
Optimal Policy Learning using Stata

Giovanni Cerulli
IRCrES-CNR
Rome, Italy

giovanni.cerulli@ircres.cnr.it

Abstract. This article introduces the Stata package OPL for optimal policy learn-
ing, facilitating ex-ante policy impact evaluation within the Stata environment.
Despite theoretical progress, practical implementations of policy learning algo-
rithms are still poor within popular statistical software. To address this limitation,
OPL implements three popular policy learning algorithms in Stata – threshold-based,
linear-combination, and fixed-depth decision tree – and provides practical demon-
strations of them using a real dataset. Also, the paper presents policy scenario de-
velopment proposing a menu strategy, particularly useful when selection variables
are affected by welfare monotonicity. Overall, the paper contributes to bridging
the gap between theoretical advancements and practical applications in the field
of policy learning.

Keywords: Ex-ante policy evaluation, Optimal policy learning, optimal treatment
assignment, Machine learning

Acknowledgment: This work was supported by FOSSR (Fostering Open Science in Social

Science Research), funded by the European Union - NextGenerationEU under the NPRR Grant

agreement n. MUR IR0000008.

1 Introduction

This article introduces the Stata package OPL, designed for conducting optimal policy
learning within the Stata environment. It offers a software platform comprising various
Stata commands to delve into improving the ex-ante evaluation of policy impacts by
leveraging statistical outcomes derived from prior ex-post evaluations (Manski, 2004;
Dehejia, 2005). Termed as policy learning (Athey and Wager, 2021), optimal policy
assignment (Bhattacharya and Dupas, 2012), or empirical welfare maximization (Kita-
gawa and Tetenov, 2018; Manski, 2004), ex-ante evaluation of policy impacts based on
statistical learning from past policies is a focal point for informing policymakers and
decision-makers.

Despite recent theoretical advancements in this field, the practical implementation
of policy learning algorithms is limited. Consequently, there is a significant dearth of
applied analysis with well-defined protocols and a thorough exploration of challenges
encountered in real policy scenarios. This area remains considerably neglected, if not
entirely unexplored.

This paper aims to address this gap by implementing three popular policy learning
algorithms in Stata, corresponding to three common policy classes: threshold-based

2 OPL in Stata

(TB), linear-combination (LC), and decision tree (DT).

Beginning with a brief overview of the state-of-the-art in the OPL literature, the
paper proceeds to establish the primary statistical foundations of the OPL framework.
Subsequently, it provides the algorithm protocol application common to the three policy
classes.

After presenting the syntax of the proposed OPL commands, a practical demonstra-
tion is provided using the popular LaLonde (1986) training program database.

The final section is dedicated to scenario development, considering issues related
to angle solutions resulting from the so-called monotonicity, which may manifest in
practice for certain selection variables chosen by policymakers.

The structure of the paper unfolds as follows: Section 2 provides a concise overview
of the current OPL literature. Section 3 outlines the OPL statistical framework, specifi-
cally focusing on optimal treatment assignment, and provides the OPL implementation
protocol. Section 3 presents the OPL package and the syntax of its commands (see the
related subsections). Section 5 delineates and scrutinizes the empirical application by
doing this command-by-command. Section 6 discusses scenario building, by stressing
the policymaker perspective in terms of choices among a menu of alternative choices
entailing a trade-off between the size of the policy (i.e., the percentage of treated units)
and the achieved level of welfare. Section 7, finally, concludes the paper.

2 A brief account of the OPL literature

The OLP literature, though relatively recent, has witnessed notable contributions,
briefly surveyed in what follows, that refers only to the case of a binary treatment.

Kitagawa and Tetenov (2018) employ the semi-parametric inverse-probability weigh-
ing estimator, assuming selection-on-observables, revealing that with a known policy
propensity score, OPL rules achieve a convergence rate of at least N−1/2 to the maxi-
mum attainable welfare uniformly. The uniform convergence rate hinges on the richness
of decision rule candidates, the distribution of conditional treatment effects, and the
absence of knowledge regarding the propensity score. Regrettably, in cases where the
propensity score is unknown, this optimal convergence rate is elusive, and only slower
rates are attainable.

Athey and Wager (2021) devise an alternate OPL learning algorithm, establishing
an optimal regret bound for binary-action policy learning, even in the absence of knowl-
edge regarding the propensity score. They extend their analysis to scenarios where
the selection-on-observables assumption falters but instrumental variables are available.
Proposing a cross-validated estimation algorithm for empirical welfare, they apply it
using a fixed-depth policy tree.

Zhou, Athey, and Wager (2023) extend the findings of Kitagawa and Tetenov (2018)
and Athey and Wager (2021) from the binary setting to a multi-action policy setting.
Building on the theory of efficient semi-parametric inference, they introduce and imple-

Giovanni Cerulli 3

ment a policy learning algorithm that achieves asymptotically minimax-optimal regret.
Their work addresses computational challenges arising when implementing the EWM
method, particularly when the policy is confined to a decision tree structure.

Additional noteworthy contributions to the literature include Mbakop and Tabord-
Meehan (2018), showcasing how to select from a growingly complex collection of policy
classes in a data-dependent manner, and Nie et al. (2019), extending the OPL frame-
work to cases where policymakers must decide not only whom to treat but also when
to initiate treatment.

By emphasizing the empirical perspective, Cerulli (2023) contributed to the discus-
sion of challenges that arise when implementing optimal policy learning in practical
settings. The author concentrates on threshold-based policies, outlining the theoretical
foundations of the policy-maker selection problem. Also, a solution is proposed to ad-
dress common challenges, as angle solution problems, that typically emerge in real-world
applications of optimal policy assignment.

In the wake of this literature, this paper underscores the policymaker perspective
through a practical implementation in Stata of the main OPL algorithms.

3 The OPL statistical framework

Consider an individual’s vector of characteristics denoted by X, with Y representing an
outcome of interest, and T being a binary treatment (T = 0, 1).1 A policy assignment
rule, denoted as G, is a function that maps X onto T , essentially determining which
individuals should be treated or untreated:

G : X → T

The population policy conditional average treatment effect (CATE), denoted here as
τ(X), is defined as the difference between the expected outcomes in the two states of
the world (treated vs. untreated) given the control variables X, that is:

τ(X) = E(Y1|X)− E(Y0|X)

where Y1 and Y0 are the potential outcomes, and EX [τ(X)] = τ represents the average
treatment effect.

The estimated policy actual total effect, referred to as welfare (Ŵ), is expressed as2:

Ŵ =

N∑
i=1

Ti · τ̂(Xi)

1. This section draws on Kitagawa and Tetenov(2018), and Cerulli (2023).
2. For brevity, we directly consider the sample counterparts of the population parameters.

4 OPL in Stata

where τ̂(Xi) is a consistent estimation of τ(Xi). Additionally, the estimated policy

unconstrained optimal total effect, denoted as Ŵ ∗, is given by:

Ŵ ∗ =

N∑
i=1

T̂ ∗i · τ̂(Xi)

Here, T̂ ∗i = 1[τ̂(Xi) > 0] represents the estimated optimal unconstrained policy assign-
ment. Kitagawa and Tetenov(2018) refers to this as the first-best policy rule.

The disparity between the estimated unconstrained maximum achievable welfare
and the estimated welfare associated with the implemented policy is termed regret, and
it is defined as:

̂regret = Ŵ ∗ − Ŵ

The regret tends to be positive, indicating the inability of decision-makers to select the
optimal treatment assignment, especially true in randomized control trials (RCT) where
treatment lacks deliberate selection objectives.

Due to various constraints, policymakers often resort to a constrained assignment
(T ′), as they are unable to implement the optimal unconstrained policy assignment.
The resulting welfare, W ′, may or may not be lower than the unconstrained maximum
welfare (W ∗). The question arises whether policymakers can achieve the largest viable
constrained welfare. Answering this question involves focusing on specific classes of poli-
cies and identifying the optimal assignment within them, known as optimal constrained
policy assignment. Commonly adopted policy classes include: threshold-based, linear-
combination, and fixed-depth decision tree (Kitagawa and Tetenov, 2018). Within these
classes of policies, policymakers select crucial variables (e.g., firm size, bank assets, in-
dividual age) and specific threshold values to distinguish between treated and untreated
units. Below, I consider the three classes separately.

Threshold-based (or quadrant) policy class. Within this policy class, given a
single selection variable x with threshold cx, the estimated assignment to treatment is
a function of x and cx:

T̂i(x, cx) = T̂ ∗i · 1[x >= cx]

where 1[A] is an index function taking 1 when A is true and zero otherwise. The
corresponding welfare is given by:

Ŵ (x, cx) =

N∑
i=1

T̂i(x, cx) · τ̂(Xi)

The optimal threshold c∗x maximizes Ŵ (x, cx) over cx:

Giovanni Cerulli 5

c∗x = argmaxcx [Ŵ (x, cx)]

If c∗x exists, the estimated optimal constrained welfare will thus be equal to Ŵ (c∗x).

Expanding the approach to include more than one selection variable is a straight-
forward progression. Let’s consider a scenario with two selection variables, denoted as
x1 and x2, each associated with corresponding thresholds, c1 and c2. In this instance,
the estimated assignment to treatment becomes a function of both thresholds, taking
the following form:

T̂i(c1, c2) = T̂ ∗i · 1[x1 >= c1] · 1[x2 >= c2]

This assignment rule, in two dimensions, is termed quadrant assignment, as it selects
the upper-right quadrant among the four generated by setting the two thresholds.

Linear-combination policy class. Within this policy class, given two selection vari-
ables x1 and x2, and three weights c1, c2, and c3, the estimated assignment to treatment
is:

T̂i(c1, c2, c3) = T̂ ∗i · 1[c1 × x1 + c2 × x2 >= c3]

The corresponding welfare is given by:

Ŵ (x, c1) =

N∑
i=1

T̂i(c1, c2, c3) · τ̂(Xi)

By denoting cx = [c1, c2, c3], the optimal threshold c∗x maximizes Ŵ (x, cx) over cx:

c∗x = argmaxcx [Ŵ (x, cx)]

If c∗x exists, the estimated optimal constrained welfare will thus be equal to Ŵ (c∗x).

Fixed-depth decision tree. Within this policy class, given two selection variables x1
and x2, and three thresholds c1, c2, and c3, the estimated assignment to treatment is:

T̂i(z(1), z(2), z(3), c1, c2, c3) = T̂ ∗i · {1[z(1) >= c1] · 1[z(2) >= c2]

+ (1− 1[z(1) >= c1]) · 1[z(3) >= c3]}
(1)

where each z(j) – with j = 1, 2, 3 – can be either x1 and x2.

The corresponding welfare is given by:

Ŵ (x, c1) =

N∑
i=1

T̂i(z(1), z(2), z(3), c1, c2, c3) · τ̂(Xi)

6 OPL in Stata

By denoting z = [z(1), z(2), z(3)] and cx = [x1, x2, x3], the optimal triplet of variables

z∗ and thresholds c∗x maximize Ŵ (z, cx) over z and cx:

[z∗, c∗x] = argmaxz,cx [Ŵ (z, cx)]

If z∗ and c∗x exist, the estimated optimal constrained welfare will thus be equal to

Ŵ (z∗, c∗x).

Figure 1 sets out the decision boundary and selection area for the three policy classes
(again, threshold-based, linear-combination, and fixed-depth decision tree). We clearly
see that the selection area is a quadrant for the the threshold-based, a triangle for the
linear-combination, and four adjacent regions for a 2-layer fixed-depth decision tree.

Figure 1: Decision boundary and selection areas for the policy classes: threshold-based,
linear-combination, and fixed-depth decision tree.

Seeking optimal thresholds (and variables to split on, for the case of a decision tree)
can pose challenges. There is a possibility that, at the optimal values, the share of units
to treat might be excessively small or, conversely, too large. In such cases, implementing
a policy based on an impractically small or large number of treated units becomes
meaningless. To address this issue, policymakers can consider budget constraints, such
as the maximum number of units treatable given a specific budget, or predefine a target
number of units to treat (e.g., a treatment share between 30% and 40% of the entire
reference population). While this approach may lead to a reduction in welfare, it ensures
the policy’s feasibility.

A related issue arises when there is a monotonic effect of the selection variable(s)
on welfare, termed the angle solution. For instance, consider the educational attain-
ment of individuals as a selection variable. In many policy contexts, welfare increases
monotonically with higher education levels, potentially leading to the selection of indi-
viduals with the highest educational attainment. However, this might be impractical
for two reasons: the policy aims to target poorly educated individuals, and the number
of treated units could become too small as individuals with high educational attainment
are generally few. The solution involves the policymaker introducing threshold limits

Giovanni Cerulli 7

or predefined ranges of treatment shares to address these constraints. While this may
result in a reduction in welfare, it maintains the possibility of eventually implementing
the policy.

For optimal assignment implementation, independently of the policy class consid-
ered, Table 1 lists a series of steps for finding empirically by grid search the optimal
selection parameters, i.e. those maximizing the constrained welfare.

Step Action
Step 1 → Assume having data from a Randomized Control Trial (RCT) or an

observational study, consisting of the information triple (Y,X, T) avail-
able for every unit involved in the program.

Step 2 → Run a quasi-experimental method with observable heterogeneity, es-
timate τ(X), and compute the (estimated) actual total welfare of the

policy Ŵ .

Step 3 → Identify the estimated optimal unconstrained policy T̂ ∗, and compute
Ŵ ∗, i.e., the estimated maximum total welfare achievable by the pol-
icy, and estimate the regret as Ŵ ∗ − Ŵ .

Step 4 → Consider an estimated constrained selection rule T̂ (x, cx) based on a
given set of selection variables, x (two, in our case), and related thresh-
olds/parameters, cx, and define the estimated maximum constrained

welfare as Ŵ (x, cx).

Step 5 → Build a grid of K possible values for cx ∈ {cx,1, . . . , cx,K}, compute the
optimal vector of thresholds/parameters cx,k∗ and the corresponding

maximum estimated welfare Ŵ (x, cx,k∗) thus achieved.

Table 1: Procedure for finding empirically by grid search the optimal selection param-
eters, i.e. those maximizing the constrained welfare.

In the forthcoming sections, after introducing the syntax of the proposed OPL com-
mands, we will demonstrate the practical application of this procedure on a real dataset
pertaining to a specific policy example.

4 The OPL package

OPL is a package for learning optimal policies from data for empirical welfare maxi-
mization. Specifically, OPL allows to find treatment assignment rules that maximize
the overall welfare, defined as the sum of the policy effects estimated over all the policy
beneficiaries.

OPL learns the optimal policy empirically, i.e. based on data and observations

8 OPL in Stata

obtained from previous (same or similar) implemented policies. OPL carries out em-
pirical welfare maximization within three policy classes: (i) threshold-based ; (ii) linear-
combination; and (iii) 2-layer fixed-depth decision-tree. OPL considers only two selection
variables chosen by the the policymaker among a set of variables she can control for
selection purpose.

Empirical welfare maximization requires the estimation of the Conditional Average
Treatment Effect (CATE) of the past policy. Currently, OPL estimates CATE via
linear and non-linear Regression Adjustment (RA), allowing for the target outcome to
be continuous, binary, count, or fractional. For doing that, OPL employs the built-in
Stata command teffects ra. The treatment variable of reference must be binary 0/1.

The OPL package relies on the following commands:

• make cate: predicting conditional average treatment effect (CATE) on a new
policy based on the training over an old policy;

• opl tb: implementing threshold-based optimal policy learning;

• opl tb c: implementing threshold-based policy learning at specific threshold val-
ues;

• opl lc: implementing linear-combination optimal policy learning;

• opl lc c: implementing linear-combination policy learning at specific parameters’
values;

• opl dt: implementing 2-layer fixed-depth decision-tree optimal policy learning;

• opl dt c : implementing 2-layer fixed-depth decision-tree optimal policy learning
at specific splitting variables and threshold values.

4.1 Syntax for make cate

make cate is a command generating conditional average treatment effect (CATE) for
both a training dataset and a testing (or new) dataset related to a binary (treated
vs. untreated) policy program. It provides the main input for running opl tb (opti-
mal policy learning of a threshold-based policy), opl tb c (optimal policy learning of
a threshold-based policy at specific thresholds), opl lc (optimal policy learning of a
linear-combination policy), opl lc c (optimal policy learning of a linear-combination
policy at specific parameters), opl dt (optimal policy learning of a decision-tree pol-
icy), opl dt c (optimal policy learning of a decision-tree policy at specific thresholds
and selection variables). See Kitagawa and Tetenov (2018) for an outline of the main
econometrics supported by these commands.

make cate outcome features , treatment(varname) model(model type)

new cate(name) train cate(name) new data(name)

Giovanni Cerulli 9

where outcome is a numerical variable and features a list of numerical variables
representing the features.

Options

treatment(varname) defines the treatment variable adopted in the old (ex-post) policy
run. It must be a 0/1 dummy (1=treated; 0=untreated).

model(model type) indicates the treatment model used for estimating and predicting the
conditional average treatment effect (CATE). The implemented estimation methods
are linear and non-linear regression adjustment. As model type use the following
options: linear, if the outcome variable is gaussian (numerical and continuous);
logit, if the outcome variable is binary (0/1); poisson, if the outcome variable is
countable; flogit, if the outcome variable is fractional.

new cate(name) indicates by name the variable that will be generated containing the
prediction over new data of the conditional average treatment effect (CATE).

train cate(name) indicates by name the variable that will be generated containing
the prediction over the training dataset of the conditional average treatment effect
(CATE).

new data(name) indicates by name the dataset stored in the home directory containing
the data of the new policy run (i.e., the features of the would-be beneficiaries).

As returns, make cate provides the following macros:

e(cate new) is the name of the CATE in the new policy data.

e(cate train) is the name of the CATE in the old (training) policy data.

As returns, make cate provides the following variables:

train new index is a flag variable indicating the training (i.e., old-policy) and the
new-policy observations.

cate train is the variable containing training (i.e., old-policy) predictions for CATE.

cate new is the variable containing new (i.e., new-policy) predictions for CATE.

4.2 Syntax for opl tb

opl tb is a command implementing optimal ex-ante treatment assignment using as
policy class a threshold-based (or quadrant) approach.

opl tb , xlist(var1 var2) cate(varname)

Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides

10 OPL in Stata

to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generated
using the command make cate.

As returns, opl tb provides the following scalars:

e(best c1) is the threshold which maximizes the welfare over var1.

e(best c2) is the threshold which maximizes the welfare over var2.

4.3 Syntax for opl tb c

opl tb c is a command implementing ex-ante treatment assignment using as policy
class a threshold-based (or quadrant) approach at specific threshold values c1 and c2

for respectively the selection variables var1 and var2.

opl tb c , xlist(var1 var2) cate(varname) c1(number) c2(number)
[
,

depvar(name) graph
]

Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides
to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generated
using the command make cate.

c1(number) puts into number the value of the threshold value c1 for the first selection
variable. This number must be chosen between 0 and 1.

c2(number) puts into number the value of the threshold value c2 for the second selection
variable. This number must be chosen between 0 and 1.

depvar(name) assigns the specified name to the dependent variable for display in
the results table. While this option does not impact computations, it ensures a
meaningful label for the dependent variable in the results table.

graph visualizes selected treated and untreated within the var1 and var2 quadrant.

As returns, opl tb c provides the following scalars:

e(c1) is the chosen threshold for var1.

e(c2) is the chosen threshold for var2.

e(W opt unconstr) is the value of the unconstrained welfare at threshold values c1 and
c2.

Giovanni Cerulli 11

e(W opt constr) is the value of the constrained welfare at threshold values c1 and c2.

e(perc treat) is the percentage over the entire sample of the beneficiaries to treat at
threshold values c1 and c2.

As return, opl tb c provides the following variable:

units to be treated is a flag variable indicating the policy beneficiaries at threshold
values c1 and c2.

4.4 Syntax for opl lc

opl lc is a command implementing optimal ex-ante treatment assignment using as
policy class a linear-combination of the selection variables var1 and var2. This class is
based on the following linear combination: c1 ∗ var1 + c2 ∗ var2 = c3.

opl lc , xlist(var1 var2) cate(varname)

Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides
to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generate using
the command make cate.

As returns, opl lc provides the following scalars:

e(best c1) is the linear-combination parameter for var1 which maximizes the welfare.

e(best c2) is the linear-combination parameter for var2 which maximizes the welfare.

e(best c3) is the linear-combination parameter which maximizes the welfare.

4.5 Syntax for opl lc c

opl lc c is a command implementing ex-ante treatment assignment using as policy
class a linear-combination approach at specific parameters’ values c1, c2, and c3 for
the linear-combination of variables var1 and var2. This class is based on the following
linear combination: c1 ∗ var1 + c2 ∗ var2 = c3.

opl lc c , xlist(var1 var2) cate(varname) c1(number) c2(number)

c3(number)
[
, depvar(name) graph

]
Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides

12 OPL in Stata

to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generate using
the command make cate.

c1(number) puts into number the value of the linear-combination parameter c1 for the
first selection variable. This number must be chosen between 0 and 1.

c2(number) puts into number the value of the linear-combination parameter c2 for the
second selection variable. This number must be chosen between 0 and 1.

c3(number) puts into number the value of the parameter c3 of the linear-combination.
This number must be chosen between 0 and 1.

depvar(name) assigns the specified name to the dependent variable for display in
the results table. While this option does not impact computations, it ensures a
meaningful label for the dependent variable in the results table.

graph visualizes selected treated and untreated within the var1 and var2 quadrant.

As returns, opl lc c provides the following scalars:

e(c1) is the parameter of var1 in the linear-combination.

e(c2) is the parameter of var2 in the linear-combination.

e(c3) is the third parameter of the linear-combination.

e(W opt unconstr) is the value of the unconstrained welfare at parameters’ values c1,
c2, and c3.

e(W opt constr) is the value of the constrained welfare at parameters’ values c1, c2,
and c3.

e(perc treat) is the percentage over the entire sample of the beneficiaries to treat at
linear combination parameters’ values c1, c2, and c3.

As return, opl tb c provides the following variable:

units to be treated is a flag variable indicating the policy beneficiaries at linear
combination parameters’ values c1, c2, and c3.

4.6 Syntax for opl dt

opl dt is a command implementing optimal ex-ante treatment assignment using as
policy class a 2-layer fixed-depth decision-tree based on selection variables var1 and
var2.

opl dt , xlist(var1 var2) cate(varname)

Giovanni Cerulli 13

Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides
to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generated
using the command make cate.

As returns, opl dt provides the following scalars:

e(best c1) is the optimal threshold level of the first variable used for splitting which
maximizes the welfare.

e(best c2) is the optimal threshold level of the second variable used for splitting which
maximizes the welfare.

e(best c3) is the optimal threshold level of the third variable used for splitting which
maximizes the welfare.

As returns, opl dt provides the following local macros:

e(best x1) is the name of the first variable to split on.

e(best x2) is the name of the second variable to split on.

e(best x3) is the name of the third variable to split on.

4.7 Syntax for opl dt c

opl dt c is a command implementing ex-ante treatment assignment using as policy class
a 2-layer fixed-depth decision-tree at specific splitting variables and threshold values.

opl dt c , xlist(var1 var2) cate(varname) c1(number) c2(number)

c3(number) x1(varname) x2(varname) x3(varname)
[
, depvar(name)

graph
]

Options

xlist(var1 var2) defines the two variables – var1 and var2 – the policymaker decides
to use for selecting policy beneficiaries.

cate(varname) puts into varname a variable already present in the dataset containing
the conditional average treatment effect (CATE). This variable can be generate using
the command make cate.

c1(number) puts into number the value of the threshold value c1 for the first splitting
variable. This number must be chosen between 0 and 1.

c2(number) puts into number the value of the threshold value c2 for the second splitting

14 OPL in Stata

variable. This number must be chosen between 0 and 1.

c3(number) puts into number the value of the threshold value c3 for the third splitting
variable. This number must be chosen between 0 and 1.

x1(varname) puts into varname the first variable to split on in the decision-tree.

x2(varname) puts into varname the second variable to split on in the decision-tree.

x3(varname) puts into varname the third variable to split on in the decision-tree.

depvar(name) assigns the specified name to the dependent variable for display in
the results table. While this option does not impact computations, it ensures a
meaningful label for the dependent variable in the results table.

graph visualizes selected treated and untreated within the var1 and var2 quadrant.

As returns, opl dt c provides the following scalars:

e(c1) is the threshold level of the first variable used for splitting.

e(c2) is the threshold level of the second variable used for splitting.

e(c3) is the threshold level of the third variable used for splitting.

e(W opt unconstr) is the value of the unconstrained welfare at threshold values c1 for
the first splitting variable, c2 for the second splitting variable, and c3 for the third
splitting variable.

e(W opt constr) is the value of the constrained welfare at threshold values c1 for the
first splitting variable, c2 for the second splitting variable, and c3 for the third
splitting variable.

e(perc treat) is the percentage over the entire sample of the beneficiaries to treat at
decision-tree parameters’ values c1, c2, and c3.

As return, opl tb c provides the following macros:

e(x1) contains the name of the first splitting variable.

e(x2) contains the name of the second splitting variable.

e(x3) contains the name of the third splitting variable.

As return, opl tb c provides the following variable:

units to be treated is a flag variable indicating the policy beneficiaries at decision
tree parameters’ values c1, c2, and c3 and related splitting variables.

Giovanni Cerulli 15

5 Applications

As an illustrative example of the use of the previous commands, I utilize the well-known
LaLonde (1986) dataset jtrain2.dta, which was employed by Dehejia and Wahba
(1999) to assess various propensity-score matching methods in an ex-post policy evalu-
ation. In their investigation, the authors aimed to estimate the impact of participating
in a job training program administered in 1976 (indicated by the binary variable train,
taking the value 1 for treated individuals and 0 for untreated) on real earnings in 1978
(variable re78) for a group of individuals in the United States. The dataset comprises a
total of 445 observations, with 185 individuals treated and 260 untreated. For the sake
of simplicity, I consider a simplified specification of the model.

5.1 Example using make cate

In this first example, we use make cate to predict the conditional average treatment
effect (CATE) for a binary new policy using training data from an old policy. The Stata
code is:

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training) and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

* Set the selection variables

. global z "age mostrn"

* Run "make_cate" and generate training (old policy) and

* testing (new policy) CATE predictions

. make_cate $y $x , treatment($w) model("linear") new_cate("my_cate_new") ///

train_cate("my_cate_train") new_data("jtrain_test")

Iteration 0: EE criterion = 2.104e-28

16 OPL in Stata

Iteration 1: EE criterion = 1.665e-30

Treatment-effects estimation Number of obs = 267

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

--

| Robust

re78 | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+--

ATE |

train |

(1 vs 0) | .4035484 .7557555 0.53 0.593 -1.077705 1.884802

-------------+--

POmean |

train |

0 | 4.598974 .4505875 10.21 0.000 3.715839 5.48211

--

The command make cate generates the following variables: svar, train new index,
my cate train, and my cate new. The variable svar takes value 1 for training data
and 2 for new data. Similarly, the variable train new index is a string variable taking
two values, that either “train” or “new”, for training and new data respectively. The
variable my cate train contains the values of the CATE estimated in-sample, that is
in the training dataset, whereas the variable my cate new contains the CATE values
predicted over the new policy dataset. As main returns, make cate provides the name
of the training CATE into the macro e(cate train), and the name of the CATE in the
new policy dataset into the macro e(cate new). The latter is the basis for implementing
the subsequent OPL commands.

5.2 Example using opl tb

Using the same dataset of the previous section, we apply opl tb for optimal ex-ante
treatment assignment using as policy class a threshold-based (or quadrant) approach.
The main output of this command is to return the threshold which maximizes the welfare
over var1 (i.e., c1), and the threshold which maximizes the welfare over var2 (i.e., c2),
where var1 and var2 are the two selection variables adopted by the policymaker to
select the best set of policy beneficiaries. In this case, we use as var1 the variable age

(i.e., age of the person), and as var2 the variable mostrn (i.e., months of training).
Below we set out the Stata code.

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training)

Giovanni Cerulli 17

* and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

* Set the selection variables

. global z "age mostrn"

* Run "make_cate" and generate training (old policy) and

* testing (new policy) CATE predictions

. make_cate $y $x , treatment($w) model("linear") new_cate("my_cate_new") ///

train_cate("my_cate_train") new_data("jtrain_test")

<output omitted>

* Generate a global macro containing the name of the variable "cate_new"

. global T ‘e(cate_new)’

* Select only the "new data"

. keep if _train_new_index=="new"

* Drop "my_cate_train" as in the new dataset treatment assignment

* and outcome performance are unknown

. drop my_cate_train $w $y

* Run "opl_tb" to find the optimal thresholds

. opl_tb , xlist($z) cate($T)

* Display the optimal threshold values

. di e(best_c1)

.60000002

. di e(best_c2)

.79999999

18 OPL in Stata

We can see that the optimal (or best) value for c1 is 0.60, while the optimal (or
best) value for c2 is 0.79.

5.3 Example using opl tb c

Given the best thresholds c1 and c2 estimated in the previous section, we can use
opl tb c to provide the welfare maximization and the actual best individuals to treat
in the upcoming new policy round. As said above, opl tb c is a command implementing
ex-ante treatment assignment using as policy class a threshold-based (or quadrant) ap-
proach at specific threshold values c1 and c2 for respectively the selection variables var1
and var2. We can run opl tb c at var1 =age, var2 =mostrn, c1=0.60, and c2=0.79.
The code with the main output is displayed below.

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training) and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

* Set the selection variables

. global z "age mostrn"

* Run "make_cate" and generate training (old policy) and

* testing (new policy) CATE predictions

. make_cate $y $x , treatment($w) model("linear") new_cate("my_cate_new") ///

train_cate("my_cate_train") new_data("jtrain_test")

* Generate a global macro containing the name of the variable "cate_new"

. global T ‘e(cate_new)’

* Select only the "new data"

. keep if _train_new_index=="new"

Giovanni Cerulli 19

* Drop "my_cate_train" as in the new dataset treatment

* assignment and outcome performance are unknown

. drop my_cate_train $w $y

* Run "opl_tb" to find the optimal thresholds

. opl_tb , xlist($z) cate($T)

* Save the optimal threshold values into two global macros

. global c1_opt=e(best_c1)

. global c2_opt=e(best_c2)

* Run "opl_tb_c" at optimal thresholds and generate the graph

. opl_tb_c , xlist($z) cate($T) c1($c1_opt) c2($c2_opt) graph depvar("re78")

Policy class: Threshold-based

Main results

Learner = Regression adjustment Target variable = re78

N. of units = 178 Selection variables = age mostrn

Threshold value c1 = .60000002 Threshold value c2 = .79999999

Average unconstrained welfare = 2.0673337 Average constrained welfare = 2.885844

Percentage of treated = 1.1 N. of treated = 2

N. of untreated = 176

* Tabulate the variable "_units_to_be_treated"

. tab _units_to_be_treated , mis

1 = unit to |

treat; 0 = |

unit not to |

treat | Freq. Percent Cum.

------------+-----------------------------------

0 | 176 98.88 98.88

1 | 2 1.12 100.00

------------+-----------------------------------

Total | 178 100.00

The main results are reported in the above table. We see that the learner used to
learn the policy is the regression adjustment, the target variable is re78, the number
of units is 178, the employed selection variables are age and mostrn. Also, we see that
the optimal threshold value c1 is equal to 0.60, while the optimal threshold value c2

is equal to 0.79. In terms of welfare, the maximum average unconstrained welfare is

20 OPL in Stata

Figure 2: Optimal treatment assignment: Threshold-based policy class.

found to be 2.06, while the maximum average constrained welfare is 2.88. Notably, at
these optimal values, the percentage of treated individuals is relatively low at 1.1%,
comprising 2 treated units and 176 untreated units.

Finally, Figure 2 presents the graphical representation of the optimal solution within
the quadrant frame defined by the two selection variables. The two individuals identified
as optimal for treatment are depicted as fully filled points, and the optimal decision
boundary is also illustrated.

5.4 Example using opl lc and opl lc c

For brevity, in this section, we directly examine the output of the opl lc c command,
which utilizes the optimal linear combination parameters provided by opl lc. Here, we
focus on optimal ex-ante treatment assignment, employing a policy class represented by
a linear combination of the variables age and mostrn: c1 × age + c2 × mostrn = c3.
The corresponding Stata code is illustrated below.

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training) and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

Giovanni Cerulli 21

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

* Set the selection variables

. global z "age mostrn"

* Run "make_cate" and generate training (old policy) and

* testing (new policy) CATE predictions

. make_cate $y $x , treatment($w) model("linear") new_cate("my_cate_new") ///

train_cate("my_cate_train") new_data("jtrain_test")

* Generate a global macro containing the name of the variable "cate_new"

. global T ‘e(cate_new)’

* Select only the "new data"

. keep if _train_new_index=="new"

* Drop "my_cate_train" as in the new dataset treatment assignment

* and outcome performance are unknown

. drop my_cate_train $w $y

* Run "opl_lc" to find the optimal linear-combination parameters

. opl_lc , xlist($z) cate($T)

* Save the optimal linear-combination parameters into three global macros

. global c1_opt=e(best_c1)

. di $c1_opt

.59999999

. global c2_opt=e(best_c2)

. di $c2_opt

.45000001

. global c3_opt=e(best_c3)

. di $c3_opt

.8

22 OPL in Stata

* Run "opl_lc_c" at optimal linear-combination parameters and generate the graph

. opl_lc_c , xlist($z) cate($T) c1($c1_opt) c2($c2_opt) c3($c3_opt) ///

graph depvar("re78")

Policy class: Linear-combination

Main results

Learner = Regression adjustment Target variable = re78

N. of units = 178 Selection variables = age mostrn

Lin. comb.parameter c1 = .59999999 Lin. comb.parameter c2 = .45000001

Lin. comb.parameter c3 = .8 Average unconstrained welfare = 2.07

Average constrained welfare = 2.885844 Percentage of treated = 1.1

N. of treated = 2 N. of untreated = 176

* Tabulate the variable "_units_to_be_treated"

. tab _units_to_be_treated , mis

1 = unit to |

treat; 0 = |

unit not to |

treat | Freq. Percent Cum.

------------+-----------------------------------

0 | 176 98.88 98.88

1 | 2 1.12 100.00

------------+-----------------------------------

Total | 178 100.00

The initial segment of the provided code mirrors the one utilized for opl tb. How-
ever, deviations occur upon executing opl lc, which yields three optimal parameters
stored in the scalars e(best c1) (0.59), e(best c2) (45), and e(best c3) (0.8).

Subsequently, I execute the code with the aforementioned optimal linear-combination
parameters and generate the optimal beneficiaries’ graph. In this scenario, the average
unconstrained welfare stands at 2.07, while the average constrained welfare is 2.88. The
percentage of treated individuals remains consistent at 1.1%, with 2 treated and 176
untreated individuals.

Figure 3 shows the optimal beneficiaries of the prospective new policy round. As in
the case of the threshold-based policy, only two people are selected.

Giovanni Cerulli 23

Figure 3: Optimal treatment assignment: Linear-combination policy class.

5.5 Example using opl dt and opl dt c

In this section, I consider optimal ex-ante treatment assignment using as policy class
a 2-layer fixed-depth decision-tree, at optimal specific splitting variables and optimal
threshold values. The Stata code is displayed below.

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training) and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

24 OPL in Stata

* Set the selection variables

. global z "age mostrn"

* Run "make_cate" and generate training (old policy)

* and testing (new policy) CATE predictions

. make_cate $y $x , treatment($w) model("linear") new_cate("my_cate_new") ///

train_cate("my_cate_train") new_data("jtrain_test")

* Generate a global macro containing the name of the variable "cate_new"

. global T ‘e(cate_new)’

* Select only the "new data"

. keep if _train_new_index=="new"

* Drop "my_cate_train" as in the new dataset treatment

* assignment and outcome performance are unknown

. drop my_cate_train $w $y

* Run "opl_dt" to find the optimal linear-combination parameters

. opl_dt , xlist($z) cate($T)

* Save the optimal splitting variables into three global macros

. global x1_opt ‘e(best_x1)’

. global x2_opt ‘e(best_x2)’

. global x3_opt ‘e(best_x3)’

* Save the optimal splitting thresholds into three global macros

. global c1_opt=e(best_c1)

. global c2_opt=e(best_c2)

. global c3_opt=e(best_c3)

* Run "opl_dt_c" at optimal splitting variables and

* corresponding thresholds and generate the graph

. opl_dt_c , xlist($z) cate($T) c1($c1_opt) c2($c2_opt) c3($c3_opt) ///

x1($x1_opt) x2($x2_opt) x3($x3_opt) graph depvar("re78")

Policy class: Fixed-depth decision-tree

Main results

Learner = Regression adjustment Target variable = re78

N. of units = 178 Selection variables = age mostrn

Threshold first splitting var. = .69999999 Threshold second splitting var. = .89

Giovanni Cerulli 25

Threshold third splitting var. = = .60000002 Average unconstrained welfare = 2.06

Average constrained welfare = 4.2417823 Percentage of treated = 1.7

N. of treated = 3 N. of untreated = 175

First splitting variable x1 = age Second splitting variable x2 = age

Third splitting variable x3 = age

* Tabulate the variable "_units_to_be_treated"

. tab _units_to_be_treated , mis

1 = unit to |

treat; 0 = |

unit not to |

treat | Freq. Percent Cum.

------------+-----------------------------------

0 | 175 98.31 98.31

1 | 3 1.69 100.00

------------+-----------------------------------

Total | 178 100.00

The initial segment of the code aligns with the structure used for both the threshold-
based and linear-combination policy classes. However, when employing the decision-tree
policy class, distinctions arise upon executing opl dt. This command yields three opti-
mal splitting variables (stored as local macros: e(best x1), e(best x2), and e(best x3)),
along with the optimal thresholds for each variable (stored as scalars: e(best c1),
e(best c2), and e(best c3)).

The core of the code lies in the execution of opl dt c, taking as arguments the
primary returns from opl dt. Examining the results’ table, it is evident that the first
optimal splitting variable is age, the second is age, and the third is age once again.

The thresholds for these splitting variables are 0.69, 0.89, and 0.60, respectively.
The resulting average unconstrained welfare is 2.06, the average constrained welfare is
4.24, and the percentage of treated individuals is 1.7%, corresponding to 3 treated units
and 175 untreated units.

Finally, figure 4 shows the optimal beneficiaries of the prospective new policy round
when the decision-tree policy class is employed. As said, in this case, it is optimal to
treat three people.

6 Scenario building

Optimal policy learning can be conceived as a specialized form of pre-implementation
policy impact assessment, focusing on evaluating the potential consequences of a policy
before its enactment. Within this framework, scenario building becomes pivotal, involv-
ing the creation and analysis of diverse future scenarios to anticipate various potential

26 OPL in Stata

Figure 4: Optimal treatment assignment: Fixed-depth decision tree policy class.

policy effects. This method offers a systematic approach to comprehend and prepare
for the potential impacts of policy decisions under different circumstances.

In the context of an OPL exercise, scenario building proves particularly valuable
due to the potential presence of angle solutions arising from the monotonic nature
of selection variable(s). Monotonicity occurs when the welfare consistently increases or
decreases as at least one of the selection variables increases or decreases. For instance, in
certain social education programs, maximizing empirical welfare might lead to selecting
individuals with the highest educational attainment. This scenario is undesirable, as
it would result in only individuals with the highest education level being chosen as
policy beneficiaries, potentially comprising a small set of individuals, or even a single
individual. Conversely, an optimal solution might imply treating everyone, which is
either impractical or undesirable.

A viable solution to such issues is the adoption of a menu strategy Cerulli (2023). In
a nutshell, this strategy involves the analyst considering different values of the selection
variable affected by monotonicity, computing and presenting alternative situations in
terms of welfare obtained, percentage of beneficiaries, etc. Consequently, policymakers
can make decisions based on a range of choices, weighing the pros and cons of each
potential selection strategy.

Typically, alternative scenarios with distinct policy parameters involve a trade-off
between the magnitude of the policy effect and the number of units to be treated. For
example, for a threshold-based policy class, as the threshold of the selection variable

Giovanni Cerulli 27

affected by monotonicity increases, the average welfare tends to increase as well. Within
budget constraints, policymakers can strategically choose from these scenarios, align-
ing with their objectives for an optimal pre-implementation re-programming of policy
treatment assignments.

The following Stata code outlines scenario building using the OPL package, with a
focus on the threshold-based policy class for the sake of brevity. The code unfolds as
follows:

* Load initial dataset

. sysuse JTRAIN2, clear

* Split the original data into a "old" (training) and "new" (testing) dataset

. get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101)

* Use the "old" dataset (i.e. policy) for training

. use jtrain_train , clear

* Set the outcome

. global y "re78"

* Set the features

. global x "re74 re75 age agesq nodegree"

* Set the treatment variable

. global w "train"

* Set the selection variables

. global z "age educ"

* Run "make_cate" and generate training (old policy)

* and testing (new policy) CATE predictions

. qui make_cate $y $x , treatment($w) model("linear") ///

new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test")

* Generate a global macro containing the name of the variable "cate_new"

. global T ‘e(cate_new)’

* Select only the "new data"

. keep if _train_new_index=="new"

* Drop "my_cate_train" as in the new dataset treatment

* assignment and outcome performance are unknown

. drop my_cate_train $w $y

* Run "opl_tb" to find the optimal thresholds

28 OPL in Stata

. opl_tb , xlist($z) cate($T)

* Save the optimal threshold values into two global macros

. global c1_opt=e(best_c1)

. global c2_opt=e(best_c2)

* Mute graphs

. set graph off

* Generate a grid of thresholds for "educ" with "age" set to optimal threshold

. global R1 "$c1_opt" // age

. global R2 "0.3 0.4 0.5 0.6 0.7 0.9" // educ

* Run "opl_tb_c" by looping over R1 and R2, and save the graphs

. local j=1

foreach k of global R1{

foreach h of global R2{

opl_tb_c , xlist($z) cate($T) c1(‘k’) c2(‘h’) graph depvar("re78")

graph save Graph G_‘j’.gph , replace

local j=‘j’+1

}

}

* Put the graphs names into a global macro named "G"

. global K: word count $R2

. global G ""

forvalues k = 1/$K{

global G $G G_‘k’.gph

}

* Unmute the graphs

. set graph on

* Combine the graphs into a unique scenario graph

. graph combine $G , iscale(*0.8)

* Export the scenario graph

. graph export ScenarioGraph.png , as(png) replace

The code begins with the loading of the initial dataset. To ensure meaningful model
evaluation, the original data is then strategically partitioned into two subsets: the old
dataset designated for policy training purposes, and the new dataset earmarked for
testing.

The training process unfolds by leveraging the old dataset, also referred to as the
policy training dataset. In this phase, critical components are established, including

Giovanni Cerulli 29

Figure 5: Scenario analysis: threshold-based policy class.

the specification of the desired outcome, identification of pertinent features, and the
definition of the treatment variable. Concurrently, the selection variables are set as the
tools the policy maker can maneuver.

As seen in previous examples, a pivotal step in the process involves the execution
of the make cate command, generating both training and testing Conditional Average
Treatment Effects (CATE) predictions. These predictions are encapsulated within a
global macro, featuring the variable name cate new.

The focus then narrows down to the new data subset, where the variable my cate train

is systematically dropped.

To optimize the model’s threshold, the opl tb command is executed, leading to the
identification of the optimal threshold values. These values are stored in two global
macros for subsequent use.

The subsequent stage involves the creation of a threshold grid for the variable educ,
the selection variable affected by monotonicity, with the optimal threshold for age being
assumed. This grid sets the stage for the implementation of opl tb c, where a loop
over the grids R1 and R2 is executed to produce insightful graphs. These graphs are
assigned names, consolidated within a global macro named G.

The final stride in this code involves the amalgamation of individual scenario graphs
into a comprehensive and visually impactful representation. This is the main result of

30 OPL in Stata

this exercise.

Examining Figure 5, we can discern interesting patterns. The age threshold, as
said, is strategically positioned at its optimal level, and each graph shows the dynamics
concerning welfare and the percentage of treated individuals as the (standardized) vari-
able educ increases from 0.3 to 0.9. Notably, a clear trade-off emerges between welfare
level and the percentage of treated individuals: at the minimum level of educ, welfare
reaches its minimum, and the percentage of treated units its maximum; conversely, wel-
fare reaches its maximum at the largest value of educ, whereas the proportion of treated
units exhibits its minimum in this case. This underscores the presence of monotonicity
concerning the selection variable educ, as discussed above.

In essence, the figure functions as a comprehensive menu for policymakers, offering a
spectrum of alternative choices. Policymakers can make selections based on their prefer-
ences regarding the number of treated individuals and the achieved welfare. Importantly,
these choices may extend beyond the immediate context and involve considerations such
as budgetary constraints or the overall scale of the policy that the policymaker intends
to implement. Thus, the figure serves as a valuable tool for decision-makers to align
policy choices with their overarching goals and constraints.

7 Conclusion

This article introduced the Stata package OPL, dedicated to facilitating optimal policy
learning within the Stata environment. The significance of ex-ante evaluation of policy
impacts, informed by econometric outcomes derived from prior ex-post evaluations, is
highlighted as a crucial aspect of policymaking. Referred to as policy learning, optimal
policy assignment, or empirical welfare maximization, this approach addresses the need
for evidence-based ex-ante decision-making.

Despite theoretical advancements in this domain, the practical implementation of
policy learning algorithms has been limited, leaving a notable gap in applied analysis.
This paper aimed to bridge this void by presenting three widely-used policy learning
algorithms coded in Stata, aligning with three common policy classes: threshold-based
(TB), linear-combination (LC), and decision tree (DT).

Beginning with an overview of the OPL literature, the paper established the statis-
tical foundations of the OPL framework and outlined the implementation protocol for
the three policy classes. The proposed OPL commands’ syntax was presented, followed
by practical demonstrations using an illustrative training program database.

The final part addressed scenario development, emphasizing angle solutions resulting
from welfare monotonicity. This phenomenon, observed for specific selection variables
chosen by policymakers, was discussed in the context of real-world policy scenarios.

The provided detailed exploration of the OPL algorithms, along with the empirical
application, underscored the importance of evidence-based ex-ante policy evaluations
in informing effective and impactful policy-making. By means of the OPL package, this

Giovanni Cerulli 31

task can be effectively accomplished using Stata.

32 OPL in Stata

8 References
[1] Athey, S., & Wager, S. (2021). Policy Learning with Observational Data. Econo-

metrica, 89(1), 133–161.

[2] Bhattacharya, D., & Dupas, P. (2012). Inferring Welfare Maximizing Treatment
Assignment under Budget Constraints. Journal of Econometrics, 167(1), 168-196.

[3] Cerulli, G. (2023). Optimal treatment assignment of a threshold-based policy: em-
pirical protocol and related issues. Applied Economics Letters, 30(8), 1010-1017.

[4] Dehejia, R. & Wahba, S. (1999). Causal Effects in Non-Experimental Studies: Re-
Evaluating the Evaluation of Training Programs. Journal of the American Statis-
tical Association, 94(448), 1053-1062.

[5] Dehejia, R. (2005). Program Evaluation as a Decision Problem. Journal of Econo-
metrics, 125(1-2), 141-173.

[6] Kitagawa, T., & Tetenov, A. (2018). Who Should Be Treated? Empirical Welfare
Maximization Methods for Treatment Choice. Econometrica, 86(2), 591–616.

[7] LaLonde, R. (1986). Evaluating the Econometric Evaluations of Training Programs.
American Economic Review, 76(4), 604-620.

[8] Manski, C. F. (2004). Statistical Treatment Rules for Heterogeneous Populations.
Econometrica, 72(4), 1221-1246.

[9] Mbakop, E., & Tabord-Meehan, M. (2018). Model Selection for Treatment Choice:
Penalized Welfare Maximization. arXiv preprint, arXiv:1609-03167.

[10] Nie, X., Brunskill, E., & Wager, S. (2019). Learning When-to-Treat Policies. arXiv
preprint, arXiv:1905.09751.

[11] Zhou, Z., Athey, S., & Wager, S. (2023). Offline Multi-Action Policy Learning:
Generalization and Optimization. Operations Research, 71(1).

About the authors

Giovanni Cerulli is a senior researcher at the CNR-IRCrES, Research Institute on Sustainable

Economic Growth, National Research Council of Italy, Rome. His research interest is in applied

econometrics, with a special focus on causal inference and machine learning. He has developed

original causal inference models and provided several implementations. He is currently editor

in chief of the International Journal of Computational Economics and Econometrics.

	Optimal Policy Learning using Statato.44em.Giovanni Cerulli

