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Abstract. The methods and formulas used by the kdens package for Stata 9.2 are
discussed in this document. To install kdens, type ssc install kdens in Stata.
Note that the moremata package is required (type ssc install moremata).

Preliminary note: In addition to the methods presented below, kdens also supports
confidence interval and variance estimation using bootstrap and jackknife techniques.
The implementation of the bootstrap and jackknife for density estimation is straight-
forward and is therefore not discussed here.

1 Standard kernel density estimation

Let X1, . . . , Xn be a sample from X, where X has the probability density function
f(x). Furthermore, let w1, . . . , wn be associated weights (set wi = 1∀ i if there are no
weights). The density of X can then be estimated as:

f̂K(x;h) =
1
W

n∑
i=1

wi

h
K

(
x−Xi

h

)
(1)

where W =
∑n

i=1 wi and K(z) is a kernel function (see Section 9). h is the smoothing
parameter (the kernel halfwidth or “bandwidth”). Formula (1) is also used, for example,
by official Stata’s kdensity (see [R] kdensity).

2 Adaptive kernel density estimation

The adaptive kernel density estimator is defined as

f̂a
K(x;h) =

1
W

n∑
i=1

wi

hλi
K

(
x−Xi

hλi

)
(2)

where λ, the local bandwidth factors, are based on a preliminary fixed bandwidth density
estimate. The factors are estimated as

λ̂i =

√√√√G
(
f̂K(X;h)

)
f̂K(Xi;h)

, i = 1, . . . , n (3)

where G() stands for the geometric mean over all i. Note that G(λ) = 1 and thus
G(hλ) = h. The estimator is based on Abramson (1982). Also see, for example,
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Silverman (1986, 100–110), Fox (1990, 100–103), Salgado-Ugarte et al. (1993), Salgado-
Ugarte and Pérez-Hernández (2003), or Van Kerm (2003).

Technical note: f̂K(Xi;h) is determined by linear interpolation if Xi falls between
the points at which the preliminary density estimate has been evaluated.

3 Approximate variance estimation

An approximate estimator for the variance of f̂K(x;h) at point x is given as

Ṽ {f̂K(x;h)} =
1

nh
R(K)f̂K(x;h)− 1

n
f̂K(x;h)2 (4)

where

R(K) =
∫ ∞

−∞
K(z)2 dz

(for theoretical background see, e.g., Scott 1992, 130). A simple extension of (4) to the
adaptive kernel density method is

Ṽ {f̂a
K(x;h)} =

1
nhλ(x)

R(K)f̂a
K(x;h)− 1

n
f̂a

K(x;h)2 (5)

where λ(x) denotes the bandwidth factor at point x. However, note that (5) understates
the true variance since the local bandwidth factors are assumed fixed.

Probability weights can be taken into account by adding a penalty for the amount
of variability in the weights distribution. In particular,

Ṽ {f̂K(x;h)} =
∑n

i=1 w2
i

W 2

[
1
h

R(K)f̂K(x;h)− f̂K(x;h)2
]

(6)

where W is the sum of weights as defined above (see Van Kerm 2003 and Burkhauser
et al. 1999 for a similar approach). The assumption behind this formula, however, is
that the weights w are essentially independent from X, an assertion that may not be
appropriate.1

Note that (4) differs from the standard variance formula often found in the literature.
The standard formula only contains the first term (see, e.g., Van Kerm 2003, Silverman
1986, 40, Härdle et al. 2004) and, although the second term asymptotically disappears,
has a quite substantial bias in finite samples. Estimator (4) is more accurate than the
standard formula in finite samples.

1. A point could also be made that weights should be omitted from estimation entirely if the assertion
of independence is, in fact, true.



Ben Jann 3

4 Exact variance estimation

The variance of f̂K(x;h) can be written as

V {f̂K(x;h)} =
1
n

E [Kh(x−X)− E{Kh(x−X)}]2

=
1
n

[
E{Kh(x−X)2} − E{Kh(x−X)}2

]
(7)

where Kh(z) = 1/h K(z/h) and

E{Kh(x−X)} = E{f̂K(x;h)} =
∫ ∞

−∞
Kh(x− y)f(y) dy

A natural estimators for (7) is

V̂ {f̂K(x;h)} =
1
n

{
1
W

n∑
i=1

wi

h2
K

(
x−Xi

h

)2

− f̂K(x;h)2
}

(8)

or, in the case of the adaptive method,

V̂ {f̂a
K(x;h)} =

1
n

{
1
W

n∑
i=1

wi

(hλi)2
K

(
x−Xi

hλi

)2

− f̂a
K(x;h)2

}
(9)

where w is assumed to represent frequency weights or analytic weights (for similar
formulas see, e.g., Hall 1992 and Fiorio 2004). Again note that (9) will be downward
biased because the local bandwidth factors are assumed fixed.

If the weights are sampling weights, an estimator for (7) may be derived as

V̂ {f̂K(x;h)} =
1

W 2

n∑
i=1

w2
i

{
1
h

K

(
x−Xi

h

)
− f̂K(x;h)

}2

(10)

In many cases the approximate estimator is quite good and using the exact formula
is not worth the extra computational effort. However, the exact formula should be used
if the data contain sampling weights. Furthermore, note that both the exact and the
approximate variance formulas assume h fixed. Data dependent choice of h, however,
may result in additional variability of the density estimate, especially in regions with
high curvature.

5 Confidence intervals

Pointwise confidence intervals for f(x) are constructed as

f̂K(x;h)± z1−α/2

√
V̂ {f̂K(x;h)} (11)
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where z1−α/2 is the (1− α/2) quantile of the standard normal distribution.

Confidence intervals such as (11) may have bad coverage due to the well-known bias
in f̂K . One suggestion to improve coverage is to use an undersmoothed density estimate
to construct the confidence intervals (Hall 1992, Fiorio 2004). The implementation of
this approach in kdens uses

hus = h
n1/5

nτ

where τ is the undersmoothing parameter. τ should be larger than 1/5; τ = 1/4 is the
default choice in kdens once undersmoothing is requested.

6 Density estimation for bounded variables

Two simple methods to estimate the density of variables with bounded domain are the
renormalization method and the reflection method. Both methods produce consistent
estimates, but have a bias of order h near the boundaries (compared to the usual bias
of order h2 in the interior). Various more advanced correction techniques with bias
of order h2 at the boundaries have been proposed (see, e.g., Jones and Foster 1996
or Karunamuni and Alberts 2005). One of these methods is the linear combination
technique discussed in Jones (1993).

6.1 Renormalization

The most natural way to deal with the boundary problem is to use a standard kernel
density estimate and then locally rescale it relative to the amount of local kernel mass
that lies within the support of X (see, e.g., Jones 1993, 137). Let L be the lower
boundary of the support of X (e.g. L = 0) and U be the upper boundary (e.g. U = 1).
Furthermore, let

a0(l, u) =
∫ u

l

K(y) dy

The renormalization version of the standard estimator then is

f̂n
K(x;h, L, U) =

1
a0

(
L−x

h , U−x
h

) f̂K(x;h) (12)

for x ∈ [L,U ]. Furthermore, the boundary renormalization analogue to the adaptive
estimator in (2) can be written as

f̂n,a
K (x;h, L, U) =

1
W

n∑
i=1

1

a0

(
L−x
hλi

, U−x
hλi

) wi

hλi
K

(
x−Xi

hλi

)
(13)

The approximate variance estimator for f̂n
K is

Ṽ {f̂n
K(x;h, L, U)} =

1
nh

b
(

L−x
h , U−x

h

)
a0

(
L−x

h , U−x
h

)2 f̂n
K(x;h, L, U)− 1

n
f̂n

K(x;h, L, U)2 (14)
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where
b(l, u) =

∫ u

l

K(y)2 dy

(see Jones 1993). The exact variance estimator can be written as

V̂ {f̂n
K(x;h, L, U)} =

1

a0

(
L−x

h , U−x
h

)2 V̂ {f̂K(x;h)} (15)

in the most simple case. The renormalization variance estimators for the adaptive kernel
method and for data containing sampling weights can also be easily derived, but the
resulting formulas are more complicated.

6.2 Reflection

The reflection estimator approaches the boundary problem by “reflecting” the data
at the boundaries (see, e.g., Silverman 1986, 30, Ćwik and Mielniczuk 1993). In the
standard case the reflection estimator is given as

f̂r
K(x;h, L, U) =

1
W

n∑
i=1

wi

h
Kr(x;Xi, h, L, U) (16)

for x ∈ [L,U ], where

Kr(x;X, h, L, U) = K

(
x−X

h

)
+ K

(
x + X − 2L

h

)
+ K

(
x + X − 2U

h

)
The reflection technique, that is, replacing K with Kr, can be applied analogously
to the adaptive estimator and also the exact variance estimators are easily derived.
Unfortunately, however, the reflection solution for the approximate variance estimator
is more complex and not supported by kdens.

6.3 Linear Combination

Let z = (x−X)/h, l = (L−x)/h, and u = (U−x)/h. The linear combination technique
then replaces K(z) by

K lc(z; l, u) =
a2(l, u)− a1(−u,−l)z

a2(l, u)a0(l, u)− (a1(−u,−l))2
K(z) (17)

where

a1(−u,−l) =
∫ −l

−u

yK(y) dy, a2(l, u) =
∫ u

l

y2K(y) dy

Similar to the reflection technique, exact variance estimates can be obtained by sim-
ply plugging K lc into the standard formulas. Approximate variance estimation is not
supported.



6 Univariate kernel density estimation

7 Binned estimation

7.1 Density

Kernel density estimators such as (1) involve lots of computations. One solution to
reduce processing time is to estimate the density based on binned data. The binned
kernel density estimator is defined as

f̃K(gj ;h) =
1
W

m∑
`=1

c`

h
K

(
gj − g`

h

)
, j = 1, . . . ,m (18)

where g1, . . . , gm is a grid of m equally spaced evaluation points and c1, . . . , cm are
the associated grid counts with

∑
c` = W . Given the equal spacing of grid points,

equation (18) has a discrete convolution structure and can be calculated using fast
Fourier transform (see Wand and Jones 1995, 182–188, for details). This makes the
estimator very fast. The grid counts are computed using linear binning as follows.
Let g− and g+ be the two nearest grid points below and above observation Xi. Then
wi(g+ − Xi)/(g+ − g−) is added to the grid count at g− and wi(Xi − g−)/(g+ − g−)
is added to the count at g+. Note that the results from (18) are usually quite accurate
even for relatively small m. The rule-of-thumb given by Hall and Wand (1996, 182) is
that ,,grid sizes of about 400–500 are adequate for a wide range of practical situations“.

The binned version of the adaptive kernel density estimator is

f̃a
K(gj ;h) =

1
W

m∑
`=1

c`

hλ`
K

(
gj − g`

hλ`

)
, j = 1, . . . ,m (19)

where λ denotes the local bandwidth factors. Unfortunately, the computational shortcut
used for (18) is not applicable to (19).

7.2 Variance

Variance estimation is straightforward with binned data. For example,

Ṽ {f̃K(gj ;h)} =
1

nh
R(K)f̃K(gj ;h)− 1

n
f̃K(gj ;h)2 (20)

If sampling weights are applied, a reasonable variance formula for the binned estimator
is

V̂ {f̃K(gj ;h)} =
1

W 2

m∑
`=1

c`(w2)
{

1
h

K

(
gj − g`

h

)
− f̃K(gj ;h)

}2

(21)

with c(w2) representing linearly binned squared weights.
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7.3 Density derivatives and density functionals

Advanced automatic bandwidth selection involves estimating density functionals of the
form

R(r) = R(f (r)) =
∫

f (r)(z)2 dz = (−1)r

∫
f (2r)(z)f(z) dz

where f (r) denotes the rth derivative of f . A binned approximation estimator employing
the gaussian kernel can be written as

R̃
(r)
φ (m,h) = (−1)r 1

W

m∑
j=1

cj f̃
(2r)
φ (gj ;h) (22)

where

f̃
(r)
φ (gj ;h) =

1
W

m∑
`=1

c`

hr+1
φ(r)

(
gj − g`

h

)
, j = 1, . . . ,m (23)

and φ(r) denotes the rth derivative of φ, the standard normal density. Equation (23)
can be solved as the convolution of fast Fourier transforms.

7.4 Bounded variables

Binned versions of the estimators for bounded variables are usually simple to derive.
For example, the binned renormalization density estimator in the standard case is

f̃n
K(gj ;h, L, U) =

1

IK

(
L−gj

h ,
U−gj

h

) f̃K(gj ;h), j = 1, . . . ,m (24)

for gj ∈ [L,U ].

An exception is the estimation of density derivatives and density functionals where
the renormalization and the linear combination methods have no easy solutions. Fortu-
nately, the reflection technique is a valuable alternative in this situation.

8 Data-dependent bandwidth selection

It can be shown from asymptotic theory that the bandwidth

hopt =
[

R(K)
{σ2

K}2R(f ′′)n

] 1
5

(25)

where
σ2

K =
∫

z2K(z) dz, R(K) =
∫
{K(z)}2 dz

is “optimal” in the sense that it minimizes the asymptotic mean integrated squared
error (AMISE). Note that σ2

K , the kernel variance, and R(K), the kernel “roughness”,
are known properties of the chosen kernel function. However, R(f ′′), where f ′′ denotes
the second derivative of f , is unknown.
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8.1 Quick and simple rules

Normal scale rule

One idea to derive a first guess for hopt is to assume a specific functional form for the
density and then solve equation (25). If the density is assumed to be normal, the optimal
h can be estimated as

ĥN = δK

[
8
√

π

3

] 1
5

σ̂n−
1
5 (26)

where σ̂ is an estimate of scale and δK is the “canonical bandwidth” of the chosen kernel
function, that is

δK =
(

R(K)
{σ2

K}2

)1/5

(see, e.g., Scott 1992, 141–143; Härdle et al. 2004). Usually, σ̂ = min(sx , IQRx/1.349)
is used where sx is the standard deviation and IQRx is the inter-quantile range of the
observed data.

Oversmoothed bandwidth rule

It can be shown that, given the scale parameter σ, hopt has a simple upper bound (see,
e.g., Salgado-Ugarte et al. 1995). This upper bound can be estimated as

ĥO = δK

[
243
35

] 1
5

sxn−
1
5 (27)

Note that hO ' 1.08hN. While ĥO usually is too large and results in a density estimate
that is too smooth, it is a good starting point for subjective choice of bandwidth. In
fact, it may be convenient to choose the bandwidth as a fractional of ĥO, for example
0.8ĥO or 0.5ĥO.

Optimal of Silverman

Based on simulations studies, Silverman (1986, 45–48) suggested using

ĥSφ = 0.9 σ̂n−
1
5 (28)

for the gaussian kernel, which translates to

ĥS = 1.159 δK σ̂n−
1
5 (29)

in the general case. ĥS is used as the default bandwidth estimate in kdens. Official
Stata’s kdensity uses ĥSφ.
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8.2 Sheather-Jones plug-in estimator

The implementation of the Sheather-Jones plug-in estimator ĥSJPI closely follows Sheather
and Jones (1991) using a gaussian kernel. Bounded variables are taken into account us-
ing the reflection technique. Note that kdens imposes an upper limit for ĥSJPI. This
limit is ĥO.

8.3 Direct plug-in estimator

The implementation of the direct plug-in estimator ĥDPI in kdens closely follows Wand
and Jones (1995, 71–74) (also see Wand and Jones 1995, 177–189) using a gaussian
kernel. Bounded variables are taken into account using the reflection technique.

8.4 Probability weights

Probability weights inflate the variance of the density estimate and formula (25) is
inappropriate. A rough correction is to apply a penalty for the variability of the weights
to a standard bandwidth estimate (also see formula 6), i.e.

ĥw =
(

n
∑n

i=1 w2
i

W 2

) 1
5

· ĥ

where ĥ is computed by one of the above methods. kdens applies this correction if
pweights are specified.

9 Kernel functions

Various kernels are supported by kdens. Note that the actual kernel functions are not
included in the kdens package; they are provided by the moremata package. Tables 1–6
give an overview of the various kernels and their properties.
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Table 1: Kernel functions (the kernel functions evaluate to zero if z is outside the
indicated support)

Kernel

Epanechnikov K(z) = 3
4 (1− 1

5z2)/
√

5 if |z| <
√

5

Epan2 K(z) = 3
4 (1− z2) if |z| < 1

Biweight K(z) = 15
16 (1− z2)2 if |z| < 1

Triweight K(z) = 35
32 (1− z2)3 if |z| < 1

Cosine K(z) = 1 + cos(2πz) if |z| < 1
2

Gaussian K(z) = φ(z)

Parzen K(z) =

{
8(1− |z|)3/3
4
3 − 8z2 + 8|z|3

if 1
2 < |z| ≤ 1

if |z| ≤ 1
2

Rectangular K(z) = 1
2 if |z| < 1

Triangular K(z) = 1− |z| if |z| < 1

0
.1

.2
.3

.4

−2 −1 0 1 2

epanechnikov

0
.2

.4
.6

.8

−1 −.5 0 .5 1

epan2

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

biweight

0
.5

1

−1 −.5 0 .5 1

triweight

0
.5

1
1
.5

2

−.5 0 .5

cosine

0
.1

.2
.3

.4

−2 −1 0 1 2

gaussian

0
.5

1
1
.5

−1 −.5 0 .5 1

parzen

0
.1

.2
.3

.4
.5

−1 −.5 0 .5 1

rectangle

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

triangle
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Table 2: Kernel properties

Kernel R(K) σ2
K δK Efficiency

Epanechnikov 3
5
√

5
1

(
3

5
√

5

) 1
5

1

Epan2 3
5

1
5 15

1
5 1

Biweight 5
7

1
7 35

1
5 .9939

Triweight 350
429

1
9

(
9450
143

) 1
5 .9867

Cosine 3
2

1
12 −

1
2π2

(
6

(1/6−1/π2)2

) 1
5

.9897

Gaussian 1
2
√

π
1

(
1
4π

) 1
10 .9512

Parzen 302
315

1
12 2

(
151
35

) 1
5 .9695

Rectangular 1
2

1
3

(
9
2

) 1
5 .9295

Triangular 2
3

1
6 24

1
5 .9859
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Table 3: Kernel integrals (the integrals evaluate to 0 if z is below the kernel support
and 1 if above)

Kernel
∫ z

−∞K(y)dy

Epanechnikov 1
2 + 3

4 (z − 1
15z3)/

√
5 if |z| <

√
5

Epan2 1
2 + 3

4 (z − 1
3z3) if |z| < 1

Biweight 1
2 + 15

16 (z − 2
3z3 + 1

5z5) if |z| < 1

Triweight 1
2 + 35

32 (z − z3 + 3
5z5 − 1

7z7) if |z| < 1

Cosine 1
2 + z + sin(2πz)

2π if |z| < 1
2

Gaussian Φ(z)

Parzen


2
3 + 8

3 (z + 3
2z2 + z3 + 1

4z4)
1
2 + 4

3z − 8
3z3 − 2z4

1
2 + 4

3z − 8
3z3 + 2z4

1
3 + 8

3 (z − 3
2z2 + z3 − 1

4z4)

if − 1 ≤ z < − 1
2

if − 1
2 ≤ z < 0

if 0 ≤ z ≤ 1
2

if 1
2 < z ≤ 1

Rectangular 1
2 + 1

2z if |z| < 1

Triangular

{
1
2 + z + 1

2z2

1
2 + z − 1

2z2

if − 1 < z < 0
if 0 ≤ z < 1

0
.2

.4
.6

.8
1

−2 −1 0 1 2

epanechnikov

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

epan2

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

biweight

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

triweight

0
.2

.4
.6

.8
1

−.5 0 .5

cosine

0
.2

.4
.6

.8
1

−2 −1 0 1 2

gaussian

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

parzen

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

rectangle

0
.2

.4
.6

.8
1

−1 −.5 0 .5 1

triangle
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Table 4: Kernel squared integrals (the integrals evaluate to 0 if z is below the kernel
support and R(K) if above)

Kernel
∫ z

−∞K(y)2 dy

Epanechnikov 3
10
√

5
+ 9

80 (z − 2
15z3 + 1

125z5) if |z| <
√

5

Epan2 3
10 + 9

16 (z − 2
3z3 + 1

5z5) if |z| < 1

Biweight 5
14 + 225

256 (z − 4
3z3 + 6

5z5 − 4
7z7 + 1

9z9) if |z| < 1

Triweight 175
429 + 1225

1024 (z − 2z3 + 3z5 − 20
7 z7 + 5

3z9 − 6
11z11 + 1

13z13) if |z| < 1

Cosine 3
4 + 3

2z + sin(2πz)
π + cos(2πz) sin(2πz)

4π if |z| < 1
2

Gaussian 1
2
√

π
Φ(
√

2z)

Parzen


64
63 + 64

9 (z + 3z2 + 5z3 + 5z4 + 3z5 + z6 + 1
7z7)

151
315 + 16

9 (z − 4z3 − 3z4 + 36
5 z5 + 12z6 + 36

7 z7)
151
315 + 16

9 (z − 4z3 + 3z4 + 36
5 z5 − 12z6 + 36

7 z7)
− 2

35 + 64
9 (z − 3z2 + 5z3 − 5z4 + 3z5 − z6 + 1

7z7)

if − 1 ≤ z < − 1
2

if − 1
2 ≤ z < 0

if 0 ≤ z ≤ 1
2

if 1
2 < z ≤ 1

Rectangular 1
4 + 1

4z if |z| < 1

Triangular

{
1
3 + z + z2 + 1

3z3

1
3 + z − z2 + 1

3z3

if − 1 < z < 0
if 0 ≤ z < 1
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1
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Table 5: Integrals over yK(y) (the integrals evaluate to 0 if z is outside the kernel
support)

Kernel
∫ z

−∞ yK(y) dy

Epanechnikov − 3
√

5
16 + 3

8
√

5
z2 − 3

80
√

5
z4 if |z| <

√
5

Epan2 − 3
16 + 3

8z2 − 3
16z4 if |z| < 1

Biweight − 5
32 + 15

32z2 − 15
32z4 + 5

32z6 if |z| < 1

Triweight − 35
256 + 35

64z2 − 105
128z4 + 35

64z6 − 35
256z8 if |z| < 1

Cosine − 1
8 + 1

2z2 + sin(2πz)
2π z + cos(2πz)

4π2 + 1
4π2 if |z| < 1

2

Gaussian − 1√
2π

exp(− 1
2z2)

Parzen


− 2

15 + 4
3z2 + 8

3z3 + 2z4 + 8
15z5

− 7
60 + 2

3z2 − 2z4 − 8
5z5

− 7
60 + 2

3z2 − 2z4 + 8
5z5

− 2
15 + 4

3z2 − 8
3z3 + 2z4 − 8

15z5

if − 1 ≤ z < − 1
2

if − 1
2 ≤ z < 0

if 0 ≤ z ≤ 1
2

if 1
2 < z ≤ 1

Rectangular − 1
4 + 1

4z2 if |z| < 1

Triangular

{
− 1

6 + 1
2z2 + 1

3z3

− 1
6 + 1

2z2 − 1
3z3

if − 1 < z < 0
if 0 ≤ z < 1

−
.4

−
.3

−
.2

−
.1

0

−2 −1 0 1 2

epanechnikov

−
.2

−
.1

5
−

.1
−

.0
5

0

−1 −.5 0 .5 1
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−
.1

5
−

.1
−

.0
5

0

−1 −.5 0 .5 1

biweight
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5
−
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−

.0
5

0

−1 −.5 0 .5 1

triweight
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.0

2
0

−.5 0 .5
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0
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gaussian
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−
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−
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5

0
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−
.2
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.1
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5
0

−1 −.5 0 .5 1

rectangle

−
.2
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.1

5
−

.1
−

.0
5

0

−1 −.5 0 .5 1

triangle
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Table 6: Integrals over y2K(y) (the integrals evaluate to 0 if z is below the kernel
support and σ2

K if above)

Kernel
∫ z

−∞ y2K(y) dy

Epanechnikov 1
2 + 1

4
√

5
z3 − 3

100
√

5
z5 if |z| <

√
5

Epan2 1
10 + 1

4z3 − 3
20z5 if |z| < 1

Biweight 1
14 + 5

16z3 − 3
8z5 + 15

112z7 if |z| < 1

Triweight 1
18 + 35

96z3 − 21
32z5 + 15

32z7 − 35
288z9 if |z| < 1

Cosine 1
24 + 1

3z3 + sin(2πz)
2π z2 + cos(2πz)

2π2 z − sin(2πz)
4π3 − 1

4π2 if |z| < 1
2

Gaussian − 1√
2π

z exp(− 1
2z2) + Φ(z)

Parzen


2
45 + 8

9z3 + 2z4 + 8
5z5 + 4

9z6

1
24 + 4

9z3 − 8
5z5 − 4

3z6

1
24 + 4

9z3 − 8
5z5 + 4

3z6

7
180 + 8

9z3 − 2z4 + 8
5z5 − 4

9z6

if − 1 ≤ z < − 1
2

if − 1
2 ≤ z < 0

if 0 ≤ z ≤ 1
2

if 1
2 < z ≤ 1

Rectangular 1
6 + 1

6z3 if |z| < 1

Triangular

{
1
12 + 1

3z3 + 1
4z4

1
12 + 1

3z3 − 1
4z4

if − 1 < z < 0
if 0 ≤ z < 1
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