

wgtcellcollapse sequence , variables(warlist) from(numlist) depth(#)

variables (varlist) is the list of variables for which the collapsing rule can be used

from(numlist) is the sequence of values from which the plausible subsequences can be
constructed

depth(#) is the maximum number of the original categories that can be collapsed

Moderate length sequences of collapsing categories can be defined as follows.

. clear

. set obs 4
number of observations (_N) was O, now 4

. gen byte x = _n

. label define x_1bl 1 "One" 2 "Two" 3 "Three" 4 "Four"

. label values x x_1bl

. wgtcellcollapse sequence, var(x) from(l 2 3 4) depth(3)
. wgtcellcollapse report, var(x)

Rule (1): collapse together
X == (One)
x == 2 (Two)
into x == 212 (One to Two)

(Continued on next page)

S. Kolenikov 15

Rule (2): collapse together

x == 2 (Two)

X == (Three)

into x == 223 (Two to Three)
Rule (3): collapse together

x == 3 (Three)

X == (Four)

into x == 234 (Three to Four)
Rule (4): collapse together

x == 1 (One)

x == 2 (Two)

x == 3 (Three)

into x == 313 (One to Three)
Rule (5): collapse together

x == 1 (One)

x == 223 (Two to Three)

into x == 313 (One to Three)

Rule (6): collapse together
x == 3 (Three)
x == 212 (One to Two)
into x == 313 (One to Three)

Rule (7): collapse together
== 2 (Two)
x == 3 (Three)
x == 4 (Four)
into x == 324 (Two to Four)

Rule (8): collapse together
X == (Two)
x == 234 (Three to Four)
into x == 324 (Two to Four)

Rule (9): collapse together
x == 4 (Four)
x == 223 (Two to Three)
into x == 324 (Two to Four)

Note how wgtcellcollapse sequence automatically created labels for the collapsed
cells.

When creating sequential collapses, wgtcellcollapse sequence uses the following

mnemonics in creating the new categories:

e First comes the length of the collapsed subsequence (up to depth(#)).

e Then comes the starting value of the category in the subsequence (padded by
zeroes as needed).

e Then comes the ending value of the category in the subsequence (padded by zeroes
as needed).

In the example above, rules 7 through 9 lead to collapsing into the new category 324.
This should be interpreted as “the subsequence of length 3 that starts with category 2
and ends with category 4”. A numeric value of the collapsed category that reads like

16 Raking survey data: updates

50412 means “the subsequence of length 5 that starts with category 4 and ends with
category 12”7. In that second example, wgtcellcollapse sequence padded the value
of 4 with an additional zero, so that the length of resulting collapsed category value
is always (of digits of the sequence length) + twice (of digits of the largest original
category).

Note that wgtcellcollapse sequence respects the order in which the categories
are supplied in the from() option, and does not sort them. If the categories are supplied
in the order 2, 4, 1 and 3, then wgtcellcollapse sequence would collapse 2 with 4, 4
with 1, and 1 with 3:

. wgtcellcollapse define, var(x) clear
. wgtcellcollapse sequence, var(x) from(2 4 1 3) depth(2)
. wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 2 (Two)
x == 4 (Four)
into x == 224 (Two to Four)

Rule (2): collapse together
x == 4 (Four)
x == 1 (One)
into x == 241 (Four to One)

Rule (3): collapse together
x == 1 (One)
x == 3 (Three)
into x == 213 (One to Three)

4.4 Syntax of wgtcellcollapse candidate

wgtcellcollapse candidate , variable(warname) category(#) [max#}

variable (varname) is the variable whose collapsing rules are to be searched
category(#) is the category for which the candidate rules are to be identified
max (#) is the maximum value of the categories in the candidate rules to be returned

The rules found are quietly returned through the mechanism of sreturn, see [P] re-
turn, as they are intended to stay in memory sufficiently long for wgtcellcollapse
collapse to evaluate each rule. Going back to the example with sequential collapses of
depth 3, we can identify the following candidates for categories 2, 212 (collapsed values
of 1 and 2), and a non-existent category of 55:

(Continued on next page)

S. Kolenikov 17

. wgtcellcollapse candidate, var(x) cat(2)
. sreturn list

macros:
s(goodrule) : "1 2 4 7 8"
s(rule8) : "2:234=324"
s(rule7) : "2:3:4=324"
s(ruled) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rulel) : "1:2=212"
s(cat) : "2"
s (X) : llXIl

. wgtcellcollapse candidate, var(x) cat(2) max(9)
. sreturn list

macros:
s(goodrule) : "1 2 4 7"
s(rule7) : "2:3:4=324"
s(rule4) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rulel) : "1:2=212"
s(cat) : "2"
s(x) : "x"

. wgtcellcollapse candidate, var(x) cat(212)
. sreturn list

macros:
s(goodrule) : "6"
s(rule6) : "3:212=313"
s(cat) : "212"
s(x) : "x"

. wgtcellcollapse candidate, var(x) cat(55)
. sreturn list

macros:
s(cat) : "b5"
s (X) g

In the second call to the option max(9) was used to restrict the returned rules to
the rules that deal with the original categories only (so rule 8 that involved a collapsed
category 234 was omitted). In the third call, a list of rules that involve a collapsed cat-
egory cat(212) was requested. Requests for nonexisting categories are not considered
errors, but simply produce empty lists of “good rules”

4.5 Syntax of wgtcellcollapse label

wgtcellcollapse label , variable(warname) [verbose force }

variable (varname) is the collapsed variable to be labeled.
verbose outputs the labeling results. There may be a lot of output.
force instructs wgtcellcollapse label to only use categories present in the data.

Example is given in section below.

18 Raking survey data: updates

4.6 Syntax of wgtcellcollapse collapse

wgtcellcollapse collapse [zf} [m] , variables(warlist) mincellsize (#)
saving(dofile_name) [generate (newvarname) replace append

feed(varname) strict sort(wvarlist) run maxpass(#) maxcategory(#)

zeroes(numlist) greedy }

variables (varlist) provides the list of variables whose cells are to be collapsed. When
more than one variable is specified, wgtcellcollapse collapse proceeds from right
to left, i.e., first attempts to collapse the rightmost variable.

mincellsize(#) specifies the minimum cell size for the collapsed cells. For most
weighting purposes, values of 30 to 50 can be recommended.

generate (newvarname) specifies the name of the collapsed variable to be created.
feed (varname) provides the name of an already existing collapsed variable.

strict modifies the behavior of wgtcellcollapse collapse so that only collapsing
rules for which all participating categories have nonzero counts are utilized.

sort (varlist) sorts the data set before proceeding to collapse the cell. The default sort
order is in terms of the values of the collapsed variable. A different sort order may
produce a different set of collapsed cell when cells are tied on size.

maxpass (#) specifies the maximum number of passes through the data set. The default
value is 10000.

maxcategory (#) is the maximum category value of the variable being collapsed. It is
passed to the internal calls to wgtcellcollapse candidate, see above.

zeroes(numlist) provides a list of the categories of the collapsed variable that may
have zero counts in the data.

greedy modifies the behavior wgtcellcollapse collapse to prefer the rules that col-
lapse the maximum number of categories.

Options to deal with the do-file to write the collapsing code to:

saving(dofile_name) specifies the name of the do-file that will contain the cell col-
lapsing code.

replace overwrites the do-file if one exists.
append appends the code to the existing do-file.

run specifies that the do-file created is run upon completion. This option is typically
specified with most runs.

The primary intent of wgtcellcollapse collapse is to create the code that can
be utilized for both the survey data file and the population targets data file that are

S. Kolenikov 19

assumed to have identically named variables. Thus it does not only manipulate the data
in the memory and collapses the cells, but also produces the do-file code that can be
recycled. To that effect, when a do-file is created with the replace and saving() op-
tions, the user needs to specify generate() option to provide the name of the collapsed
variable; and when the said do-file is appended with the the append and saving()
options, the name of that variable is provided with the feed() option.

The algorithm wgtcellcollapse collapse uses to identify the cells to be collapsed
is a variation of greedy search. It first identifies the cells with the lowest (positive)
counts; finds the candidate rules for the variable(s) to be collapsed; evaluates the counts
of the collapsed cells across all these candidate rules; and uses the rule that has produces
the smallest size of the collapsed cell across all applicable rules. So when it finds several
rules that are applicable to the cell being currently processed that has a size of 5, and the
candidate rules produce cells of sizes 7, 10 and 15, wgtcellcollapse collapse will use
the rule that produces the cell of size 7. The algorithm runs until all cells have sizes of
at least mincellsize (#) or until maxpass(#) passes through the data are executed.
It is a pretty dumb algorithm, actually, and it fails quite often. For that reason, a
number of hooks are provided to modify its behavior. Section |[4.7| will demonstrate the
typical failures, and the ways to overcome them.

Hint 1. Since wgtcellcollapse collapse works with the sample data, it will not
be able to identify categories that are not observed in the sample (e.g., rare categories),
but may be present in the population. This will lead to errors at the raking stage, when
the control total matrices have more categories than the data, forcing ipfraking to
stop. To help with that, the option zeroes() allows the user to pass the categories of
the variables that are known to exist in the population but not in the sample.

Hint 2. The behavior of wgtcellcollapse collapse, zeroes() may still not be
satisfactory. As it evaluates the sample sizes of the collapsed cells across a number of
candidate rules that involve zero cells, it will probably pick up the rule with lowest
number, and that rule may as well leave some other candidate rules with zero cells
untouched. This may create problems when wgtcellcollapse collapse returns to
those untouched cells, and looks for the existing cells to collapse them with, creating
collapsing rules with breaks in the sequences. To improve upon that behavior, option
greedy makes wgtcellcollapse collapse look for a rule that has as many categories
as possible, thus collapsing as many categories with zero counts in one swipe as it can.

Hint 3. Other than for dealing with zero cells, the option strict should be specified
most of the times. It effectively makes sure that the candidate rules correspond to the
actual data.

Hint 4. Sometimes, you see some combinations in the data that seem like a nobrainer
to collapse. Well, they are nobrainers to you, but wgtcellcollapse collapse is not
that smart. If you want to guarantee some specific combination of cells to be collapsed
by wgtcellcollapse collapse, your best bet may be to explicitly identify them with
the if condition, and specify some ridiculously large cell size like mincellsize (10000)
so that wgtcellcollapse collapse makes every possible effort to collapse those cells.
It will exit with a complaint that this size could not be achieved, but hopefully the cells

20 Raking survey data: updates

will be collapsed as needed.

4.7 Motivating example

Development of wgtcellcollapse was to address the need to collapse cells of the margin
variables so that each cell has a minimum sample size; and to do so in a way that can
be easily made consistent between the sample data and the population targets data.
The problem arises when some of the target variables have dozens of categories, most
of which have small counts. While the primary motivation comes from transportation
surveys, the ideas are also applicable to other domains, e.g., continuous age variables
or highly detailed race/ethnicity or region of origin categories in health or economic
surveys.

The workflow of wgtcellcollapse is demonstrated with the following simulated
data set of trips along a metro line composed of 21 stations:

. use stations, clear

. list station_id, sep(0)

station_id

1. 1. Alewife

2. 2. Brookline

3. 8. Carmenton

4. 11. Dogville

5. 18. East End

6. 24. Framington

7. 26. Grand Junction

8. 30. High Point

9. 36. Irvingtown

10. 39. Johnsville
11. 40. King Street
12. 44 . Limerick
13. 47. Moscow City
14. 49. Ninth Street
15. 50. Ontario Lake
16. 53. Picadilly Square
17. 55. Queens Zoo
18. 60. Redline Circle
19. 62. Silver Spring
20. 68. Toledo Town
21. 69. Union Station

(Continued on next page)

S. Kolenikov

21

Turnstile counts were collected at entrances and exits of the stations, producing the

following population figures.

. use trip_population, clear

. table board_id daypart , c(sum num_pass) cellwidth(10) mi

daypart

board_id AM Peak Midday PM Reverse Night Weekend
1. Alewife 1423 34 219 113 44
2. Brookline 7198 298 773 169 144
8. Carmenton 19254 181 3739 872 422
11. Dogville 12626 872 3476 769 1270
18. East End 2470 143 1263 145 114
24. Framington 634 50 1296 133 60
26. Grand Junction 2208 233 439 88 166
30. High Point 4319 424 3740 482 115
36. Irvingtown 1221 34 444 30 167
39. Johnsville 93 4 64 2 6
40. King Street 398 46 76 11 13
44. Limerick 1021 19 129 53 34
47. Moscow City 3300 776 984 140 301
49. Ninth Street 38 22 191 5 5
50. Ontario Lake 606 22 80 18 23
53. Picadilly Square 642 71 622 153 69
55. Queens Zoo 331 23 174 15 19
60. Redline Circle 270 4 63 13 3
62. Silver Spring 3402 240 950 206 445
68. Toledo Town 5085 61 744 272 112

. table alight_id daypart , c(sum num_pass) cellwidth(10) mi

daypart

alight_id AM Peak Midday PM Reverse Night Weekend
2. Brookline 19 . 3 2 .
8. Carmenton 492 18 56 23 15
11. Dogville 2475 42 423 153 80
18. East End 929 31 193 67 68
24. Framington 404 13 91 28 27
26. Grand Junction 576 20 147 42 41
30. High Point 2189 89 560 165 167
36. Irvingtown 288 10 91 21 18
39. Johnsville 41 . 11 2 1
40. King Street 131 3 38 8 6
44. Limerick 277 9 87 20 18
47. Moscow City 1746 78 556 142 128
49. Ninth Street 88 2 25 3 4
50. Ontario Lake 232 11 70 14 14
53. Picadilly Square 633 33 198 47 47
55. Queens Zoo 230 10 71 13 14
60. Redline Circle 90 2 26 3 4
62. Silver Spring 1134 67 369 91 85
68. Toledo Town 1372 81 444 112 118
69. Union Station 53193 3038 16007 2733 2677

22 Raking survey data: updates

A survey was administered to a sample of the metro line users, with the following
counts of cases collected.

As only 3654 surveys were collected from a total of 96783 riders, we would reasonably
expect that things do not align quite well. We expect weighting to correct for at least a
portion of that nonresponse. The data available for calibration includes the population
turnstile counts listed above, and we will produce interactions of daypart and station
that will serve as two weighting margins (one for the stations where the metro users
boarded, and one for the stations where they got off).

First, we need to define the weighting rules. In this case, the stations are num-
bered sequentially, with the northernmost, say, station Alewife being number 3, and the
southernmost station, Union Station, where everybody gets off to rush to their city jobs
or attractions, being number 69. Below, we create a list of stations and provide it to
wgtcellcollapse sequence. We would be collapsing stations along the line, with the
expectation that travelers boarding or leaving at adjacent stations within the same day
part are more similar to one another than the travelers boarding or leaving a particular
station at different times of the day. Collapsing rules need to be defined for the daypart
variable as well — mostly because wgtcellcollapse collapse expects all variables to
have collapsing rules defined.

. use trip_sample, clear
. wgtcellcollapse sequence , var(daypart) from(2 3 4) depth(3)

. levelsof board_id, local(stations_on)
1 28 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68

. levelsof alight_id, local(stations_off)
2 8 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68 69

. local all_stations : list stations_on | stations_off

. * relies on stations being in sequential order!!!
. wgtcellcollapse sequence , var(board_id alight_id) from(all_stations”) depth(20)

. save trip_sample_rules, replace
file trip_sample_rules.dta saved

The number of collapsing rules for variables board_id and alight_id created by
wgtcellcollapse sequence is 2961 each.

The first pass of cell collapse and raking

Let us say that we want to define weighting cells with at least 20 cases in each. We will
thus start with weighting cells defined as station-by-daypart interaction, and collapsing
stations within daypart to achieve the cell sizes of at least 20 cases. Here is what a
simple run of wgtcellcollapse collapse might look like.

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///

> generate(dpstonl) saving(dpstonl.do) replace run
Pass O through the data...
smallest count = 1 in the cell 2000039

Invoking rule 39:40=23940

S. Kolenikov
Table 1: Sample frequencies of the trips boardings and alightings.
. use trip_sample, clear
. table board_id daypart , c(freq) cellwidth(10) mi
daypart
board_id AM Peak Midday PM Reverse Night Weekend
1. Alewife 46 4 11 7 3
2. Brookline 236 4 35 6 7
8. Carmenton 653 4 184 a7 24
11. Dogville 410 41 166 35 56
18. East End 85 5 64 4 4
24. Framington 30 3 74 3 1
26. Grand Junction 72 13 23 5 6
30. High Point 158 20 187 25 12
36. Irvingtown 34 2 25 1 15
39. Johnsville 5 1 1 .
40. King Street 17 1 2 . 1
44 . Limerick 28 9 1 3
47. Moscow City 94 31 49 7 13
49. Ninth Street . . 9 . .
50. Ontario Lake 13 1 4 1 1
53. Picadilly Square 23 4 35 7 5
55. Queens Zoo 10 1 14 2
60. Redline Circle 13 . 5 . .
62. Silver Spring 106 18 38 12 17
68. Toledo Town 149 6 33 11 3
. table alight_id daypart , c(freq) cellwidth(10) mi
daypart
alight_id AM Peak Midday PM Reverse Night Weekend
2. Brookline 1 . . .
8. Carmenton 11 1 1 . 1
11. Dogville 85 1 14 6 5
18. East End 36 1 18 1 4
24. Framington 15 1 2 2 2
26. Grand Junction 15 2 8 1 1
30. High Point 73 4 22 11 8
36. Irvingtown 9 4 2 2
39. Johnsville 3 1
40. King Street . 3 .
44. Limerick 13 . 2 . 2
47. Moscow City 81 6 22 6 6
49. Ninth Street 3 1 1 . .
50. Ontario Lake 2 . 1 2 1
53. Picadilly Square 23 1 8 3 2
55. Queens Zoo 6 5 1
60. Redline Circle 5 . . .
62. Silver Spring 49 . 19 3 9
68. Toledo Town 43 3 24 6 7
69. Union Station 1,709 138 813 128 123

23

24

Raking survey data: updates

replace dpstonl = 2023940 if inlist(dpstonl, 2000039, 2000040)
Pass 1 through the data...

smallest count = 1 in the cell 2000050

Invoking rule 50:53=25053

replace dpstonl = 2025053 if inlist(dpstonl, 2000050, 2000053)
Pass 2 through the data...

smallest count = 1 in the cell 2000055

Invoking rule 55:25053=35055

replace dpstonl = 2035055 if inlist(dpstonl, 2000055, 2025053)
Pass 3 through the data...

smallest count = 1 in the cell 3000039

Invoking rule 39:40=23940

replace dpstonl = 3023940 if inlist(dpstoni, 3000039, 3000040)

(output omitted)
Pass 35 through the data...

smallest count = 11 in the cell 5031826

Invoking rule 30:31826=41830

replace dpstonl = 5041830 if inlist(dpstonl, 5000030, 5031826)
Pass 36 through the data...

smallest count = 12 in the cell 2065068

WARNING: could not find any rules to collapse dpstonl == 2065068
Pass 37 through the data...

smallest count = 12 in the cell 3033944

Invoking rule 26:23036:33944=62644

replace dpstonl = 3062644 if inlist(dpstonl, 3000026, 3023036, 3033944)

(output omitted)

Pass 38 through the data...
smallest count = 13 in the cell 1000050
Invoking rule 50:53=25053
replace dpstonl = 1025053 if inlist(dpstoni, 1000050, 1000053)

(output omitted)

Pass 43 through the data...

smallest count = 14 in the cell 3000055

Invoking rule 53:55=25355

replace dpstonl = 3025355 if inlist(dpstonl, 3000053, 3000055)
Pass 44 through the data...

smallest count = 15 in the cell 5104068

WARNING: could not find any rules to collapse dpstonl == 5104068
Pass 45 through the data...

smallest count = 17 in the cell 5000062

Invoking rule 11:18:24:26:30:36:39:40:44:47:49:50:53:55:60:62=161162

replace dpstonl = 5161162 if inlist(dpstonl, 5000011, 5000018, 5000024, 5000026, 5
> 000030, 5000036, 5000039, 5000040, 5000044, 5000047, 5000049, 5000050, 5000053, 50
> 00055, 5000060, 5000062)
Pass 46 through the data...

smallest count = 18 in the cell 2000062

Invoking rule 30:36:39:40:44:47:49:50:53:55:60:62=123062

replace dpstonl = 2123062 if inlist(dpstonl, 2000030, 2000036, 2000039, 2000040, 2
> 000044, 2000047, 2000049, 2000050, 2000053, 2000055, 2000060, 2000062)
Pass 47 through the data...

smallest count = 18 in the cell 3054960

Invoking rule 62:54960=64962

replace dpstonl = 3064962 if inlist(dpstonl, 3000062, 3054960)
Pass 48 through the data...

smallest count = 22 in the cell 1023940

Done collapsing! Exiting...

. return list

scalars:

S. Kolenikov 25

r(arg_min_id) = 1023940
r(min) = 22
macros:
r(cfailed) : "2065068,5104068"
r(failed) : "2065068 5104068"

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///

> generate(dpstoffl) saving(dpstoffl.do) replace run
Pass O through the data...
smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208

replace dpstoffl = 1020208 if inlist(dpstoffi, 1000002, 1000008)
Pass 1 through the data...

smallest count = 1 in the cell 2000008

Invoking rule 8:11=20811

replace dpstoffl = 2020811 if inlist(dpstoffl, 2000008, 2000011)
Pass 2 through the data...

smallest count = 1 in the cell 2000018

Invoking rule 18:24=21824

replace dpstoffl = 2021824 if inlist(dpstoffl, 2000018, 2000024)

(output omitted)

Pass 37 through the data...

smallest count = 7 in the cell 5000068

Invoking rule 62:68=26268

replace dpstoffl = 5026268 if inlist(dpstoffl, 5000062, 5000068)
Pass 38 through the data...

smallest count = 8 in the cell 2044753

WARNING: could not find any rules to collapse dpstoffl == 2044753
Pass 39 through the data...

smallest count = 8 in the cell 4053647

Invoking rule 30:53647=63047

replace dpstoffl = 4063047 if inlist(dpstoffl, 4000030, 4053647)

(output omitted)

Pass 44 through the data...

smallest count = 10 in the cell 4041126

Invoking rule 41126:63047=101147

replace dpstoffl = 4101147 if inlist(dpstoffl, 4041126, 4063047)
Pass 45 through the data...

smallest count = 10 in the cell 4055368

WARNING: could not find any rules to collapse dpstoffl == 4055368
Pass 46 through the data...

smallest count = 12 in the cell 1020208

Invoking rule 20208:21118:24=50224

replace dpstoffl = 1050224 if inlist(dpstoffi, 1020208, 1021118, 1000024)

(output omitted)

Pass 52 through the data...

smallest count = 15 in the cell 3044955

Invoking rule 44955:60:62=64962

replace dpstoffl = 3064962 if inlist(dpstoffi, 3044955, 3000060, 3000062)
Pass 53 through the data...

smallest count = 16 in the cell 5026268

Invoking rule 69:26268=36269

replace dpstoffl = 5036269 if inlist(dpstoffl, 5000069, 5026268)
Pass 54 through the data...

smallest count = 22 in the cell 3000047

Done collapsing! Exiting...

. return list

scalars:

26 Raking survey data: updates

3000047
22

r(arg_min_id)
r(min)

macros:
r(cfailed) : "2044753,4055368"
r(failed) : "2044753 4055368"

The collapsed values of the variables dpston (DayPart-STation-ON) and dpstoff
(DayPart-STation-OFF) combine the values of the parent variables. The value of
dpston==1000001 indicates daypart==1 and station ID 1. The value of dpston==2023940,
the very first collapsed cell, indicates daypart==2 and sequence of two stations from
39 to 40. The value of dpston==3064960 indicates daypart==3 and sequence of six
stations from 49 to 60.

Note that wgtcellcollapse returns a list of the cells that it could not collapse in
r(failed) macro (and a comma delimited list, in £ (cfailed)). These returned values
should be used in production code by making an assert (Gould|[2003) that these macros
are empty. While we know that some cell counts are less than 20, we will ignore the issue
for the moment, as there are bigger concerns with the collapsed cells at the moment, as
will become clear once we follow through with the workflow and attempt raking.

From the above run, wgtcellcollapse produced two files, one for each weighting
margin, called dpston.do and dpstoff.do. An interested reader is welcome to list
them; they contain long sequences of replace commands to perform the cell collapsing.
The point of creating these is that they can be run on the population data to create
identical categories:

. use trip_population, clear
. run dpstonl.do

. total num_pass , over(dpstonl)

Total estimation Number of obs = 719
1000001: dpstonl = 1000001
1000002: dpstonl = 1000002
(output omitted)
5104068: dpstonl = 5104068
5161162: dpstonl = 5161162
Over Total Std. Err. [95% Conf. Intervall
num_pass
1000001 1423 967.7508 -476.9595 3322.959
1000002 7198 4895.91 -2414.011 16810.01
(output omitted)
5104068 270 116.7702 40.74822 499.2518
5161162 1723 909.6551 -62.90172 3508.902
. matrix dpstonl = e(b)
. matrix coleq dpstonl = _one

. matrix rownames dpstonl = dpstonl
. run dpstoffl.do

(Continued on next page)

S. Kolenikov

27

Raking survey data: updates

. total num_pass , over(dpstoffl)
Total estimation Number of obs = 719

1000011: dpstoffil 1000011
1000018: dpstoffl = 1000018

(output omitted)

5000060: dpstoffl 5000060
5036269: dpstoffl 5036269
5140853: dpstoffl = 5140853

Over Total Std. Err. [95% Conf. Intervall
num_pass
1000011 2475 1468.807 -408.6691 5358.669
1000018 929 360.7303 220.7878 1637.212
(output omitted)

5000060 4 2 .0734531 7.926547
5036269 2880 980.8909 954.2428 4805.757
5140853 634 139.2172 360.6787 907.3213

. matrix dpstoffl = e(b)

. matrix coleq dpstoffl = _one

. matrix rownames dpstoffl = dpstoffl

We can then go back to the sample data and try creating raked weights:

. use trip_sample, clear

. run dpstonl

. run dpstoffl

. gen byte _one =1

. ipfraking [pw=_one], ctotal(dpstonl dpstoffl) gen(raked_weightl)

categories of dpstonl do not match in the control dpstonl and in the data (nolab opt
> ion)

This is what dpstonl gives:

_one:1000001 _one:1000002 _one:1000008 _one:1000011 _one:1000018 _one:1000024 _one
:1000026 _one:1000030 _one:1000036 _one:1000044 _one:1000047 _one:1000049 _one:100
0062 _one:1000068 _one:1023940 _one:1025053 _one:1025560 _one:2000011 _one:2065068
_one:2070126 _one:2110847 _one:2123062 _one:3000008 _one:3000011 _one:3000018 _on
€:3000024 _one:3000030 _one:3000036 _one:3000047 _one:3000068 _one:3020102 _one:30
25355 _one:3062644 _one:3064962 _one:4030108 _one:4041830 _one:4084768 _one:413115
3 _one:5030108 _one:5041830 _one:5053647 _one:5104068 _one:5161162

This is what I found in data:

_one:1000001 _one:1000002 _one:1000008 _one:1000011 _one:1000018 _one:1000024 _one
> :1000026 _one:1000030 _one:1000036 _one:1000044 _one:1000047 _one:1000062 _one:100
> 0068 _one:1023940 _one:1025053 _one:1025560 _one:2000011 _one:2065068 _one:2070126
> _one:2110847 _one:2123062 _one:3000008 _one:3000011 _one:3000018 _one:3000024 _on
>
>
>

>
>
>
>
>
>

€:3000030 _one:3000036 _one:3000047 _one:3000068 _one:3020102 _one:3025355 _one:30
62644 _one:3064962 _one:4030108 _one:4041830 _one:4084768 _one:4131153 _one:503010
8 _one:5041830 _one:5053647 _one:5104068 _one:5161162

This is what dpstonl has that data don’t:
_one:1000049

This is what data have that dpstonl doesn’t:
<none>

r(111);

S. Kolenikov 29

. ipfraking [pw=_one], ctotal(dpstoffl dpstonl) gen(raked_weightl)

categories of dpstoffl do not match in the control dpstoffl and in the data (nolab o
> ption)
This is what dpstoffl gives:

_one:1000011 _one:1000018 _one:1000030 _one:1000047 _one:1000068 _one:1000069 _one
> :1025355 _one:1043644 _one:1060226 _one:1064962 _one:2044753 _one:2190869 _one:300
> 0002 _one:3000047 _one:3000068 _one:3000069 _one:3050826 _one:3053044 _one:3064962
> _one:4000002 _one:4000008 _one:4000049 _one:4055368 _one:4075069 _one:4101147 _on
> e:5000055 _one:5000060 _one:5036269 _one:5140853
This is what I found in data:

_one:1000011 _one:1000018 _one:1000030 _one:1000047 _one:1000068 _one:1000069 _one
> :1025355 _one:1043644 _one:1060226 _one:1064962 _one:2044753 _one:2190869 _one:300
> 0047 _one:3000068 _one:3000069 _one:3050826 _one:3053044 _one:3064962 _one:4055368
> _one:4075069 _one:4101147 _one:5036269 _one:5140853
This is what dpstoffl has that data don’t:

_one:3000002 _one:4000002 _one:4000008 _one:4000049 _one:5000055 _one:5000060
This is what data have that dpstoffl doesn’t:

<none>
r(111);

We see that raking failed, because survey nonresponse wiped out some of the smaller
stations from the sample. (Note also the informative error message with diagnostics of
missing categories produced by ipfraking. This is a functionality added since the
first 2010 publication in The Stata Journal. The message lists the categories found
in the data, in the control totals, and in the mismatch.) We should have suspected
as much from the full output of the population control totals, where e.g. the line
for dpstoff==5000060 showed only 4 alightings at station Redline Circle (60) on the
weekends.

The second pass of cell collapse and raking: zeroes() option

Having identified the issue, we can overcome it with zeroes () option of wgtcellcollapse
collapse whose purpose is specifically to add missing categories. This option provides
the list of stations that may have zero sample counts in a given daypart. For instance,
notice that the sample registers only one alighting at Brookline (2) in AM Peak daypart,
even though there are passengers exiting in other dayparts. All in all, wgtcellcollapse
needs to be made aware of the zero sample boardings at Johnsville (39), King Street
(40), Limerick (44), Ninth Street (49), Queens Zoo (55) and Redline Circle (60); as well
as zero alightings at Brookline (2), Carmenton (8), Irvingtown (36), Johnsville (39),
King Street (40), Limerick (44), Moscow City (47), Ninth Street (49), Ontario Lake
(50), Queens Zoo (55), Redline Circle (60), and Silver Spring (62).

(Continued on next page)

30

Raking survey data: updates

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> zeroes (39 40 44 49 55 60) ///
> generate(dpston2) saving(dpston2.do) replace run

Pass O through the data...
smallest count = 1 in the

Processing zero cells...

Invoking rule 49:50=24950
replace dpston2 = 1024950
Pass O through the data...
smallest count = 1 in the
Invoking rule 40:44=24044
replace dpston2 = 2024044
Pass 0 through the data...
smallest count = 1 in the
Invoking rule 49:50=24950
replace dpston2 = 2024950
Pass O through the data...
smallest count = 1 in the
Invoking rule 55:60=25560
replace dpston2 = 2025560
Pass O through the data...
smallest count = 1 in the
Invoking rule 36:39=23639
replace dpston2 = 4023639
Pass O through the data...
smallest count = 1 in the
Invoking rule 40:44=24044
replace dpston2 = 4024044
Pass O through the data...
smallest count = 1 in the
Invoking rule 49:50=24950
replace dpston2 = 4024950
Pass 0 through the data...
smallest count = 1 in the
Invoking rule 53:55=25355
replace dpston2 = 4025355
Pass O through the data...
smallest count = 1 in the

Invoking rule 24950:53:55:

replace dpston2 = 4054960
Pass 0 through the data...
smallest count = 1 in the
Invoking rule 39:40=23940
replace dpston2 = 5023940
Pass O through the data...
smallest count = 1 in the
Invoking rule 49:50=24950
replace dpston2 = 5024950
Pass 0 through the data...
smallest count = 1 in the

Invoking rule 24950:25355:

replace dpston2 = 5054960
Pass O through the data...

smallest count = 1 in the
Pass 12 through the data...
smallest count = 1 in the

cell 2000039

to collapse zero cells
if inlist(dpston2, 1000049,

cell 2000039
to collapse zero cells
if inlist(dpston2, 2000040,

cell 2000039
to collapse zero cells
if inlist(dpston2, 2000049,

cell 2000039
to collapse zero cells
if inlist(dpston2, 2000055,

cell 2000039
to collapse zero cells
if inlist(dpston2, 4000036,

cell 2000039
to collapse zero cells
if inlist(dpston2, 4000040,

cell 2000039
to collapse zero cells
if inlist(dpston2, 4000049,

cell 2000039
to collapse zero cells
if inlist(dpston2, 4000053,

cell 2000039

1000050)

2000044)

2000050)

2000060)

4000039)

4000044)

4000050)

4000055)

60=54960 to collapse zero cells

if inlist(dpston2, 4024950,

cell 2000039
to collapse zero cells
if inlist(dpston2, 5000039,

cell 2000039
to collapse zero cells
if inlist(dpston2, 5000049,

cell 2000039

4000053,

5000040)

5000050)

60=54960 to collapse zero cells

if inlist(dpston2, 5024950,
cell 2000039
cell 2000039

Invoking rule 39:24044=33944

replace dpston2 =

5025355,

2033944 if inlist(dpston2, 2000039, 2024044)

4000055, 4000060)

5000060)

S. Kolenikov 31

(output omitted)

Pass 44 through the data...

smallest count = 10 in the cell 5020102

Invoking rule 8:20102=30108

replace dpston2 = 5030108 if inlist(dpston2, 5000008, 5020102)
Pass 45 through the data...

smallest count = 10 in the cell 5055368

WARNING: could not find any rules to collapse dpston2 == 5055368
Pass 46 through the data...

smallest count = 11 in the cell 2100844

Invoking rule 47:100844=110847

replace dpston2 = 2110847 if inlist(dpston2, 2000047, 2100844)

(output omitted)

Pass 57 through the data...

smallest count = 18 in the cell 3054960

Invoking rule 62:54960=64962

replace dpston2 = 3064962 if inlist(dpston2, 3000062, 3054960)
Pass 58 through the data...

smallest count = 18 in the cell 4055368

WARNING: could not find any rules to collapse dpston2 == 4055368
Pass 59 through the data...

smallest count = 20 in the cell 2000030

Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id)
r(min)

2000030
20

macros:
r(cfailed) : "5055368,4055368"
r(failed) : "5055368 4055368"

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> zeroes(2 8 36 39 40 44 47 49 50 55 60 62) ///
> generate(dpstoff2) saving(dpstoff2.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells

replace dpstoff2 = 1023940 if inlist(dpstoff2, 1000039, 1000040)
Pass 0 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208 to collapse zero cells

replace dpstoff2 = 2020208 if inlist(dpstoff2, 2000002, 2000008)
Pass 0 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 30:36=23036 to collapse zero cells

replace dpstoff2 = 2023036 if inlist(dpstoff2, 2000030, 2000036)
Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 26:30:36:39=42639 to collapse zero cells

replace dpstoff2 = 2042639 if inlist(dpstoff2, 2000026, 2000030, 2000036, 2000039)

(output omitted)

Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 24950:53:55:60=54960 to collapse zero cells

replace dpstoff2 = 5054960 if inlist(dpstoff2, 5024950, 5000053, 5000055, 5000060)
Pass O through the data...

32 Raking survey data: updates

smallest count = 1 in the cell 1000002
Pass 24 through the data...
smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208
replace dpstoff2 = 1020208 if inlist(dpstoff2, 1000002, 1000008)

(output omitted)

Pass 50 through the data...

smallest count = 3 in the cell 5022426

Invoking rule 18:22426=31826

replace dpstoff2 = 5031826 if inlist(dpstoff2, 5000018, 5022426)
Pass 51 through the data...

smallest count = 4 in the cell 2023036

WARNING: could not find any rules to collapse dpstoff2
Pass 52 through the data...

smallest count = 4 in the cell 2110244

WARNING: could not find any rules to collapse dpstoff2 == 2110244
Pass 53 through the data...

smallest count = 4 in the cell 4031826

Invoking rule 30211:31826=60226

replace dpstoff2 = 4060226 if inlist(dpstoff2, 4030211, 4031826)
Pass 54 through the data...

smallest count = 4 in the cell 5043644

Invoking rule 43644:64760=103660

replace dpstoff2 = 5103660 if inlist(dpstoff2, 5043644, 5064760)
Pass 55 through the data...

smallest count = 5 in the cell 1000060

Invoking rule 24950:25355:60=54960

replace dpstoff2 = 1054960 if inlist(dpstoff2, 1024950, 1025355, 1000060)
Pass 56 through the data...

smallest count = 5 in the cell 2074968

Invoking rule 72647:74968=142668

replace dpstoff2 = 2142668 if inlist(dpstoff2, 2072647, 2074968)
Pass 57 through the data...

smallest count = 5 in the cell 3025560

Invoking rule 34953:25560=54960

replace dpstoff2 = 3054960 if inlist(dpstoff2, 3034953, 3025560)
Pass 58 through the data...

smallest count = 6 in the cell 1000055

Invoking rule 53:55=25355

replace dpstoff2 = 1025355 if inlist(dpstoff2, 1000053, 1000055)

(output omitted)

Pass 67 through the data...

smallest count = 10 in the cell 4060226

Invoking rule 30:60226=70230

replace dpstoff2 = 4070230 if inlist(dpstoff2, 4000030, 4060226)
Pass 68 through the data...

smallest count = 11 in the cell 5103660

WARNING: could not find any rules to collapse dpstoff2 == 5103660
Pass 69 through the data...

smallest count = 12 in the cell 1020208

Invoking rule 20208:21118:24=50224

replace dpstoff2 = 1050224 if inlist(dpstoff2, 1020208, 1021118, 1000024)

(output omitted)

2023036

(Continued on next page)

S. Kolenikov 33

Pass 76 through the data...

smallest count = 15 in the cell 3054960

Invoking rule 62:54960=64962

replace dpstoff2 = 3064962 if inlist(dpstoff2, 3000062, 3054960)
Pass 77 through the data...

smallest count = 21 in the cell 4070230

Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id) = 4070230
r(min) 21

macros:
r(cfailed) : "2023036,2110244,5103660"
r(failed) : "2023036 2110244 5103660"

We will continue to disregard the cell counts of insufficient size for the time being.
Running the resulting do-files dpston.do and dpstoff.do on the population data to
create control totals, and providing these control totals to ipfraking program produces
an apparently successful raking result:

. use trip_sample, clear
. run dpston2
. run dpstoff2
. gen byte _one = 1

ipfraking [pw=_one], ctotal(dpston2 dpstoff2) gen(raked_weight2)
Iteration 1, max rel difference of raked weights = 36.208881
Iteration 2, max rel difference of raked weights = .05484732
Iteration 3, max rel difference of raked weights = .0055794
Iteration 4, max rel difference of raked weights = .00053851
Iteration 5, max rel difference of raked weights = .00005171
Iteration 6, max rel difference of raked weights = 4.962e-06

Iteration 7, max rel difference of raked weights = 4.762e-07
The worst relative discrepancy of 3.9e-08 is observed for dpstoff2 == 5180262

Target value = 483; achieved value = 483
Summary of the weight changes
Mean Std. dev. Min Max Ccv
Orig weights 1 0 1 1 0
Raked weights 26.487 5.9013 8.1096 37.001 .2228
Adjust factor 26.4869 8.1096 37.0014
. whatsdeff raked_weight2
Group ‘ Min ‘ Mean ‘ Max ‘ cv ‘ DEFF ‘ N ‘ N eff
Overall ‘ 8.11 ‘ 26.49 ‘ 37.00 ‘ 0.2228 ‘ 1.0496 ‘ 3654 ‘ 3481.24

Note the use of utility program whatsdeff to compute the design effect due to un-
equal weighting; see section|2.3] The problem of zero cells appeared to have been solved:
each and every population combination of daypart and station is properly reflected in
control total categories, and there are

The weighting cells, however, are still not without problems. Consider this cross-

34 Raking survey data: updates

tab of original and collapsed stations (the first part of the if expression identifies the
daypart, AM Peak; the second part identifies collapsed stations, given the nomenclature
of dpstoff variable described on page as the concatenation of the first variable of
the interaction, daypart; the length of the collapsed sequence, and its starting and end
points; station numbers take up to two characters, and hence the collapsed values would
use categories of alight_id like 20102, and mod by 100%100 would be greater than the
maximum two-digit number, 99).

. tab alight_id dpstoff2 if daypart == 1 & mod(dpstoff2,100%100)>99

Long ID of the interaction
alight_id 1025355 1043644 1060226 1064962 Total
2. Brookline 0 0 1 0 1
8. Carmenton 0 0 11 0 11
24. Framington 0 0 15 0 15
26. Grand Junction 0 0 15 0 15
36. Irvingtown 0 9 0 0 9
39. Johnsville 0 3 0 0 3
44. Limerick 0 13 0 0 13
49. Ninth Street 0 0 0 3 3
50. Ontario Lake 0 0 0 2 2
53. Picadilly Square 23 0 0 0 23
55. Queens Zoo 6 0 0 0 6
60. Redline Circle 0 0 0 5 5
62. Silver Spring 0 0 0 49 49
Total 29 25 42 59 155

To human eye, it is obvious that Picadilly Square (53) and Queens Zoo (55) should
have been a part of the six-station sequence 1064962 spanning from Ninth Street (49)
to Silver Spring (62). Instead, wgtcellcollapse decided to separate these two stations
out into their own cell. How did that happen? The logic of wgtcellcollapse is to
collapse categories in such a way as to produce the result with the smallest possible
count. Thus, within AM Peak daypart, the sequence of collapsing steps was as follows.

Pass 0 The zero cells were collapsed first: Johnsville (39) and King Street (40) resulting
in an intermediate cell of size 3.

Pass 24 The smallest cell of size 1 (Brookline (2)) was collapsed with its neighbor
(Carmenton (8)) resulting in an intermediate cell of size 12.

Pass 38 The smallest cell of size 2 (Ontario Lake (50)) was collapsed with its neighbor
(Ninth Street (49)) resulting in an intermediate cell of size 5.

Pass 47 The smallest cell of size 3, collapsed Johnsville (39) and King Street (40), was
further collapsed with its neighbor Irvingtown (36) resulting in an intermediate
cell of size .

Pass 55 The smallest cell of size 5, Redline Circle (60), was collapsed by a three-way
rule with a duo Picadilly Square (53) + Queens Zoo (55), which actually was
empty, and a small cell Ontario Lake (50) + Ninth Street (49), resulting in an
intermediate cell of size 10.

S. Kolenikov 35

Let us look at that last step in more detail. At this stage, Redline Circle (60) with
5 exiting passengers in the sample could be collapsed with:

1. Silver Spring (62), to form a cell of size 54;
2. Queens Zoo (55), to form a cell of size 11;
3. asequence of Picadilly Square (53) and Queens Zoo (55), to form a cell of size 34;

4. ...and a number of other options

However, at pass 55, wgtcellcollapse picked the rule 24950:25355:60=54960 which,
at the time it was processed, had a count of 5 in the cell 24950, a count of zero in the
cell 25355, and a count of 5 in the original station Redline Circle (60). (Note that the
cell 25355 would actually form later at pass 58.) The problem lies with the zero count
of the ghost of the cell 25355.

To overcome this problem, wgtcellcollapse have a strict option that only allows
the rules that have a non-zero count in every component of the rule (so the problematic
rule 24950:25355:60=54960 would not be a legal one under that restriction). As is
easily seen, this option directly contradicts the zeroes() option, and that necessitates
separate runs.

The third pass of cell collapse and raking: strict and feed options

We will separate the two runs of wgtcellcollapse into a run that only deals with
zeroes, and another run that deals with everything else. To prevent wgtcellcollapse
from any further merges, mincellsize(1) can be specified in the first run. As the
relevant variables will have already been created by the first run, the option to pass the
variable name to be further modified is feed (). To make sure that the relevant variable
exists in the data set, the option run instructs wgtcellcollapse to run the do-file it
just created, thus creating or modifying the collapsed cell variable. Finally, instead of
specifying replace to overwrite the do-files that wgtcellcollapse creates, we need to
specify append to keep adding to these files.

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes (39 40 44 49 55 60) ///
> generate(dpston3) saving(dpston3.do) replace run
Pass O through the data...

smallest count = 1 in the cell 2000039
Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells

replace dpston3 = 1024950 if inlist(dpston3, 1000049, 1000050)
Pass 0 through the data...

smallest count = 1 in the cell 2000039

Invoking rule 40:44=24044 to collapse zero cells

replace dpston3 = 2024044 if inlist(dpston3, 2000040, 2000044)

(output omitted)

36

Raking survey data: updates

Pass O through the data...

smallest count = 1 in the cell 2000039

Invoking rule 24950:25355:60=54960 to collapse zero cells

replace dpston3 = 5054960 if inlist(dpston3, 5024950, 5025355, 5000060)
Pass O through the data...

smallest count = 1 in the cell 2000039
Pass 12 through the data...
smallest count = 1 in the cell 2000039

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///

> strict feed(dpston3) saving(dpston3.do) append run
Pass 12 through the data...
smallest count = 1 in the cell 2000039

Invoking rule 39:24044=33944
replace dpston3 = 2033944 if inlist(dpston3, 2000039, 2024044)

(output omitted)

Pass 40 through the data...

smallest count = 6 in the cell 4000002

Invoking rule 1:2=20102

replace dpston3 = 4020102 if inlist(dpston3, 4000001, 4000002)
Pass 41 through the data...

smallest count = 7 in the cell 4025355

WARNING: could not find any rules to collapse dpston3 == 4025355
Pass 42 through the data...

smallest count = 7 in the cell 5025355

WARNING: could not find any rules to collapse dpston3 == 5025355
Pass 43 through the data...

smallest count = 8 in the cell 2021824

Invoking rule 26:21824=31826

replace dpston3 = 2031826 if inlist(dpston3, 2000026, 2021824)

(output omitted)

Pass 57 through the data...

smallest count = 19 in the cell 3025560

Invoking rule 62:25560=35562

replace dpston3 = 3035562 if inlist(dpston3, 3000062, 3025560)
Pass 58 through the data...

smallest count = 20 in the cell 5026268

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes(2 8 36 39 40 44 47 49 50 55 60 62) ///
> generate (dpstoff3) saving(dpstoff3.do) replace run
Pass O through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells

replace dpstoff3 = 1023940 if inlist(dpstoff3, 1000039, 1000040)
Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208 to collapse zero cells

replace dpstoff3 = 2020208 if inlist(dpstoff3, 2000002, 2000008)
Pass 0 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 30:36=23036 to collapse zero cells

replace dpstoff3 = 2023036 if inlist(dpstoff3, 2000030, 2000036)
Pass O through the data...

smallest count = 1 in the cell 1000002

S. Kolenikov 37

Invoking rule 26:30:36:39=42639 to collapse zero cells

replace dpstoff3 = 2042639 if inlist(dpstoff3, 2000026, 2000030, 2000036, 2000039)
Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 24:26:30:36:39:40=62440 to collapse zero cells

replace dpstoff3 = 2062440 if inlist(dpstoff3, 2000024, 2000026, 2000030, 2000036,
> 2000039, 2000040)
Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 44:62440=72444 to collapse zero cells

replace dpstoff3 = 2072444 if inlist(dpstoff3, 2000044, 2062440)

(output omitted)

Pass 0 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 24950:53:55:60=54960 to collapse zero cells

replace dpstoff3 = 5054960 if inlist(dpstoff3, 5024950, 5000053, 5000055, 5000060)
Pass O through the data...

smallest count = 1 in the cell 1000002
Pass 24 through the data...
smallest count = 1 in the cell 1000002

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///

> strict feed(dpstoff3) saving(dpstoff3.do) append run
Pass 24 through the data...
smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208

replace dpstoff3 = 1020208 if inlist(dpstoff3, 1000002, 1000008)
Pass 25 through the data...

smallest count = 1 in the cell 2000011

Invoking rule 11:18=21118

replace dpstoff3 = 2021118 if inlist(dpstoff3, 2000011, 2000018)

(output omitted)

Pass 46 through the data...
smallest count = 2 in the cell 5023639
Invoking rule 23639:24044=43644
replace dpstoff3 = 5043644 if inlist(dpstoff3, 5023639, 5024044)
Pass 47 through the data...
smallest count = 2 in the cell 5025355
WARNING: could not find any rules to collapse dpstoff3

5025355
(output omitted)

Pass 51 through the data...

smallest count = 4 in the cell 2023036

WARNING: could not find any rules to collapse dpstoff3 == 2023036
Pass 52 through the data...

smallest count = 4 in the cell 2110244

Invoking rule 47:110244=120247

replace dpstoff3 = 2120247 if inlist(dpstoff3, 2000047, 2110244)

(output omitted)

Pass 76 through the data...

smallest count = 16 in the cell 5026268

Invoking rule 170260:26268=190268

replace dpstoff3 = 5190268 if inlist(dpstoff3, 5170260, 5026268)
Pass 77 through the data...

smallest count = 21 in the cell 4070230

Done collapsing! Exiting...

The result still isn’t satisfactory, as some collapsed cells still overlap:

38 Raking survey data: updates

. tab alight_id dpstoff3 if daypart == 2 & mod(dpstoff3,100%100)>99

Long ID of the interaction
alight_id 2023036 2042639 2200269 Total
8. Carmenton 0 0 1 1
11. Dogville 0 0 1 1
18. East End 0 0 1 1
24. Framington 0 0 1 1
26. Grand Junction 0 2 0 2
30. High Point 4 0 0 4
47. Moscow City 0 0 6 6
49. Ninth Street 0 0 1 1
53. Picadilly Square 0 0 1 1
68. Toledo Town 0 0 3 3
69. Union Station 0 0 138 138
Total 4 2 153 159

This overlap can be traced back to the collapsing of zero cells: first, the cell 2023036
came to being by a reasonable, at its face, collapsing of the zero cell Irvingtown (36)
with non-zero cell High Point (30); and then the cell 2042639 came to being by a long
overreach for the zero cell Johnsville (39) to be collapsed with a non-zero cell Grand
Junction (26).

The fourth pass of cell collapse and raking: greedy and maxcat() options

The next improvement I am going to demonstrate is to fix the problem of weak perfor-
mance in collapsing the zero cells with an additional option greedy. It modifies behavior
of wgtcellcollapse to require that, among the possible candidate rules with the low-
est count, the rule with the greatest number of components is preferred. That way,
the long streaks of zeroes from Irvingtown (36) to Limerick (44) in midday part could
be collapsed simultaneously into one cell. To support this option, and avoid complex
collapses of zero cells with the already defined cells, option maxcategory () specifies the
greatest value of a component of a rule. By specifying maxcategory(99), we can in-
struct wgtcellcollapse to only use rules that deal with individual stations (that have
category numbers from 1 to 69, and thus are below 99), and do not use the rules that
involve collapsed cells (which would have numbers of at least 20102 for the collapsed
cell Alewife (1) and Brookline (2)). In the first run, those collapsed cells will always be
empty ghosts, and they should not be used in defining how the cells be collapsed.

Note also that with the greedy option, one would want to specify the zeroes some-
where in the middle of the streak, and possibly across multiple categories of the in-
teracting variable. In our example, specifying (zeroes(36) would collapse the midday
streak of zero counts, but the need to collapse the zeroes in the night and the week-
end dayparts would still remain, necessitating something like zeroes (40) — which, in
turn, will likely create overlapping artifacts in the midday section. However, specifying
zeroes (40) without (zeroes(36) would take care of all the streaks observed in Table

S. Kolenikov

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes (39 44 49 60) greedy maxcategory(99) ///

> generate(dpston4) saving(dpston4.do) replace run

Pass O through the data...
smallest count = 1 in the

Processing zero cells...
Invoking rule 49:50=24950

cell 2000039

to collapse zero cells

replace dpston4 = 1024950 if inlist(dpston4, 1000049, 1000050)
Pass O through the data...

smallest count = 1 in the cell 2000039

Invoking rule 40:44=24044 to collapse zero cells

replace dpston4 = 2024044 if inlist(dpston4, 2000040, 2000044)
Pass 0 through the data...

smallest count = 1 in the cell 2000039

Invoking rule 49:50=24950 to collapse zero cells

replace dpston4 = 2024950 if inlist(dpston4, 2000049, 2000050)

(output omitted)
Pass O through the data...

smallest count = 1 in the cell 2000039

Invoking rule 55:60=25560 to collapse zero cells

replace dpston4 = 5025560 if inlist(dpston4, 5000055, 5000060)

Pass O through the data...

smallest count = 1 in the cell 2000039
Pass 10 through the data...
smallest count = 1 in the cell 2000039

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///

> strict feed(dpston4) saving(dpston4.do) append run

Pass 10 through the data...
smallest count = 1 in the cell
Invoking rule 39:24044=33944
replace dpston4 = 2033944 if inlist(dpston4, 2000039, 2024044)

Pass 11 through the data...
smallest count = 1 in the cell
Invoking rule 53:24950=34953
replace dpston4 = 2034953 if inlist(dpston4, 2000053, 2024950)

Pass 12 through the data...
smallest count = 1 in the cell
Invoking rule 34953:25560=54960
replace dpston4 = 2054960 if inlist(dpston4, 2034953, 2025560)

Pass 13 through the data...
smallest count = 1 in the cell
Invoking rule 39:40=23940
replace dpston4 = 3023940 if inlist(dpston4, 3000039, 3000040)

(output omitted)

Pass 55 through the data...
smallest count = 19 in the cell
Invoking rule 62:25560=35562
replace dpston4 = 3035562 if inlist(dpston4, 3000062, 3025560)

Pass 56 through the data...
smallest count = 20 in the cell
Done collapsing! Exiting...

2000039

2024950

2025560

3000039

3025560

5026268

. assert "“r(failed) " == ""

(Continued on next page)

39

40 Raking survey data: updates

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes (2 40 49 50 60) greedy maxcategory(99) ///
> generate (dpstoff4) saving(dpstoff4.do) replace run
Pass O through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells
replace dpstoff4 = 1023940 if inlist(dpstoff4, 1000039, 1000040)
Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 1:2:8=30108 to collapse zero cells
replace dpstoff4 = 2030108 if inlist(dpstoff4, 2000001, 2000002, 2000008)

(output omitted)

Pass O through the data...
smallest count = 1 in the cell 1000002
Invoking rule 49:50=24950 to collapse zero cells
replace dpstoff4 = 5024950 if inlist(dpstoff4, 5000049, 5000050)
Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 49:50:53:55:60=54960 to collapse zero cells
replace dpstoff4 = 5054960 if inlist(dpstoff4, 5000049, 5000050, 5000053, 5000055,

> 5000060)
Pass 0 through the data...

smallest count = 1 in the cell 1000002
Pass 14 through the data...

smallest count = 1 in the cell 1000002

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///

> strict feed(dpstoff4) saving(dpstoff4.do) append run
Pass 14 through the data...
smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208

replace dpstoff4 = 1020208 if inlist(dpstoff4, 1000002, 1000008)
Pass 15 through the data...

smallest count = 1 in the cell 2000011

Invoking rule 11:18=21118

replace dpstoff4 = 2021118 if inlist(dpstoff4, 2000011, 2000018)
Pass 16 through the data...

smallest count = 1 in the cell 2000024

Invoking rule 24:26=22426

replace dpstoff4 = 2022426 if inlist(dpstoff4, 2000024, 2000026)

(output omitted)

Pass 65 through the data...

smallest count = 18 in the cell 5074968

Invoking rule 69:74968=84969

replace dpstoff4 = 5084969 if inlist(dpstoff4, 5000069, 5074968)
Pass 66 through the data...

smallest count = 21 in the cell 2200168

Done collapsing! Exiting...

. assert "“r(failed) " == ""

We have finally been able to produce a clean collapse of everything! Note the use of
assert "‘r(failed)’"=="" in the above code snippet to make sure that all cells have
the minimal required size of 20.

S. Kolenikov 41

As a very minor point, we can see some room for improvement in collapsing the cells
on the weekend:

. tab alight_id dpstoff4 if daypart == 5 & mod(dpstoff4,100%100)>99

Long ID of the
interaction
alight_id 5084969 5150150

=
o
o
»
o

8. Carmenton

11. Dogville

18. East End

24. Framington

26. Grand Junction
30. High Point

36. Irvingtown

44 . Limerick

47. Moscow City
50. Ontario Lake
53. Picadilly Square
62. Silver Spring
68. Toledo Town
69. Union Station

WNONOOOOOOOOOO
QO OO OONNOWENPD O -
WNONEFEFONNOWOWRNPD O

[ure
N
e
N

Total 141

w
N
e
~
w

Instead of two cells with sizes 141 and 32, it seems like we could produce three cells,
with Union Station (69) being its own cell, and everything else split somewhere in the
middle.

The fifth pass of cell collapse and raking: if conditions

We will now code the collapsing cells for that day part “by hand”, and we will put
those custom coded cells upfront before the main run. (Some special treatment had to
be given to the zero cells to avoid overlapping cells around Ninth Street (49) for the
night and weekend day parts; without the separation, it is getting collapsed in a long
overreach all the way up to Redline Circle (60).)

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes(39 44 49 60) greedy maxcategory(99) ///
> generate(dpston5) saving(dpston5.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 2000039

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells

replace dpston5 = 1024950 if inlist(dpston5, 1000049, 1000050)
Pass O through the data...

smallest count = 1 in the cell 2000039

Invoking rule 40:44=24044 to collapse zero cells

replace dpston5 = 2024044 if inlist(dpston5, 2000040, 2000044)
Pass 0 through the data...

smallest count = 1 in the cell 2000039

Invoking rule 49:50=24950 to collapse zero cells

replace dpston5 = 2024950 if inlist(dpston5, 2000049, 2000050)

42

Raking survey data: updates

(output omitted)

Pass 0 through the data...

smallest count = 1 in the cell 2000039

Invoking rule 55:60=25560 to collapse zero cells

replace dpston5 = 5025560 if inlist(dpston5, 5000055, 5000060)
Pass O through the data...

smallest count = 1 in the cell 2000039
Pass 10 through the data...
smallest count = 1 in the cell 2000039

Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///

> strict feed(dpstonb5) saving(dpston5.do) append run
Pass 10 through the data...
smallest count = 1 in the cell 2000039

Invoking rule 39:24044=33944

replace dpston5 = 2033944 if inlist(dpston5, 2000039, 2024044)
Pass 11 through the data...

smallest count = 1 in the cell 2024950

Invoking rule 53:24950=34953

replace dpstonb = 2034953 if inlist(dpston5, 2000053, 2024950)

(output omitted)

Pass 55 through the data...

smallest count = 19 in the cell 3025560

Invoking rule 62:25560=35562

replace dpston5 = 3035562 if inlist(dpston5, 3000062, 3025560)
Pass 56 through the data...

smallest count = 20 in the cell 5026268

Done collapsing! Exiting...

. assert "“r(failed) " == ""

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes(2 40 60) greedy maxcategory(99) ///
> generate(dpstoff5) saving(dpstoff5.do) replace run
Pass O through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells

replace dpstoffb5 = 1023940 if inlist(dpstoff5, 1000039, 1000040)
Pass 0 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 1:2:8=30108 to collapse zero cells

replace dpstoffbs = 2030108 if inlist(dpstoff5, 2000001, 2000002, 2000008)
Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 30:36:39:40:44=53044 to collapse zero cells

replace dpstoff5 = 2053044 if inlist(dpstoff5, 2000030, 2000036, 2000039, 2000040,
> 2000044)

(output omitted)

Pass O through the data...

smallest count = 1 in the cell 1000002

Invoking rule 53:55:60=35360 to collapse zero cells

replace dpstoff5 = 5035360 if inlist(dpstoff5, 5000053, 5000055, 5000060)
Pass 0 through the data...

smallest count = 1 in the cell 1000002
Pass 12 through the data...
smallest count = 1 in the cell 1000002

Done collapsing! Exiting...

S. Kolenikov 43

. wgtcellcollapse collapse if inlist(daypart,4,5) & inrange(alight_id,49,50), ///
> variables(daypart alight_id) mincellsize(1) ///
> feed(dpstoff5) zeroes(49) maxcategory(99) saving(dpstoff5.do) append run
Pass 12 through the data...

smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells

replace dpstoff5 = 4024950 if inlist(dpstoff5, 4000049, 4000050)
Pass 12 through the data...

smallest count = 1 in the cell 1000002

Invoking rule 49:50=24950 to collapse zero cells

replace dpstoffb = 5024950 if inlist(dpstoff5, 5000049, 5000050)
Pass 12 through the data...

smallest count = 1 in the cell 1000002
Pass 14 through the data...
smallest count = 1 in the cell 5024950

Done collapsing! Exiting...

* special cells for weekend
. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,1,36), ///
> variables(daypart alight_id) mincellsize(50) ///
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 14 through the data...

smallest count = 1 in the cell 5000026

Invoking rule 24:26=22426

replace dpstoffb = 5022426 if inlist(dpstoff5, 5000024, 5000026)
Pass 15 through the data...

smallest count = 1 in the cell 5030108

Invoking rule 11:30108=40111

replace dpstoff5 = 5040111 if inlist(dpstoff5, 5000011, 5030108)
Pass 16 through the data...

smallest count = 2 in the cell 5033640

Invoking rule 30:33640=43040

replace dpstoffb = 5043040 if inlist(dpstoffb5, 5000030, 5033640)
Pass 17 through the data...

smallest count = 3 in the cell 5022426

Invoking rule 18:22426=31826

replace dpstoff5 = 5031826 if inlist(dpstoff5, 5000018, 5022426)
Pass 18 through the data...

smallest count = 6 in the cell 5040111

Invoking rule 40111:31826=70126

replace dpstoffbs = 5070126 if inlist(dpstoffb5, 5040111, 5031826)
Pass 19 through the data...

smallest count = 10 in the cell 5043040

Invoking rule 70126:43040=110140

replace dpstoffbs = 5110140 if inlist(dpstoff5, 5070126, 5043040)
Pass 20 through the data...

smallest count = 23 in the cell 5110140

WARNING: could not find any rules to collapse dpstoff5 == 5110140
Pass 21 through the data...

smallest count = .i in the cell 1000002

Done collapsing! Exiting...

(Continued on next page)

44 Raking survey data: updates

. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,44,68), ///
> variables(daypart alight_id) mincellsize(50) ///
> strict feed(dpstoffb5) saving(dpstoff5.do) append run
Pass 20 through the data...

smallest count = 1 in the cell 5024950

Invoking rule 24950:35360=54960

replace dpstoffbs = 5054960 if inlist(dpstoff5, 5024950, 5035360)
Pass 21 through the data...

smallest count = 2 in the cell 5000044

Invoking rule 44:47=24447

replace dpstoffb = 5024447 if inlist(dpstoff5, 5000044, 5000047)
Pass 22 through the data...

smallest count = 3 in the cell 5054960

Invoking rule 24447:54960=74460

replace dpstoffb = 5074460 if inlist(dpstoffb5, 5024447, 5054960)
Pass 23 through the data...

smallest count = 7 in the cell 5000068

Invoking rule 62:68=26268

replace dpstoffb = 5026268 if inlist(dpstoff5, 5000062, 5000068)
Pass 24 through the data...

smallest count = 11 in the cell 5074460

Invoking rule 74460:26268=94468

replace dpstoffb = 5094468 if inlist(dpstoffb, 5074460, 5026268)
Pass 25 through the data...

smallest count = 27 in the cell 5094468

WARNING: could not find any rules to collapse dpstoff5 == 5094468
Pass 26 through the data...

smallest count = .i in the cell 1000002

Done collapsing! Exiting...

. * all other cells
. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///

> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 25 through the data...
smallest count = 1 in the cell 1000002

Invoking rule 2:8=20208

replace dpstoffbs = 1020208 if inlist(dpstoff5, 1000002, 1000008)
Pass 26 through the data...

smallest count = 1 in the cell 2000011

Invoking rule 11:18=21118

replace dpstoff5 = 2021118 if inlist(dpstoff5, 2000011, 2000018)

(output omitted)

Pass 64 through the data...

smallest count = 15 in the cell 3054960

Invoking rule 62:54960=64962

replace dpstoffbs = 3064962 if inlist(dpstoff5, 3000062, 3054960)
Pass 65 through the data...

smallest count = 21 in the cell 2200168

Done collapsing! Exiting...

. assert "“r(failed) " == ""

The special missing value .i that appears in the smallest count report is used inter-
nally to stop wgtcellcollapse after all of the relevant cases selected by the if conditions
have been processed.

Checking on the last improvement, we see how the manual resolution succeeded:

S. Kolenikov

45

. tab alight_id dpstoff5 if daypart ==

alight_id

Interactions of daypart
alight_id, with some collapsing
5000069 5094468 5110140

=
o
o
o
o

8. Carmenton

11. Dogville

18. East End

24. Framington

26. Grand Junction
30. High Point

36. Irvingtown

44 . Limerick

47. Moscow City
50. Ontario Lake
53. Picadilly Square
62. Silver Spring
68. Toledo Town
69. Union Station

WOO0OO0OO0OO0OO0OO0OO0OO0OOOOO
OCNONROINOOOOOOO
COO0O0O0OO0ON®ERNDGR
WNONR, OO RN OR

e
N
Jure
N

Total

e
N
w
N
~
N
w
e
~
w

The resulting do-files can now be applied to producing control totals, and eventually

to raking:

. use trip_population, clear

. run dpstonb.do

. total num_pass , over(dpston5)

Total estimation Number of obs = 719
1000001: dpstonb = 1000001
1000002: dpstonb5 = 1000002
(output omitted)
5000011: dpstonb5 = 5000011
5026268: dpstonb 5026268
5030108: dpstonb 5030108
5051836: dpstonb = 5051836
5093960: dpstonb5 = 5093960
Over Total Std. Err. [95% Conf. Intervall
num_pass
1000001 1423 967.7508 -476.9595 3322.959
1000002 7198 4895.91 -2414.011 16810.01
(output omitted)
5000011 1270 834.301 -367.961 2907.961
5026268 557 364.4324 -158.4805 1272.481
5030108 610 263.2061 93.25444 1126.746
5051836 622 215.5712 198.7749 1045.225
5093960 473 261.8954 -41.17225 987.1723

. matrix dpstonb5 = e(b)

. matrix coleq dpstonb

_one

. matrix rownames dpstonb5 = dpstonb

. run dpstoffb5.do

46

. total num_pass , over (dpstoff5)

Total estimation Number of obs

1000018: dpstoff5 = 1000018
1000030: dpstoff5 = 1000030

(output omitted)

5000069: dpstoff5 = 5000069
5094468: dpstoffb = 5094468
5110140: dpstoffb = 5110140

Raking survey data: updates

Over Total Std. Err. [95% Conf. Intervall
num_pass
1000018 929 360.7303 220.7878 1637.212
1000030 2189 868.0319 484.8161 3893.184
(output omitted)

5000069 2677 895.7917 918.316 4435.684
5094468 432 87.57763 260.0612 603.9388
5110140 423 120.0254 187.3574 658.6426

. matrix dpstoff5 = e(b)

. matrix coleq dpstoffb = _one

. matrix rownames dpstoff5 = dpstoff
. use trip_sample_rules, clear

. run dpstonb

. run dpstoffb

. gen byte _one = 1

5

ipfraking [pw=_one], ctotal(dpston5 dpstoff5) gen(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818
Iteration 7, max rel difference of raked weights = 4.198e-06
Iteration 8, max rel difference of raked weights = 6.257e-07
The worst relative discrepancy of 7.8e-08 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423
Summary of the weight changes
Mean Std. dev. Min Max cv
Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 L2172
Adjust factor 26.4869 13.1743 38.6339
. whatsdeff raked_weightb
Group ‘ Min ‘ Mean Max ‘ cv ‘ DEFF ‘ N ‘ N eff
Overall ‘ 13.17 ‘ 26.49 ‘ 38.63 ‘ 0.2172 ‘ 1.0472 ‘ 3654 ‘ 3489.37

S. Kolenikov 47

Informative labels

As the final touch, let us consider the variety of labels that can be attached to the
resulting collapsed cells.

. wgtcellcollapse label, var(dpstonb)

(language default renamed unlabeled_ccells)
(language numbered_ccells now current language)
(language texted_ccells now current language)

To attach the numeric labels (of the kind "dpston5==1000001"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpston5==AM Peak; 1. Alewife"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

. wgtcellcollapse label, var(dpstoff5)

To attach the numeric labels (of the kind "dpstoff5==1000018"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpstoff5==AM Peak; 18. East End"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

label language numbered_ccells
. tab dpstoffb5 if daypart==5

Long ID of the interaction Freq. Percent Cum.

daypart==5, alight_id==69 123 71.10 71.10

daypart==5, alight_id==94468 27 15.61 86.71

daypart==5, alight_id==110140 23 13.29 100.00
Total 173 100.00

. label language texted_ccells
. tab dpstoffb5 if daypart==

Long ID of the interaction Freq. Percent Cum.

Weekend; 69. Union Station 123 71.10 71.10

Weekend; 44. Limerick to 68. Toledo Tow 27 15.61 86.71

Weekend; 1. Alewife to 40. King Street 23 13.29 100.00
Total 173 100.00

label language unlabeled_ccells
. tab dpstoffb if daypart==

Interaction

s of

daypart

alight_id,

with some
collapsing Freq. Percent Cum.
5000069 123 71.10 71.10
5094468 27 15.61 86.71
5110140 23 13.29 100.00

Total 173 100.00

48 Raking survey data: updates

Using the mechanics of labels in multiple languages, wgtcellcollapse label de-
fines three “languages” to describe the cells. The language numbered_ccells may be
convenient for debugging purposes in fine-tuning the collapsing algorithms, while the
language texted_ccells would prove useful for ipfraking report in creating human-
readable labels.

5 Linear calibrated weights

Using the existing example, let me demonstrate the linear calibration option of ipfraking.

set rmsg on
r; t=0.00 14:59:22

ipfraking [pw=_onel, ctotal(dpston5 dpstoff5) nograph gen(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818

Iteration 7, max rel difference of raked weights = 4.198e-06
Iteration 8, max rel difference of raked weights = 6.257e-07
The worst relative discrepancy of 7.8e-08 is observed for dpstoffb5 == 5110140

Target value = 423; achieved value = 423
Summary of the weight changes
Mean Std. dev. Min Max cv
Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 .2172
Adjust factor 26.4869 13.1743 38.6339

r; t=2.16 14:59:24
ipfraking [pw=_one], ctotal(dpston5 dpstoff5) nograph gen(raked_weight51) linear

Linear calibration
The worst relative discrepancy of 1.8e-14 is observed for dpstoffb5 == 5110140

Target value = 423; achieved value = 423
Summary of the weight changes
Mean Std. dev. Min Max cv
Orig weights 1 0 1 1 0
Raked weights 26.487 5.7523 12.518 38.204 .2172
Adjust factor 26.4869 12.5178 38.2040

r; t=0.63 14:59:25
set rmsg off
label variable raked_weight5l "Linear calibrated weights"

compare raked_weightb5 raked_weight51

difference
count minimum average maximum
raked_w-~5<raked_-~51 1896 -1.813144 -.0476911 -3.1le-11

raked_w~5>raked_-~51 1758 2.18e-09 .0514348 2.405758

jointly defined 3654 -1.813144 3.21e-10 2.405758

S. Kolenikov 49

total 3654

40

Raked weight

20

10

I I
10 20 30 40
Linear calibrated weight

Figure 1: Linear and raked weights

The speed advantages of linear calibration are quite clear (0.63 seconds vs. 2.16
seconds), and raking convergence of raking in 8 iterations is lighting-fast, in author’s
experience; it is not unusual to see dozens and hundreds of iterations, especially when
higher order interactions with many cells and subtle correlations between them are being
used as raking margins. The weights are very similar to one another, with the lowest
of the linearly calibrated weights being slightly smaller than comparable raked weights.
As mentioned before, in the extreme situations, linearly calibrated weights may become
negative.

Acknowledgements

The author is grateful to Jason Brinkley and Tom Guterbock for bug reports and func-
tionality suggestions. The opinions stated in this paper are of the author only, and do
not represent the position of Abt Associates.

50 Raking survey data: updates

6 References

AAPOR. 2014. AAPOR Terms and Conditions for Transparency Certifica-
tion. The American Association for Public Opinion Research. Avail-
able at http://www.aapor.org/AAPOR_Main/media/MainSiteFiles/TI-Terms-and-
Conditions-10-4-17.pdf.

Binder, D. A., and G. R. Roberts. 2003. Design-based and Model-based Methods for
Estimating Model Parameters. In Analysis of Survey Data, ed. R. L. Chambers and
C. J. Skinner, chap. 3. New York: John Wiley & Sons.

Deville, J. C., and C. E. Sarndal. 1992. Calibration Estimators in Survey Sampling.
Journal of the American Statistical Association 87(418): 376-382.

Deville, J. C., C. E. Sarndal, and O. Sautory. 1993. Generalized Raking Procedures
in Survey Sampling. Journal of the American Statistical Association 88(423): 1013—
1020.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3(4).

Groves, R. M., D. A. Dillman, J. L. Eltinge, and R. J. A. Little. 2001. Survey Nonre-
sponse. Wiley Series in Survey Methodology, Wiley-Interscience.

Holt, D., and T. M. F. Smith. 1979. Post Stratification. Journal of the Royal Statistical
Society, Series A 142(1): 33—46.

Horvitz, D. G., and D. J. Thompson. 1952. A Generalization of Sampling Without
Replacement From a Finite Universe. Journal of the American Statistical Association
47(260): 663-685.

Kolenikov, S. 2014. Calibrating survey data using iterative proportional fitting. The
Stata Journal 14(1): 22-59.

2016. Post-stratification or non-response ad-
justment? Survey Practice 9(3). Available at
http://www.surveypractice.org/index.php/SurveyPractice/article/view/315.

Korn, E. L., and B. I. Graubard. 1995. Analysis of Large Health Surveys: Accounting
for the Sampling Design. Journal of the Royal Statistical Society, Series A 158(2):
263-295.

. 1999. Analysis of Health Surveys. John Wiley and Sons.

Kott, P. S. 2006. Using Calibration Weighting to Adjust for Nonresponse and Coverage
Errors. Survey Methodology 32(2): 133-142.

. 2009. Calibration Weighting: Combining Probability Samples and Linear Pre-
diction Models. In Sample Surveys: Inference and Analysis, ed. D. Pfeffermann and
C. R. Rao, vol. 29B of Handbook of Statistics, chap. 25. Oxford, UK: Elsevier.

S. Kolenikov 51

Pew Research Center. 2012. Assessing the Representativeness of Public Opinion Sur-
veys. Technical report, Pew Research Center for People and Press. Available
at http://www.people-press.org/files/legacy-pdf/Assessing the Representativeness of
Public Opinion Surveys.pdf.

Pfeffermann, D. 1993. The role of sampling weights when modeling survey data. Inter-
national Statistical Review 61: 317-337.

Sarndal, C.-E. 2007. The calibration approach in survey theory and practice. Survey
Methodology 33(2): 99-119.

Thompson, M. E. 1997. Theory of Sample Surveys, vol. 74 of Monographs on Statistics
and Applied Probability. New York: Chapman & Hall/CRC.

About the author

Stanislav (Stas) Kolenikov is a Senior Scientist at Abt Associates. His work involves appli-
cations of statistical methods in data collection for public opinion research, public health,
transportation, and other disciplines that utilize collection of survey data. Within survey
methodology, his expertise includes advanced sampling techniques, survey weighting, calibra-
tion, missing data imputation, variance estimation, nonresponse analysis and adjustment, small
area estimation, and mode effects. Besides survey statistics, Stas has extensive experience de-
veloping and applying statistical methods in social sciences, with focus on structural equation
modeling and microeconometrics. He has been writing Stata programs since 1998 when Stata
was version 5.

	Updates to the ipfraking ecosystemto.44em.S. Kolenikov

