.-
help for ^lmoments6^
.-

L-moments and derived statistics --------------------------------

^lmoments6^ [varlist] [^if^ exp] [^in^ range] [, ^d^etail ^m^atname^(^matrix_name^)^ tabdisp_options]

^lmoments6^ varname [^if^ exp] [^in^ range] [^, by(^byvar^)^ ^d^etail ^m^atname^(^matrix_name^)^ tabdisp_options]

Description -----------

^lmoments6^ calculates L-moments and derived statistics.

There are two syntaxes.

For a varlist with two or more variables, the first four L-moments and the derived statistics t, t_3 and t_4 are calculated for each variable.

For a varlist with just one variable, the first four L-moments and the derived statistics t, t_3 and t_4 are calculated for each group specified.

Options -------

^by(^byvar^)^ specifies a single variable defining separate groups for calculation. It is allowed only with a single variable in varlist.

^detail^ adds n, l_3 and l_4 to the default display of l_1, l_2, t, t_3 and t_4.

^matname(^matrix_name^)^ specifies the name of a matrix in which to save the results of calculations. There will be r rows and 8 columns, where r is the number of variables or groups. The columns will include n, l_1, l_2, l_3, l_4, t, t_3 and t_4. Saving to a matrix will not work if n < 4 or l_1 == 0 or l_2 == 0, or if the number of variables or groups is greater than ^matsize^.

tabdisp_options are options of ^tabdisp^ other than ^missing^. The default display has ^format(%9.3f)^.

Remarks -------

Denote by X(j:n) the j th smallest observation from a sample of size n from a variable X and by E the expectation operator.

The first four L-moments are defined by

E (X(1:1))

1/2 E (X(2:2) - X(1:2))

1/3 E (X(3:3) - 2 X(2:3) + X(1:3))

1/4 E (X(4:4) - 3 X(3:4) + 3 X(2:4) - X(1:4))

They are estimated via these weighted averages for a sample x_1, ..., x_n, otherwise known as probability-weighted moments:

b_0 = average of x(j:n)

j - 1 b_1 = average of ----- x(j:n) n - 1

j - 1 j - 2 b_2 = average of ----- ----- x(j:n) n - 1 n - 2

j - 1 j - 2 j - 3 b_3 = average of ----- ----- ----- x(j:n) n - 1 n - 2 n - 3

The estimators are

l_1 = b_0 l_2 = 2 b_1 - b_0 l_3 = 6 b_2 - 6 b_1 + b_0 l_4 = 20 b_3 - 30 b_2 + 12 b_1 - b_0

whence

t = l_2 / l_1 (cf. coefficient of variation) t_3 = l_3 / l_2 (cf. skewness) t_4 = l_4 / l_2 (cf. kurtosis)

Examples --------

. ^lmoments6 price mpg^ . ^lmoments6 mpg, by(rep78)^

. ^lmoments6 a b c d, m(lmstat)^ . ^svmat lmstat, names(col)^

Saved results (for last-named variable or group only) -------------

r(N) n r(l_1) l_1 r(l_2) l_2 r(l_3) l_3 r(l_4) l_4 r(t) t r(t_3) t_3 r(t_4) t_4

Acknowledgment --------------

^lmoments6^ includes code from Patrick Royston's ^lshape^ program.

Author ------

Nicholas J. Cox, University of Durham, U.K. n.j.cox@@durham.ac.uk

References ----------

Hosking, J.R.M. 1990. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society Series B 52, 105-24.

Hosking, J.R.M. 1998. L-moments. In Kotz, S., Read, C.B. and Banks, D.L. (eds) Encyclopedia of Statistical Sciences Update Volume 2, Wiley, New York, 357-362.

Hosking, J.R.M. and Wallis, J.R. 1997. Regional frequency analysis: an approach based on L-moments. Cambridge University Press.