
2 midas: meta-analysis of diagnostic accuracy studies

1 midas command

1.1 Description

midas is a comprehensive program of statistical and graphical routines for undertak-
ing meta-analysis of diagnostic test performance in Stata. The index and reference
tests (gold standard) are dichotomous. Primary data synthesis is performed within the
bivariate mixed-effects regression framework focused on making inferences about av-
erage sensitivity and specificity. The bivariate approach was originally developed for
treatment trial meta-analysis (Houwelingen et al. 1993; van Houwelingen et al. 2002)
and modified for synthesis of diagnostic test data using an approximate normal within-
study model (Reitsma et al. 2005; Riley et al. 2007a,b, 2008; Arends et al. 2008). An
exact binomial rendition (Chu and Cole 2006; Riley et al. 2007b; Arends et al. 2008)
of the bivariate model assumes independent binomial distributions for the true pos-
itives and true negatives conditional on the sensitivity and specificity in each study.
Likelihood-based estimation of the exact binomial approach may be performed by adap-
tive gaussian quadrature using Stata-native xtmelogit command (Stata release 10) or
gllamm (Rabe-Hesketh et al. 2004, 2002), user-written command, both with readily
available post-estimation procedures for model diagnostics and empirical Bayes pre-
dictions. Additionally, midas facilitates exploratory analysis of heterogeneity (unob-
served, threshold-related and covariate etc.), publication and other precision-related
biases. Bayes’ nomograms, likelihood-ratio matrices, and probability modifying plots
may be derived and used to guide patient-based diagnostic decision making.

1.2 Syntax

midas varlist(min=4 max=4)
[
if

] [
in

]
,

[
options

]
The required varlist is the data from the contingency tables of index and reference test
results. The user provides the data in a rectangular array containing variables for the
2x2 elements a, b, c and d. Each data row contains the 2x2 data for one observation(i.e.
study). The varlist MUST contain variables for a, b, c and d in that order:

Reference Test Positive Reference Test Negative
Test Positive a = true positives c = false negatives
Test Negative b = false positives d = true negatives

1.3 Options

Modeling and Post-estimation Options
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nip(integer) specifies the number of integration points used for maximum likelihood
estimation based on adaptive gaussian quadrature. Default is set at 1 for midas even
though the default in xtmelogit is 7. Higher values improve accuracy at the expense
of execution times. Using xtmelogit with nip(1), model will be estimated by Lapla-
cian approximation. This decreases substantially computational time and yet provides
reasonably valid fixed effects estimates. It may, however, produce biased estimates of
the variance components.

ebpred(for|roc) generates a forest plot or roc curve of empirical Bayes versus observed
estimates of sensitivity and specificity.

modchk(gof|bvn|inf|out|all) provides graphical model checking capabilities: mod-
chk(gof) displays quantile plot of residual-based goodness-of fit; modchk(bvn) dis-
plays Chi-squared probability plot of squared Mahalanobis distances for assessment of
the bivariate normality assumption; modchk(inf) spikeplot for checking for particularly
influential observations using Cook’s distance; modchk(out) displays a scatter plot for
checking for outliers using standardized predicted random effects (standardized level-2
residuals); and modchk(all) provides a composite graphic of all four plots.

Quality Assessment Options

qtab(varlist) creates a table showing frequency of methodological quality items.

qbar(varlist) calculates study-specific quality scores and plots a bargraph of method-
ological quality.

qlab may be combined with qtab(varlist) or qbar(varlist) to use variable labels for
table and bargraph of methodological items.

Exploratory Graphics

bivbox implements a bivariate generalization of the box plot for univariate data similar
to the bivariate box plot(Rousseeuw et al. 1999). It is used to assess location, spread,
correlation, skewness and tails of the data and for identifying possible outliers.

chiplot creates a chiplot(Fisher and Switzer 2001) for judging whether or nor the
paired performance indices are independent by augmenting the scatter plot with an
auxiliary display. In the case of independence, the points will be concentrated in the
central region, in the horizontal band indicated on the plot.
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Main Reporting Options

results(all) provide summary statistics for all performance indices, group-specific between-
study variances, likelihood ratio test statistics and other global homogeneity tests.

results(het) provide group-specific between-study variances, likelihood ratio test statis-
tics and other global homogeneity tests.

results(sum) provides summary statistics for all performance indices i.e. sensitiv-
ity/specificity, positive/negative likelihood ratios and diagnostic score/odds ratios.

table(dss|dlor|dlr) will create a table of study specific performance estimates with
measure-specific summary estimates and results of homogeneity (chi-square) and incon-
sistency(I squared)tests. dss, dlr or dlor represent the paired performance measures
sensitivity/specificity, positive/negative likelihood ratios and diagnostic score/odds ra-
tios.

Forest Plots Options

id(varlist) provides a label for studies allowing up to 4 variables.

bforest(dss|dlr|dlor) creates summary graphs with study-specific(box) and overall(diamond)
point estimates and confidence intervals for each performance index pair using graph
combine see [G] graph: graph combine.

uforest(dss|dlr|dlor) creates univariate summary graphs with study-specific(box) and
overall(diamond) point estimates and confidence intervals allowed to extend between 0
and 1000 beyond which they are truncated and marked by a leading arrow.

fordata adds study-specific performance estimates and 95% CIs to right y-axis.

forstats adds heterogeneity statistics below summary point estimate.

ROC Curve Options

rocplane plots observed data in receiver operating characteristic space (ROC Plane)
for visual assessment of threshold effect, a source of heterogeneity unique to diagnostic
meta-analysis. The higher the cut-off value, the higher will be the specificity and the
lower the sensitivity. This interdependence between sensitivity and specificity based
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on threshold variability may be tested a priori using a rank correlation test such as
Spearman’s rho. In midas, the proportion of variation due to threshold effects is calcu-
lated as the squared correlation coefficient estimated from the between-study covariance
parameter.

sroc(none|pred|conf|both) plots observed data points, summary operating sensitivity-
specificity, and SROC curve without or with either or both of confidence and prediction
regions at default or specified confidence level.

sroc(nnoc|pnoc|cnoc|bnoc) plots observed data points, summary operating sensitivity-
specificity without or with either or both of confidence and prediction contours at default
or specified confidence level. No SROC curve is plotted with these choices.

Heterogeneity Options

galb(tpr|tnr|dlor|lrp|lrn) option produces Galbraith(radial) plots of standardized logit
transformed proportion (tpr, tnr ) or log-transformed ratio(lrp, lrn and dlor) against
the inverse of the its precision(x-axis). A regression line that goes through the origin is
calculated, together with 95% boundaries (starting at +2 and -2 on the y-axis). Studies
outside these 95% boundaries may be considered as outliers.

regvars(varlist) permits univariable meta-regression analysis of one or multiple di-
chotomous or continuous covariables, reporting results in table and forest plot

Publication Bias Options

pubbias When this option is invoked, midas performs linear regression of log odds
ratios on inverse root of effective sample sizes as a test for funnel plot asymmetry in
diagnostic meta-analysis. A non-zero slope coefficient is suggestive of significant small
study bias (p value < 0.10). The regression line is superimposed on a funnel plot (see
figure 8).

Clinical Utility Options

fagan(0-0.99) creates a plot showing the relationship between the prior probability
specified by user, the likelihood ratio(combination of sensitivity and specificity), and
posterior test probability.

pddam(lbp ubp) produces a line graph of post-test probabilities versus prior prob-
abilities between 0 and 1 using summary likelihood ratios. Summary unconditional
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predictive values based on sensitivity analysis using uniformly distributed prior proba-
bilities between lbp and ubp are estimated and displayed on graph.

lrmatrix creates a scatter plot of positive and negative likelihood ratios with combined
summary point. Plot is divided into quadrants based on strength-of-evidence thresholds
to determine informativeness of measured test.

Miscellaneous Options

level(#) specifies the significance level for statistical tests, confidence regions, predic-
tion regions and confidence intervals.

mscale(#) affects size of markers for point estimates on forest plots.

scheme(string) permits choice of scheme for graphs. The default is s2color.

textscale(#) allows choice of text size for graphs especially regarding labels for forest
plots.

zcf(#) defines a fixed continuity correction in the case where a study contains a zero
cell during logit or log transformations only to calculate study-specific likelihood ratios
and odds ratios. By default, midas adds 0.5 to each cell of a study where a zero is
encountered. However, the zcf(#) option allows the use of other constants between 0
and 1.

q Technical note

Although midas has pre-programmed graphical options, with Graph Editor (Stata
Release 10 or later), you can change almost anything on your graph. You can add text,
lines, arrows, and markers wherever you would like. You can right-click on any object to
see a list of operations specific to the object and tool you are working with. This feature
is most useful with the Pointer tool. However, there is no record of what you have done
with the graph editor, so if you need to recreate the graph for some reason, you will have
to redo everything that you have done with the graph editor. See [G] graph editor.

q
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1.4 Saved results

midas saves results as scalars in r() such as:
r(mtpr) Mean sensitivity
r(mtprse) standard error of mean sensitivity
r(mtnr) Mean specificity
r(mtnrse) Standard error of mean specificity
r(mlrp) Mean likelihood ratio of a positive test result
r(mlrpse) Standard error of mean likelihood ratio of a positive test result
r(mlrn) Mean likelihood ratio of a negative test result
r(mlrnse) Standard error of mean likelihood ratio of a negative test result
r(mdor) Mean diagnostic odds ratio
r(mdorse) Standard error of mean diagnostic odds ratio
r(AUC) Area under summary ROC curve
r(AUClo) Lower bound of area under summary ROC curve
r(AUChi) Upper bound of area under summary ROC curve
r(rho) Correlation between logits of sensitivity and specificity
r(reffs1) Variance of logit of sensitivity
r(reffs1se) Standard error of variance of logit of sensitivity
r(reffs2) Variance of logit of specificity
r(reffs2se) Standard error of variance of logit of specificity
r(Islrt) Global inconsistency index from likelihood ratio test
r(Islrtlo) Lower bound global inconsistency index
r(Islrthi) Upper bound global inconsistency index

2 Example Dataset

This dataset was obtained as part of a systematic review and meta-analysis of the pub-
lished literature on the staging performance of axillary positron emission tomography
(FDG-PET) in breast cancer toward identification of the number, quality and scope
of primary studies; quantification of overall classification performance (sensitivity and
specificity), discriminatory power (diagnostic odds ratios) and informational value (di-
agnostic likelihood ratios); assessment of the impact of technical characteristics of test,
methodological quality of primary studies and publication selection bias on estimates
of diagnostic accuracy; and highlighting of any potential issues that require further
research. We performed a comprehensive computer search of the English Language
medical literature using primarily the PUBMED (MEDLINE) search engine and cross-
citation with other databases to identify original peer-reviewed full-length human sub-
ject articles published between January 1, 1990 and January 31, 2008. Search was con-
ducted using database-specific Boolean search strategies based on: (”breast neoplasm”
OR ”breast cancer” OR ”breast malignancy”) AND (”Positron emission tomography”
OR ”FDG-PET”) AND (”axillary staging” OR ”axillary metastases” OR ”axillary node
metastases” OR ”axillary node staging”). Search strategies were augmented with a
manual search of reference lists from identified articles and recent subject-area journals
for additional articles. Details of the data set and 2 by 2 data for the first 20 studies
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as shown below were generated respectively with the describe and list commands of
Stata:

. describe

Contains data from f:\breastpet.dta
obs: 39

vars: 33 7 Jan 2009 16:06
size: 2,652 (99.9% of memory free)

storage display value
variable name type format label variable label

author str13 %-15s first author
year int %8.0g Year of Publication
tp int %8.0g True Positive
fp byte %8.0g False Positive
fn float %9.0g False Negative
tn float %9.0g True Negative
period byte %8.0g Period of publication(before or

after 1998)
prodesign byte %10.0g Prospective design
ssize30 byte %7.0g Study size greater than 30
fulverif byte %8.0g Full Verification of test results
testdescr byte %9.0g Satisfactory description of index

test
refdescr byte %9.0g Statisfactory description of ref

test
clindescr byte %9.0g Clinical Information Available
report byte %7.0g Satisfactory reporting of results
consel byte %7.0g Consecutive selection of subjects
brdspect byte %10.0g Broad spectrum of disease
blindref byte %7.0g blinded reference test

interpretation
sampsize int %8.0g Number Data Units Per Study
qscore byte %9.0g Quality score
age byte %8.0g Mean Age
fast byte %8.0g Prior Fasting of at leasst 4-6

hours
res byte %8.0g Resolution of PET Camera
dose int %8.0g Appropriate dose used
upttime byte %8.0g Uptake Period specified
acquitime byte %8.0g Duration of image acqusition
testcrit byte %8.0g Test criteria described
multiobs byte %8.0g Multiple Observers
attcor byte %9.0g Attenuation correction of PET

images
axonly byte %8.0g Dedicated axillary imaging
pmet float %9.2g Study-specfic Prevalence of

axillary Metastases
Analysis str7 %9s Unit of Data Analysis(Patient

versus Nodes)
patient byte %10.0g Mode of analysis
blindtest byte %8.0g blinded index test interpretation

(Continued on next page)
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. list author year pmet sampsize tp fp fn tn in 1/20, sep(1) ab(32) abs noo

author year pmet sampsize tp fp fn tn

Tse 1992 .7 10 4 0 3 3

Adler1 1993 .47 18 8 0 1 10

Hoh 1993 .64 14 6 0 3 5

Crowe 1994 .5 20 9 0 1 10

Avril 1996 .47 51 19 1 5 26

Bassa 1996 .81 16 10 0 3 3

Scheidhauer 1996 .5 18 9 1 0 8

Utech 1996 .35 124 44 20 0 60

Adler2 1997 .38 50 19 11 0 20

Palmedo 1997 .3 20 5 0 1 14

Noh 1998 .54 24 12 0 1 11

Smith 1998 .42 50 19 1 2 28

Rostom 1999 .65 74 42 0 6 26

Yutani1 1999 .38 26 8 0 2 16

Hubner 2000 .27 22 6 0 0 16

Ohta 2000 .59 32 14 0 5 13

Yutani2 2000 .42 38 8 0 8 22

Greco 2001 .43 167 68 13 4 82

Schirrmeister 2001 .3 113 27 6 7 73

Yang 2001 .33 18 3 0 3 12

3 Annotated Worked Examples

3.1 Model prediction and diagnostics

Post-estimation predictions may be obtained from the estimated model, parameter es-
timates and empirical Bayes estimates of the random effects with standard errors com-
puted with the delta method. The predicted logits may then be transformed to obtain
predictions of sensitivity and specificity. midas generates a forest plot or roc curve
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of empirical Bayes versus observed estimates of sensitivity and specificity using the
ebpred(for|roc) options. Figure 1 was obtained using the syntax below:

. midas tp fp fn tn, eb(for)

Model diagnostics are rarely performed because many non-statisticians and applied
researchers consider meta-analysis as a data-processing procedure rather than a model-
fitting exercise (Sutton and Higgins 2008). However, with the application of complex
likelihood-based meta-analytic models, it is important to evaluate possible model mis-
specification, goodness of fit, and to identify outlying and possibly influential data
points. midas provides graphical model checking capabilities: quantile plot of residual-
based goodness-of fit; Chi-squared probability plot of squared Mahalanobis distances
for assessment of the bivariate normality assumption; spikeplot for checking for par-
ticularly influential observations using Cook’s distance; a scatter plot for checking for
outliers using standardized predicted random effects (standardized level-2 residuals);
and composite graphic of all four plots such as figure 2 which was obtained using the
syntax below:

. midas tp fp fn tn, modchk(all)

3.2 Quality Assessment

Methodologic quality of a study is the extent to which all aspects of a study’s design and
conduct can be shown to protect against systematic bias, nonsystematic bias that may
arise in poorly performed studies, and inferential error. The recently developed quality
assessment tool for diagnostic accuracy studies (QUADAS) (Whiting et al. 2005, 2004,
2003, 2006), is a rigorously constructed and validated tool that can be used by investiga-
tors undertaking new systematic reviews. The QUADAS tool consists of 14 items that
cover patient spectrum, reference standard, disease progression bias, verification and
review bias, clinical review bias, incorporation bias, test execution, study withdrawals,
and intermediate results. Possible methods to address quality differences are sensitivity
analysis, subgroup analysis, or meta-regression analysis. Quality assessment may be
summarized by stacked bars for each QUADAS item in a bar graph. midas provides
the ability to represent the results of quality assessment by means of a bar graph. For
example, figure 3 was obtained with the command syntax:

. midas tp fp fn tn, qbar(prodesign fulverif testdescr refdescr clindescr report
> spectrum blindref blindtest) qlab

Alternatively using the qtab(varlist) produces frequency table of quality scores.
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Figure 1: Paired forest plot depiction of empirical Bayes predicted versus observed
sensitivity and specificity
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Figure 4: Bivariate box plot with most studies clustering within the median distribution
with seven outliers suggesting indirectly a lower degree of heterogeneity

3.3 Bivariate Association

midas uses a bivariate random effects modeling of sensitivity and specificity, therefore,
it is expected that this pair of performance measures will be interdependent (see Figure
3). The bivariate box plot describes the degree of interdependence including the cen-
tral location and identification of any outliers. The inner oval represents the median
distribution of the data points. The outer oval represents the 95% confidence bound.
We obtained figure 4 with the syntax:

. midas tp fp fn tn, bivbox

It demonstrates a skewedness of the test performance measures toward a higher speci-
ficity with lower sensitivity, providing indirect evidence of some threshold variability.

3.4 Summary Performance Estimates

Summary estimates of sensitivity and specificity and their 95% confidence intervals
can be calculated after anti-logit transformation of of the mean logit sensitivity and
logit specificity and respective standard errors. These intervals take into account the
heterogeneity beyond chance between studies (random effects model).

. midas tp fp fn tn, res(sum) nip(1)

(Continued on next page)
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SUMMARY PERFORMANCE ESTIMATES

Parameter Estimate 95% CI

Sensitivity 0.73 [ 0.63, 0.80]

Specificity 0.96 [ 0.92, 0.97]

Positive Likelihood Ratio 16.2 [ 9.7, 27.3]

Negative Likelihood Ratio 0.29 [ 0.21, 0.39]

Diagnostic Odds Ratio 57 [ 30, 107]

3.5 Heterogeneity Statistics

SENSITIVITY (95% CI)

Q =273.36, df = 38.00, p =  0.00
I2 = 86.10 [82.45 − 89.75]

 0.73[0.63 − 0.80]

0.57 [0.18 − 0.90]
0.89 [0.52 − 1.00]
0.67 [0.30 − 0.93]
0.90 [0.55 − 1.00]
0.79 [0.58 − 0.93]
0.77 [0.46 − 0.95]
1.00 [0.66 − 1.00]
1.00 [0.92 − 1.00]
1.00 [0.82 − 1.00]
0.83 [0.36 − 1.00]
0.92 [0.64 − 1.00]
0.90 [0.70 − 0.99]
0.88 [0.75 − 0.95]
0.80 [0.44 − 0.97]
1.00 [0.54 − 1.00]
0.74 [0.49 − 0.91]
0.50 [0.25 − 0.75]
0.94 [0.86 − 0.98]
0.79 [0.62 − 0.91]
0.50 [0.12 − 0.88]
0.68 [0.43 − 0.87]
0.43 [0.18 − 0.71]
0.20 [0.01 − 0.72]
0.47 [0.21 − 0.73]
0.53 [0.27 − 0.79]
0.80 [0.56 − 0.94]
0.25 [0.11 − 0.43]
0.21 [0.05 − 0.51]
0.67 [0.09 − 0.99]
0.60 [0.42 − 0.76]
0.36 [0.18 − 0.57]
0.61 [0.51 − 0.70]
0.84 [0.76 − 0.90]
0.28 [0.10 − 0.53]
0.85 [0.77 − 0.90]
0.44 [0.28 − 0.62]
0.80 [0.28 − 0.99]
0.60 [0.43 − 0.74]
0.37 [0.28 − 0.47]0.37 [0.28 − 0.47]
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Figure 5: Forest plot showing study-specific (right-axis) and mean sensitivity and speci-
ficity with corresponding heterogeneity statistics

The impact of unobserved heterogeneity is traditionally assessed statistically using
the quantity I2. It describes the percentage of total variation across studies that is
attributable to the heterogeneity rather than chance(Higgins and Thompson 2002).
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I2 can be calculated from heterogeneity statistic and the degrees of freedom (Higgins
and Thompson 2002). Alternatively, for mixed models, it is the intraclass correlation
coefficient expressed as a percentage with similar interpretation and is implemented
in midas separately for sensitivity and specificity. I2 lies between 0% and 100%. A
value of 0% indicates no observed heterogeneity, and values greater than 50% may
be considered substantial heterogeneity. The main advantage of I2 is that it does not
inherently depend on the number of studies in the meta-analysis (Higgins and Thompson
2002). The midas output of heterogeneity statistics is shown below and was generated
from the syntax:

. midas tp fp fn tn, res(het) nip(1)

HETEROGENEITY STATISTICS

Heterogeneity (Chi-square): LRT_Q = 146.822, df =2.00, LRT_p =0.000

Inconsistency (I-square): LRT_I2 = 99, 95% CI = [ 98- 99]

Proportion of heterogeneity likely due to threshold effect = 0.11

Interstudy variation in Sensitivity: ICC_SEN = 0.31, 95% CI = [ 0.18- 0.45]

Interstudy variation in Sensitivity: MED_SEN = 0.76, 95% CI = [ 0.70- 0.83]

Interstudy variation in Specificity: ICC_SPE = 0.29, 95% CI = [ 0.12- 0.45]

Interstudy variation in Specificity: MED_SPE = 0.75, 95% CI = [ 0.68- 0.84]

3.6 Forest plot to demonstrate study-specific sensitivity and speci-
ficity on right y-axis

Within midas, forest plots can be created for each test performance parameter individu-
ally or may be displayed as paired plots, for example, sensitivity paired with specificity.
The user has the option of displaying heterogeneity statistics within the forest plots
using the option forstats. Figure 5 was obtained using the command syntax:

. midas tp fp fn tn, texts(0.60) bfor(dss) id(author year) ford fors

3.7 Summary ROC Curve

Based on parameters estimated by the bivariate model, several summary ROC linear
regression lines based on either the regression of logit sensitivity on specificity, the re-
gression of logit specificity on sensitivity, or an orthogonal regression line by minimizing
the perpendicular distances may be derived. These lines can be transformed back to the
original ROC scale to obtain a summary ROC curve. In midas, derived logit estimates
of sensitivity, specificity and respective variances are used to construct a hierarchical
summary ROC curve. midas has several options for the display of the ROC curve. For
example, figure 6 was obtained by using the syntax below:

. midas tp fp fn tn, sroc(both)
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Figure 6: Summary ROC curve with confidence and prediction regions around mean
operating sensitivity and specificity point
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The summary ROC curve is displayed along with the observed study data. The dashed
line around the summary point estimate, represents the 95% confidence region. The area
under the curve (AUROC), serves as a global measure of test performance. The AUROC
is the average TPR over the entire range of FPR values. The following guidelines have
been suggested for interpretation of intermediate AUROC values: low (0.5>= AUC <=
0.7), moderate (0.7 >= AUC <= 0.9), or high (0.9 >= AUC <= 1) accuracy (Swets
1988).

3.8 Meta-regression

Meta-regression, the use of regression methods to incorporate the effect of covarying
factors on summary measures of performance, has been used to explore between-study
heterogeneity in therapeutic studies. In diagnostic studies, likewise, heterogeneity in
sensitivity and specificity can result from many causes related to definitions of the test
and reference standards, operating characteristics of the test, methods of data collection,
and patient characteristics. Covariates may be introduced into a regression with any
test performance measure as the dependent variable. As with any meta-regression,
however, the sample size will correspond to the number of studies in the analysis with
small number of studies limiting the power of regression to detect significant effects.
The syntax below produces both tabular and graphical output (Figure 7):

. midas tp fp fn tn, reg(prodesign age qscore sampsize fulverif testdescr refd
> escr clindescr report spectrum blindref blindtest)

(output omitted )

Parameter category LRTChi2 Pvalue I2 I2lo I2hi

prodesign Yes 2.73 0.26 27 0 100
No . . . . .

age 7.18 0.03 72 38 100
qscore 4.84 0.09 59 7 100
sampsize 0.83 0.66 0 0 100
fulverif Yes 0.03 0.99 0 0 100

No . . . . .
testdescr Yes 1.79 0.41 0 0 100

No . . . . .
refdescr Yes 0.61 0.74 0 0 100

No . . . . .
clindescr Yes 6.75 0.03 70 34 100

No . . . . .
report Yes 2.75 0.25 27 0 100

No . . . . .
spectrum Yes 1.15 0.56 0 0 100

No . . . . .
blindref Yes 8.35 0.02 76 48 100

No . . . . .
blindtest Yes 25.80 0.00 92 85 99

No . . . . .
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Figure 7: Forest plot of multiple univariable meta-regression and subgroup analyses
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3.9 Linear regression test of funnel plot asymmetry

The funnel plot is generally considered a good exploratory tool for investigating publica-
tion bias (Light and Pillemer 1984), plotting a measure of effect size against a measure
of study precision, appearing symmetric if no bias is present. However, assessment of
such a plot is very subjective. Thus, non-parametric and parametric linear regression
methods have been developed to formally test for such funnel plot asymmetry (Begg
and Mazumdar 1994; Egger and Smith 1998; Harbord et al. 2006; Macaskill et al. 2001;
Peters et al. 2006; Rucker et al. 2008; Schwarzer et al. 2007, 2002). Using these meth-
ods for assessing publication bias in diagnostic test studies may produce misleading
results (Song et al. 2002; Deeks et al. 2005). Formal testing for publication bias may be
conducted by a regression of diagnostic log odds ratio against 1/sqrt(effective sample
size), weighting by effective sample size (Deeks et al. 2005), with P < .10 for the slope
coefficient indicating significant asymmetry.

. midas tp fp fn tn, pubbias

yb Coef. Std. Err. t P>|t| [95% Conf. Interval]

Bias -3.206976 4.332084 -0.74 0.464 -11.98461 5.57066
Intercept 4.255449 .5420326 7.85 0.000 3.157187 5.353711
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Figure 8: Funnel plot with superimposed regression line

Using the syntax above yields funnel plot with superimposed regression line as shown in
figure 8. The statistically non-significant p-value (0.89) for the slope coefficient suggests
symmetry in the data and a low likelihood of publication bias. However, the test is
known to have low power (Deeks et al. 2005).
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3.10 Fagan plot (Bayes Nomogram)

The clinical or patient-relevant utility of a diagnostic test is evaluated using the likeli-
hood ratios to calculate post-test probability(PTP) based on Bayes’ theorem as follows:
Pretest Probability=Prevalence of target condition PTP= LR × pretest probability/[(1-
pretest probability)× (1-LR)] This concept is depicted visually with Fagan’s nomograms
(Fagan 1975). When Bayes theorem is expressed in terms of log-odds, the posterior log-
odds are linear functions of the prior log-odds and the log likelihood ratios. A Fagan
plot (see figure 9) consists of a vertical axis on the left with the prior log-odds, an
axis in the middle representing the log-likelihood ratio and an vertical axis on the right
representing the posterior log-odds. Lines are then drawn from the prior probability
on the left through the likelihood ratios in the center and extended to the posterior
probabilities on the right.
Figure 9 demonstrates that FDG-PET is very informative raising probability of axil-
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Figure 9: Fagan plot

lary breast metastases over 3-fold when positive from 25% and lowering the probability
of disease to as low as 9% when negative. It was generated with the syntax:

. midas tp fp fn tn, fagan(0.25)
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3.11 Likelihood ratio scattergram

Informativeness may also be represented graphically by a likelihood ratio scattergram or
matrix (Stengel et al. 2003). It defines quadrants of informativeness based on established
evidence-based thresholds:

1. Left Upper Quadrant, Likelihood Ratio Positive > 10, Likelihood Ratio Negative
<0.1: Exclusion & Confirmation

2. Right Upper Quadrant, Likelihood Ratio Positive >10, Likelihood Ratio Negative
>0.1: Confirmation Only

3. Left Lower Quadrant, Likelihood Ratio Positive <10, Likelihood Ratio Negative
<0.1: Exclusion Only

4. Right Lower Quadrant, Likelihood Ratio Positive <10, Likelihood Ratio Negative
>0.1: No Exclusion or Confirmation

The likelihood ratio scattergram (figure 10) shows summary point of likelihood ratios
obtained as functions of mean sensitivity and specificity (Leeflang et al. 2008) in the
right upper quadrant suggesting that FDG-PET is useful for confirmation of presence
of axillary metastatic disease (when positive) and not for its exclusion (when negative).
This figure was generated with the midas syntax:

. midas tp fp fn tn, lrmat

3.12 Predictive Values and Probability Modifying Plot

The conditional probability of disease given a positive OR negative test, the so-called
positive (negative) predictive values are critically important to clinical application of a
diagnostic procedure. They depend not only on sensitivity and specificity, but also on
disease prevalence (p). The probability modifying plot is a graphical sensitivity analysis
of predictive value across a prevalence continuum defining low to high-risk populations.
It depicts separate curves for positive and negative tests. The user draws a vertical
line from the selected pre-test probability to the appropriate likelihood ratio line and
then reads the post-test probability off the vertical scale. General summary statistics
have also been introduced (Li et al. 2007) for when it may be of interest to evaluate the
effect of p on predictive values: unconditional positive and negative predictive values,
which permit prevalence heterogeneity. These measures are obtained by integrating
their corresponding conditional (on p) versions with respect to a prior distribution for
p. The prior posits assumptions about the risk level in a hypothetical population of
interest, e.g. low, high, moderate risk, as well as the heterogeneity in the population.
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. midas tp fp fn tn, pddam(0.25 0.75)
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Figure 11: Probability Modifying Plot

Using the syntax above generates figure 11, which plots the relationship between pre-
and post-test probability based on the likelihood of a positive (above diagonal line) or
negative (below diagonal line) test result over the 0-1 range of pre-test probababilities.
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Tests with more informative positive results have curves tending toward the (0,1) loca-
tion while tests with more informative negative results produce curves toward the (1,0)
location.
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