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1 Introduction

The objective of linear regression analysis is to study how a dependent variable

is linearly related to a set of regressors. In matrix notation, the linear regression

model is given by:

y = Xθ + ε (1)

where, for a sample of size n, y is the (n × 1) vector containing the values for

the dependent variable, X is the (n × p) matrix containing the values for the p

regressors and ε is the (n × 1) vector containing the error terms. The (p × 1)

vector θ contains the unknown regression parameters and needs to be estimated.

On the basis of the estimated parameter θ̂, it is then possible to fit the dependent

variable by ŷ = Xθ̂, and compute the residuals ri = yi − ŷi for i = 1 ≤ i ≤ n.

Although θ can be estimated in several ways, the underlying idea is always to

try to get as close as possible to the true value by reducing the magnitude of

the residuals, as measured by an aggregate prediction error. In the case of the

well-known ordinary least squares (LS), this aggregate prediction error is defined

as the sum of squared residuals. The vector of parameters estimated by LS is

then

θ̂LS = arg min
θ

n
∑

i=1

r2
i (θ) (2)

with ri(θ) = yi − θ0 − θ1Xi1 − ... − θpXip for 1 ≤ i ≤ n. This estimation can be

performed in Stata using the regress command. A drawback of LS is that, by

considering squared residuals, it tends to award an excessive importance to obser-

vations with very large residuals and, consequently, distort parameters’ estimation

in case of existence of outliers.
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The scope of this paper is first, to describe regression estimators that are

robust with respect to outliers and, second, to propose Stata commands to im-

plement them in practice. The structure of the paper is the following: we briefly

present, in Section 2, the type of outliers that can be found in regression analysis

and introduce the basics of robust regression. We recommend to use high break-

down point estimators, which are known to be resistant to outliers of different

types. In Section 3, we describe them and provide a sketch of the Stata code we

implemented to estimate them in practice. In Section 4 we give an example using

the well-known Stata auto dataset. In Section 5 we provide some simulation re-

sults to illustrate how the high breakdown point estimators outperform the robust

estimators available in Stata. Finally, in Section 6 we conclude.

2 Outliers and robust regression estimators

In regression analysis, three types of outliers influence the LS estimator. Rousseeuw

and Leroy (1987) define them as vertical outliers, bad leverage points and good

leverage points. To illustrate this terminology, consider a simple linear regression

as shown in Figure 1 (the generalization to higher dimensions is straightforward).

Vertical outliers are those observations that have outlying values for the corre-

sponding error term (the y-dimension) but are not outlying in the space of ex-

planatory variables (the x-dimension). Their presence affects the LS-estimation

and in particular the estimated intercept. Good Leverage points are observations

that are outlying in the space of explanatory variables but that are located close to

the regression line. Their presence does not affect the LS-estimation but it affects

statistical inference since they do deflate the estimated standard errors. Finally,

Bad Leverage points are observations that are both outlying in the space of ex-

planatory variables and located far from the true regression line. Their presence
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affects significantly the LS-estimation of both the intercept and the slope.

good leverage pointvertical outlier

bad leverage point
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Figure 1: Outliers in regression analysis

Edgeworth (1887) realized that due to the squaring of the residuals, LS becomes

extremely vulnerable to the presence of outliers. To cope with this, he proposed

a method consisting in minimizing the sum of the absolute values of the residuals

rather than the sum of their squares. More precisely, his method defines the L1
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or median regression estimator as

θ̂L1
= arg min

θ

n
∑

i=1

|ri(θ)| (3)

The median regression estimator is available in Stata via the qreg command as

a standard function. This estimator does protect against vertical outliers but not

against bad leverage points. It has an efficiency of only 64% at a Gaussian error

distribution (see Huber, 1981).

Huber (1964) generalized median regression to a wider class of estimators,

called M-estimators, by considering other functions than the absolute value in

(3). This allows to increase Gaussian efficiency while keeping robustness with

respect to vertical outliers. An M-estimator is defined as

θ̂M = arg min
θ

n
∑

i=1

ρ(
ri(θ)

σ
) (4)

where ρ(·) is a loss function which is even, non decreasing for positive values and

less increasing than the square function. To guarantee scale equivariance (i.e.

independence with respect to the measurement units of the dependent variable),

residuals are standardized by a measure of dispersion σ. M-estimators are called

monotone if ρ(·) is convex over the entire domain and redescending if ρ(·) is

bounded.

The practical implementation of M-estimators uses an iteratively reweighted

least squares algorithm. To simplify, suppose that σ is known and define weights

ωi = ρ(ri/σ)/r2
i , then equation (4) can be rewritten as

θ̂M = arg min
θ

n
∑

i=1

ωir
2
i (θ), (5)
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which is a weighted least-squares estimator. The weights ωi are however a func-

tion of θ and are thus unknown. Using an initial estimate θ̃ for θ, the weights

can be computed and serve as the start of an iteratively reweighted least squares

algorithm. Unfortunately, the latter is guaranteed to converge to the global min-

imum of (4) only for monotone M-estimators which are not robust with respect

to bad leverage points.

In Stata, the rreg command computes a highly efficient M-estimator. The

loss function used is the Tukey Biweight function defined as

ρ(u) =







1 −
[

1 −
(

u
k

)2
]3

if |u| ≤ k

1 if |u| > k
(6)

where k = 4.685. The starting value of the iterative algorithm θ̃ is taken to be a

monotone M-estimator with a Huber ρ(·) function:

ρ(u) =







1
2 (u)2 if |u| ≤ c

c |u| − 1
2c2 if |u| > c

(7)

where c = 1.345. Moreover, to give protection against bad leverage points, ob-

servations associated to Cook distances larger than 1, receive a weight zero. A

command (mregress) to compute a standard monotone M-estimator with a Huber

ρ(·) function is described in Section 6.

Unfortunately, the rreg command has not the expected robustness proper-

ties for two main reasons. First, Cook distances only manage to identify isolated

outliers and are inappropriate in case of existence of clusters of outliers, where

one outlier can mask the presence of another (see Rousseeuw and Van Zomeren,

1990). It can therefore not be guaranteed to have identification of all leverage

points. Second, the initial values for the iteratively reweighted least squares algo-

rithm are monotone M-estimators that are not robust to bad leverage points and
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may lead the algorithm to converge to a local instead of a global minimum.

3 High Breakdown point estimators

Full robustness can be achieved by tackling the regression problem from a different

perspective. Recall that the LS estimator is based on the minimization of the

variance of the residuals. Hence, since the variance is highly sensitive to outliers,

LS is largely influenced as well. For this reason, Rousseeuw and Yohai (1987)

propose to minimize a measure of dispersion of the residuals that is less sensitive

to extreme values than the variance1. They call this class of estimators the S-

estimators. The intuition behind the method is simple. For LS, the objective

is to minimize the variance σ̂2 of the residuals. The latter can be rewritten as

1
n

∑n

i=1

(

ri

σ̂

)2
= 1. As stated previously, the square value can be damaging as

it gives a huge importance to large residuals. Thus, to increase robustness, the

square function could be replaced by another loss function ρ which awards less

importance to large residuals2. The estimation problem would now consist in

finding the smallest robust scale of the residuals. This robust dispersion, denoted

σ̂S satisfies

1

n

n
∑

i=1

ρ(
ri(θ)

σ̂S
) = b (8)

1. Note that the Least Trimmed Squares estimator and the Least Median Squares estimator,

introduced by Rousseeuw (1984) rely on the same logic. We programmed these two estimators

in Stata, and made available through the command ltsregress and lmsregress.

2. As before, ρ(·) is a function which is even, non decreasing for positive values, less increasing

than the square with a unique minimum at zero



8 Robust Regression in Stata

where b = E[ρ(Z)] with Z ∼ N(0, 1). The value of θ that minimizes σ̂S is then

called an S-estimator. More formally, an S-estimator is defined as:

θ̂S = arg min
θ

σ̂S(r1(θ), ..., rn(θ)) (9)

where σ̂S is the robust estimator of scale as defined in (8).

The choice of ρ(·) is crucial to have good robustness properties and a high

Gaussian efficiency. The Tukey Biweight function defined in (6), with k = 1.547,

is a common choice. This S-estimator resists to a contamination of up-to 50% of

outliers. In other words, it is said to have a breakdown point of 50%. Unfortu-

nately, this S-estimator has a Gaussian efficiency of only 28.7 %. If k = 5.182,

the Gaussian efficiency raises to 96.6% but the breakdown point drops to 10%.

To cope with this, Yohai et al. (1987) introduced MM-estimators that combine

high breakdown point and a high efficiency. These estimators are redescending

M-estimators as defined in (4), but where the scale is fixed at σ̂S . So an MM-

estimator is defined as

θ̂MM = arg min
θ

n
∑

i=1

ρ(
ri(θ)

σ̂S
) (10)

The preliminary S-estimator guarantees a high breakdown point, and the the final

MM-estimate a high Gaussian efficiency. It is common to use a Tukey Biweight

ρ(·) function for both the preliminary S-estimator and the final MM-estimator.

The tuning constant k can be set to 1.547 for the S-estimator, to guarantee a 50%

breakdown point, and it can be set to 4.685 for the second step MM-estimator in

(10) to guarantee a 95% efficiency of the final estimator.

For computing the MM-estimator, the iteratively reweighted least squares al-

gorithm can be used, taking θ̂S as initial value. Once the initial S-estimate is com-
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puted, θ̂MM comes at almost no additionnal computational cost. We programmed

an S- and an MM-estimator in Stata (with Tukey Biweight loss function) using

the algorithm of Salibian-Barrera and Yohai (2006). Explicit formulas for the

estimators are not available and it is necessary to call on numerical optimization

to compute them. We present in the next section a sketch of the algorithm we

implemented in Stata. The commands to compute S and MM-estimators (called

respectively sregress and mmregress) are described in Section 6.

3.1 S-estimator and MM-estimator algorithms

The algorithm implemented in Stata for computing the S-estimator starts by

randomly picking N subsets of p observation (defined as p-subset) where p is the

number of regression parameters to estimate. For each p-subset, the equation of

the hyperplane that fits all points perfectly is obtained yielding a trial solution

of (9). This trial value is more reliable if all p points are regular observations,

such that the p-subset does not contain outliers. The number N of sub-samples

to generate is chosen to guarantee that at least one p-subset without outliers is

selected with high probability. As shown in Salibian-Barrera and Yohai (2006),

this can be achieved by taking

N =

⌈

log(1 − Pclean)

log[1 − (1 − α)p]

⌉

(11)

where α is the (maximal) expected proportion of outliers, p is the number of

parameters to estimate and Pclean is the desired probability to have at least one

p-subset without outliers among the N subsamples3.

3. The default values we use in the implementation of the algorithm are α = 0.2 and Pclean =

0.99.



10 Robust Regression in Stata

For each of the p-subsets, a hyperplane that perfectly fits the p-subset is com-

puted. Then, for all n observations in the sample, residuals with respect to this

hyperplane are computed, and a scale estimate σ̂S is computed from them as in

(8). In this way, scale estimates are obtained for each p-subset, and an approxi-

mation for the final scale estimate σ̂S is then given by the trial value that leads to

the smallest scale over all p-subset. This approximation can be improved further

by carrying some refinement steps, that bring the approximation even closer to

the solution of (9).

This algorithm is implemented in Stata and can be called either directly using

the sregress function or indirectly using the mmregress function and invoking

the initial option. Once the S-estimator is obtained, the MM-estimator di-

rectly follows by applying the iteratively reweighted least squares algorithm up

to convergence. We provide a Stata command for MM-estimators through the

mmregress command. As far as inference is concerned, standard errors robust to

heteroskedasticity (and asymmetric errors) are computed according to the formu-

las available in the literature (see e.g. Croux, Dhaene and Horelbeke, 2008).

The need of calling on subsampling algorithms becomes Achille’s heel of the al-

gorithm when several dummy variables are present. Indeed, as stated by Maronna

and Yohai (2000), subsampling algorithms can easily lead to collinear sub-samples

if various dummies are among the regressors. To cope with this, Maronna and

Yohai (2000) introduce the MS-estimator that alternates an S-estimator (for con-

tinuous variables) and an M-estimator (for dummy ones), till convergence. This

estimator is somehow out of the scope of the paper and we thus do not elabo-

rate on it here. We nevertheless briefly describe the Stata command implemented

(msregress) to compute it in practice. Note that this estimator can be particu-

larly helpful in the fixed effects panel data models, as suggested by Bramati and
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Croux (2007).

3.2 Outlier detection

In addition to reducing the importance of outliers on the estimator, robust statis-

tics are also intended to identify atypical individuals. Once identified, they could

be analyzes separately from the bulk of data. To do so, it is important to recognize

their type. This can be easily achieved by calling on the graphical tool proposed

by Rousseeuw and Van Zomeren (1990). This graphical tool is constructed by

plotting on the vertical axis the Robust Standardized Residuals, defined as ri/σ̂S ,

with ri ≡ ri(θ̂
S), to give an idea of outlyingness with respect to the fitted regres-

sion plane. On the horizontal axis a measure of the (multivariate) outlyingness

of the explanatory variables is plotted. The latter is measured by Mahalanobis

distance defined as di =
√

(Xi − µ)Σ−1(Xi − µ)′ where µ is the multivariate lo-

cation vector, Σ is the covariance matrix of the explanatory variables and Xi the

ith row-vector of matrix X, for i ≤ i ≤ n. Obviously both µ and Σ should be

estimated robustly if we want these distances to resist to the presence of outliers.

Several methods have been proposed to estimate robustly the Mahalanobis dis-

tances. In Stata, the command hadimvo is available but, more robust estimates

for the covariance matrix (such as the Minimum Covariance Determinant estima-

tor) are also available. We briefly describe the command (mcd) to compute the

minimum covariance determinant in Section 6.

It is possible to set the limits outside which individuals can be considered as

outliers. For the y-dimension, we set them to −2.25 and +2.25. These represent

the values of the Standard Normal that separate the 2.5% remotest area of the dis-

tribution from the central mass. For the x-dimension we set the limit to
√

χ2
p,0.975,

motivated by the fact that the squared Mahalanobis distance is distributed as a
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χ2
p distribution under normality.

4 Example

To illustrate the usefulness of the robust methods, we present an example based

on the well-known stata auto.dta dataset. More specifically, we regress the price

of cars on the following set of characteristics: the mileage (mpg), the headroom

(in.), the trunk space( cu. ft.), the length (in.), the weight (lbs.), the turn circle

(ft.), the displacement (cu. in.), the gear ratio, four dummies identifying the

categorical variable repair record in 1978, and a foreign dummy identifying if the

car is not built in the US. We first identify outliers. For this purpose we call

on the graphical tool described in Section 3.2. The resulting plot is pictured in

Figure 2. This can be easily done by calling the followin Stata command lines

(that are described more precisely in Section 6)

. webuse auto, clear

. xi: mmregress price mpg headroom trunk length weight turn

displacement gear ratio foreign i.rep78, outlier graph label(make)

Several features emerge. First, the Cadillac Seville is a bad leverage point.

Indeed it is an outlier in the horizontal as well as in the vertical dimension. This

means that its characteristics are pretty different from those of the bulk of data

and its price is much higher than it should be according to the fitted model.

The Volkswagen Diesel and the Plymouth Arrow are large good leverage points

since they are outlying in the horizontal dimension but not on the vertical one.

This means that their characteristics are rather different from the other cars but

their price is in accordance with what the model predicts. Finally the Cadillac
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Eldorado, the Lincoln Versaille, the Lincoln Mark V, the Volvo 260 and some

others are standard in their characteristics but are more expensive than the model

would suggest. They correspond to vertical outliers.

Cad. Eldorado

Cad. Seville

Linc. Mark V

Volvo 260

Linc. Versailles

Plym. Arrow

Subaru

VW Diesel
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Figure 2: Diagnostic plot of standardized robust residuals versus roust

Mahalanobis distances for the auto.dta dataset

Are these outlying observations sufficient to distort classical estimations? Since

several vertical outliers are present as well as a severe bad leverage point, there

is a serious risk that the least squares estimator becomes strongly attracted by
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the outliers. To illustrate this, we compare the results obtained using the recom-

mended high breakdown point estimator mmregress with those obtained using

least squares (regress), Huber’s monotonic M-estimator (rreg) and median re-

gression (qreg). Both an MM-estimator with 70% and 95% efficiency (for normal

errors) are considered. The command lines (used in a do-file) to estimate these

models are

. webuse auto, clear

. local exogenous=”mpg headroom trunk length weight turn

displacement gear ratio foreign i.rep78"

. xi: regress price ‘exogenous’

. xi: qreg price ‘exogenous’

. xi: rreg price ‘exogenous’

. xi: mmregress ‘exogenous’, eff(0.7)

. xi: mmregress ‘exogenous’, eff(0.95)

The differences are, as expected, important. We present the regression output

in Table 1.
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Table 1: Pricing of autos

Auto dataset. Dependent variable: Price in US$

regress qreg rreg MM(0.70) MM(0.95)

Mileage −43.95
(0.52)

−44.45
(0.55)

−68.91
(0.92)

− 44.88
(−1.67)

−46.74
(1.56)

Headroom −689.40∗
(1.72)

−624.19
(1.71)

∗ −739.30∗∗
(2.09)

−311.96∗∗
(2.52)

−440.06∗∗∗
(4.10)

Trunk space 74.29
(0.74)

37.50
(0.40)

114.53
(1.29)

186.60∗∗∗
(7.10)

128.98∗∗∗
(3.53)

Length −80.66
(1.86)

∗ −48.78
(1.17)

−27.50
(0.72)

−33.74∗∗
(2.57)

0.03
(0.00)

Weight 4.67
(3.19)

∗∗∗ 2.89∗∗
(2.10)

2.59
(1.99)

∗ 1.03∗∗∗
(5.29)

0.37
(0.62)

Turn Circle −143.71
(1.11)

30.22
(0.30)

−104.26
(0.91)

10.51
(0.48)

−23.79
(0.69)

Displacement 12.71
(1.45)

9.79
(1.27)

11.34
(1.46)

2.31
(0.98)

2.51
(0.58)

Gear Ratio 115.08
(0.09)

92.28
(0.08)

917.19
(0.82)

492.467
(0.89)

370.20
(0.99)

Foreign 3064.52∗∗∗
(2.89)

2496.04∗∗
(2.38)

2326.91∗∗
(2.48)

−91.66
(0.19)

763.91∗
(1.89)

rep78==2 1353.80
(0.79)

−355.92
(0.27)

465.98
(0.31)

5.99
(0.02)

31.45
(0.11)

rep78==3 955.44
(0.59)

19.24
(0.02)

488.23
(0.34)

−720.50∗∗∗
(2.76)

−286.70
(1.17)

rep78==4 976.63
(0.59)

241.79
(0.18)

813.11
(0.55)

−275.89
(1.04)

390.71
(1.49)

rep78==5 1758.00
(0.97)

1325.18
(0.91)

1514.13
(0.95)

606.77∗
(1.70)

359.01
(0.86)

Constant 9969.75
(1.40)

4083.51
(0.60)

2960.68
(0.47)

5352.18∗∗∗
(3.10)

3495.97
(1.43)

Absolute value of t statistics in parentheses

Significant at ***1%, ** 5%, * 10%

Let’s compare the results. First headroom, trunk space and length seem to

be unimportant in explaining prices (at a 5% level) when looking at the OLS,

median and M-estimators (i.e. regress, qreg and rreg). However, when the
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influence of outliers (and especially of the bad leverage point) is taken into account

(i.e. MM(0.7) column), they turn out to be significantly different to zero. If we

consider a more efficient estimator (i.e. MM(0.95) column) length becomes again

insignificant. The weight variable is flagged as significant by most specifications

(though the size of the effect is very different). The turn, displacement and gear

ratio variables turn out to be insignificant in all specifications. The foreign dummy

is insignificant only using the most robust estimators.

5 Simulations

Several recent articles have proven the theoretical properties of the estimators

described in the previous sections. In this paper we will compare the performances

of the Stata codes we implemented with the previously available robust commands

and LS. To do so we run some simulations according to the following setup.

We start by creating a dataset (of size n = 1000) by randomly generating 5

independent explanatory continuous variables (labelled X1, . . . ,X5) and an error

term (e) from six independent univariate normal distributions with mean zero

and unit variance. A y variable is then generated according to the formula yi =

β0 +
∑5

j=1 βjXij + ei where β0 = 0 and βj = 1 for j = 1, . . . , 5. This dataset is

called the clean dataset. We then contaminate the data by replacing randomly

10% of the X1 observations without modifying y. These contaminated points are

generated from a normal distribution with mean 5 and standard deviation 0.1 and

are bad leverage points. We call this the contaminated dataset. We then repeat

this procedure 1000 times and each time we estimate the parameters using LS, L1,

M, S and MM-estimators (with a 95% and a 70% efficiency). On the basis of all

the estimated parameters, we measure the bias (i.e. the average of the estimated

parameters minus the true value) and the mean squared error (i.e. the variance of
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the estimated parameters plus the square of the bias). The results are presented

in Table 2. We do not present the results associated to the clean sample since all

estimation methods lead to comparable and very low biases.

Table 2: Simulated Bias and MSE (sample size n=1000, 10% of outliers)

Estimation method β1 β2 β3 β4 β5 β0

LS Bias 0.7149 0.0015 0.0010 0.0002 0.0016 -0.1440

reg MSE 0.5118 0.0017 0.0018 0.0019 0.0018 0.0223

L1 Bias 0.6369 0.0006 0 .0013 0.0004 0.0011 -0.1281

qreg MSE 0.4071 0.0026 0.0024 0.0027 0.0027 0.0188

M Bias 0.6725 0.0012 0.0010 0.0005 0.00167 -0.1353

rreg MSE 0.4532 0.0018 0.0018 0.0019 0.0019 0.0200

MM (0.95) Bias 0.6547 0.0011 0.0009 0.0010 0.00167 -0.1318

mmregress MSE 0.4298 0.0018 0.0018 0.0020 0.0020 0.0190

MM (0.7) Bias 0.0867 0.0012 0.0028 -0.0008 -0.0010 -0.0164

mmregress MSE 0.0236 0.0015 0.0015 0.0015 0.0014 0.0024

The results of the simulations clearly show that, for this contamination setup,

the least biased estimator among those we considered is the MM-estimator with

an efficiency of 70%. Its bias and MSE are respectively of 0.087 and 0.024 for

β1 and of -0.016 and 0.002 for β0. As a comparison, the bias and MSE of LS

are 0.715 and 0.512 for β1 and -1.144 and 0.02 for β0. For the other coefficients

the performances of all estimators are comparable. It is important to stress that

if we set the efficiency of MM to 95%, its performance in terms of bias worsens

too much and would thus not be desirable. The L1 and M estimators (computed

respectively with the qreg and rreg commands) behave rather poorly and have

a bias and an MSE comparable to that of LS.
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6 The implemented commands

The mmregress command computes the high breakdown point regression MM-

estimators, described in Section 3, and their standard errors. The general syntax

for the command is:

mmregress varlist [if exp] [in range] [, eff(#) dummies(varlist) noconstant

outlier graph label(varname) replic(#) init]

The first optional parameter is eff, which allows to fix the efficiency of the

MM-estimator. It can take any value between 0.287 and 1; the higher its value,

the more efficient the MM-estimator. While the breakdown point of the MM-

estimator is always 50%, its bias increases with its efficiency. Therefore, to have

a good compromise between robustness and efficiency of the MM-estimator, we

take as a default value eff=0.7. The dummies option allows to declare which

variables are dichotomous. In case dummies is declared, the initial estimator will

be the MS rather than the S-estimator. Not declaring this option when dummy

variables are present may cause the algorithm for computing the S-estimator to

fail (see section 3.1).

The third option, noconstant, states that no constant term has to be consid-

ered in the regression. The fourth option, outlier, provides robust standardized

residuals, and robust Mahalanobis distances. They can be used to construct a

diagnostic plot, as discussed in Section 3.2, and the option graph calls on this

graphical tool for outliers identification. The option label allows to chose the

variable that will label the largest outliers. This option only works jointly with

the graph option. If this option is not declared, the label will be the observation

number. The option replic allows to fix the number of p-subsets to consider in
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the initial steps of the algorithm. The user can use equation (11) to change the

value of N in accordance to his desired level of Pclean and/or α. The default value

for N corresponds to Pclean = 0.99 and α = 0.2. Finally, the option init will

return as output the initial S-estimator, or the MS-estimator if the option dummy

is invoked, instead ot the final MM-estimator.

The general syntax for the command to compute the S-estimator is

sregress varlist [if exp] [in range] [, noconstant outlier graph replic(#)]

The optional parameters available are a subset of those available in mmregress.

Their use is therefore the same. Note that if sregress is called defining exclusively

a dependent variable, the code will return an M-estimator of scale (sometimes

called an S-estimator of scale) and an S-estimator of location of that variable.

The general syntax for the command of the MS-estimator is

msregress varlist [if exp] [in range], dummies(varlist) [noconstant outlier

graph replic(#)]

Here again the use of options is comparable to mmregress. The dummies option

is used to declare which variables among the explanatory are dichotomous and is

compulsory.

The general syntax for the command to compute the Huber M-estimator is

mregress varlist [if exp] [in range] [, noconstant tune(#)]

The noconstant option allows to remove the constant while the tune option allows
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to change the tuning parameter as in the rreg command. Note that mregress is

only a slight modification of the rreg code.

The general syntax for the Minimum Covariance Determinant command is

mcd varlist [if exp] [in range] [, e(#) proba(#) trim(#) outlier best raw

setseed]

The options e and proba are used to modify respetively α and Pclean in (11), trim

sets the percentage of trimming desired, outlier calls for for robust Mahalanobis

distances and flags outliers, best identifies the observations that have been used

for calculating the robust covariance matrix, raw returns the raw robust covariance

matrix instead of one estimated classically but on the sample cleaned of identified

outliers and setseed sets the seed. The algorithm for computing the Minimum

Covariance Determinant is described in Rousseeuw and Van Driessen (1999)

7 Conclusion

The strong impact of outliers on the least square regression estimator is known

for a long time. Consequently, a large literature has been developed to find robust

estimators that cope with the ”atypical” observations, and have a high breakdown

point. At the same time, the statistical efficiency of the robust estimators needs

to remain sufficiently high. In recent years, it seems that a consensus has emerged

to recommend the MM-estimators as the best suited estimation method, since

they combine a high resistance to outliers and high efficiency at regression models

with normal errors.

On the other hand, robust methods were not so often used by applied re-
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searchers, mainly because their practical implementation remained quite cumber-

some. Over the last decade, efficient and relatively fast algorithms for computing

robust estimators, including MM-estimators, were developed. Nowadays, the use

of robust statistical methods becomes much more widespread in the applied sci-

ences, like engeneering and chemistry. By providing the Stata code, we make

robust regression methods also available for the econometrics research commu-

nity.

In this paper we summarize the properties of the best known robust estimation

procedures and provide Stata code to implement them. We create the mmregress

command (based on a set functions that can be run separately if needed). We

furthermore show how this estimator outperforms all ”robust” estimators available

in Stata by mean of a modest simulation study. We hope that this paper will

contribute to the development of further robust methods in Stata. In particular,

development of robust procedures for Panel Data and time series models would

be of major interest for applied economic research. The time series setting will

give rise to new problems. For example, selecting random p-observation subsets

will not be appropriate, since they break the temporal structure of the data
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