*! nehurdle_truncnb2 v1.1.0 *! 06 September 2024 *! Alfonso Sanchez-Penalver *! Version history at the bottom. /******************************************************************************* * ML lf2 evaluator for truncated negative binomial 2 hurdle model, with * * constant dispersion, and allowing for hetero in participation. * *******************************************************************************/ capture program drop nehurdle_truncnb2 program define nehurdle_truncnb2 version 11 args todo b lnfj g1 g2 g3 H quietly{ // Evaluating the variables tempvar xb zg lnalpha alpha mu mleval `zg' = `b', eq(1) mleval `xb' = `b', eq(2) gen double `mu' = exp(`xb') mleval `lnalpha' = `b', eq(3) gen double `alpha' = exp(`lnalpha') // Log-Likelihood replace `lnfj' = lnnormal(- `zg') if $ML_y1 == 0 replace `lnfj' = lnnormal(`zg') - ln(1 - (1 + /// `alpha' * `mu')^(-1/`alpha')) + lngamma(1 / `alpha' + $ML_y2 ) - /// lngamma(1 / `alpha') - lngamma($ML_y2 + 1) - 1 / `alpha' * /// (`lnalpha' + ln(1 / `alpha' + `mu')) + $ML_y2 * (ln(`mu') - /// ln(`mu' + 1 / `alpha')) if $ML_y1 == 1 if (`todo' == 0) exit // Variables to make typing easier tempvar lamzi nlamzi amu inval gen double `lamzi' = normalden(`zg') / normal(`zg') gen double `nlamzi' = normalden(`zg') / normal(- `zg') gen double `amu' = `alpha' * `mu' gen double `inval' = 1 / `alpha' // Gradient // g1 (zg) replace `g1' = - `nlamzi' if $ML_y1 == 0 replace `g1' = `lamzi' if $ML_y1 == 1 // g2 (xb) replace `g2' = 0 if $ML_y1 == 0 replace `g2' = ($ML_y2 - `mu') / (1 + `amu') - `mu' / ((1 + `amu') * /// ((1 + `amu')^`inval' - 1)) if $ML_y1 == 1 // g3 (lnalpha) replace `g3' = 0 if $ML_y1 == 0 replace `g3' = `inval' * (ln(1 + `amu') / ((1 + `amu')^`inval' - 1) - /// `amu' / ((1 + `amu') * ((1 + `amu')^`inval' - 1)) + /// digamma(`inval') - digamma($ML_y2 + `inval') + `lnalpha' + /// ln(`inval' + `mu') + ($ML_y2 - `mu') / (`inval' + `mu')) /// if $ML_y1 == 1 if (`todo' == 1) exit // Hessian // The Hessian is 3x3, with four elements (12, 13, 21, and 31) being 0. tempvar d11 d22 d23 d33 tempname h11 h12 h13 h22 h23 h33 // h11 (zg zg) gen double `d11' = `nlamzi' * (`zg' - `nlamzi') if $ML_y1 == 0 replace `d11' = - `lamzi' * (`zg' + `lamzi') if $ML_y1 == 1 mlmatsum `lnfj' `h11' = `d11', eq(1) // h12 (zg xb) mlmatsum `lnfj' `h12' = 0, eq(1,2) // h13 (zg lnsigma) mlmatsum `lnfj' `h13' = 0, eq(1,3) // h22 (xb xb) gen double `d22' = 0 if $ML_y1 == 0 replace `d22' = `mu' * (((1 + `amu')^`inval' * (`mu' - 1) + 1) / /// ((1 + `amu')^2 * ((1 + `amu')^`inval' -1)^2) - /// (1 + $ML_y2 * `alpha') / ((1 + `amu')^2)) if $ML_y1 == 1 mlmatsum `lnfj' `h22' = `d22', eq(2) // h23 (xb lnalpha) gen double `d23' = 0 if $ML_y1 == 0 replace `d23' = `amu' / ((1 + `amu')^2 * ((1 + `amu')^`inval' - 1)) - /// `alpha' * ($ML_y2 - `mu') / ((1 + `amu')^2) + (1 + `amu')^`inval' * /// (`mu' / (1 + `amu') - `inval' * ln(1 + `amu')) / ((1 + `amu') * /// ((1 + `amu')^`inval' - 1)^2) if $ML_y1 == 1 mlmatsum `lnfj' `h23' = `d23', eq(2,3) // h33 (lnalpha lnalpha) gen double `d33' = 0 if $ML_y1 == 0 replace `d33' = `inval' * ln(1 + `amu') * (1 - (1 + `amu')^`inval' * /// (1 + `mu' / (1 + `amu') - `inval' * ln(1 + `amu'))) / /// (((1 + `amu')^`inval' - 1)^2) + `mu' * (1 + 2 * `amu') / /// ((1 + `amu')^2 * ((1 + `amu')^`inval' - 1)) + `mu' * (1 - `alpha' * /// $ML_y2 + 2 * `alpha' * `mu') / ((1 + `amu')^2) + `mu' * /// (1 + `amu')^`inval' * (`mu' / (1 + `amu') - `inval' * /// ln(1 + `amu')) / ((1 + `amu') * ((1 + `amu')^`inval' - 1)^2) - /// `inval' * digamma(`inval') - `inval'^2 * trigamma(`inval') + /// `inval' * digamma($ML_y2 + `inval') + /// `inval'^2 * trigamma($ML_y2 + `inval') - `inval' * `lnalpha' - /// `inval' * ln(`inval' + `mu') if $ML_y1 == 1 mlmatsum `lnfj' `h33' = `d33', eq(3) mat `H' = (`h11',`h12',`h13') mat `H' = `H' \ ((`h12')',`h22',`h23') mat `H' = `H' \ ((`h13')',(`h23')',`h33') } end