Estimation of the parameters of a Multidimensional Marginally Sufficient Rasch > Model (MMSRM)
mmsrm varlist [, partition(numlist) nodetails trace iterate(#) adapt method(mml/gee)]
varlist is a list of two existing binary variables or more.
Description
mmsrm estimates by marginal maximum likelihood (MML) or generalized estimating equations (GEE) the parameters of the Multidimensional Marginally Sufficient Rasch Model (MMSRM) defined by Hardouin and Mesbah (2004). This model is an Item Response Model (IRM) with one or several latent traits. This is a particular multidimensionnal extension of the Rasch model. In this model, the items are separated in Q groups and each group of items is linked to one and only one latent trait. Each group fits a Rasch model relatively to the corresponding latent trait, so the score computed in each group of item is a sufficient statistics of this latent trait (to a specific value of this score is associated only one value for the latent trait). The program allows computing the parameter of a MMSRM with less than 4 latent traits. To improve the time of computing, the difficulty parameters are estimated in each unidimensional Rasch model and used as an offset variable to estimate the parameters of the distribution of the multidimensional latent trait. This model allows estimating the correlations between different latent traits measured by Rasch models.
Options
partition allows defining the number of items relied to each latent trait. The sum of the numbers indicated in the numlist must be equal to the total number of items. The number of elements indicates the number of latent traits. The items are taken in the same order than this one of varlist. By default, only one latent trait is assumed (Rasch model). The number of elements of partition must be inferior or equal to 3.
method defines the estimation method between the marginal maximum likelihood (mml - by default) and the generalized estimating equations (gee). You cannot estimate the parameters of a MMSRM with 3 dimensions with the GEE method.
nodetails deletes the details about the procedure.
trace displays details about the estimation algorithm.
iterate defines the maximal number of iterations of the estimation algorithm (30 by default).
adapt allows using the adaptive quadrature if you use the MML method of estimation. This option is useless if you use GEE.
Example
. mmsrm item1-item9 , part(4 5) trace method(gee)
. mmsrm item1 item2 item3 item4 /*Rasch model*/
. mmsrm c1-c9 , part(3 3 3) nodetails adapt iterate(10)
References
Hardouin J.-B. and Mesbah M. Clustering binary variables in subscales using an extended Rasch model and Akaike Information Criterion. Communications in Statistics - Theory and Methods, 33(6), pp. 1277-1294, (2004).
Author
Jean-Benoit Hardouin, Regional Health Observatory (ORS) - 1, rue Porte Madeleine - BP 2439 - 45032 Orleans Cedex 1 - France. You can contact the author at jean-benoit.hardouin@neuf.fr and visit the