{smcl} {* *! version 1.1.1}{...} {title:Title} {phang} {bf:oga} {hline 2} Executes estimation and inference for high-dimensional regressions without imposing the sparsity restriction. {marker syntax}{...} {title:Syntax} {p 4 17 2} {cmd:oga} {it:depvar} {it:indepvarlist1} {it:indepvarlist2} {ifin} [{cmd:,} {bf:dimension}({it:integer}) {bf:folds}({it:integer}) {bf:repdml}({it:integer}) {bf:cstar}({it:real}) {bf:cluster}({it:varname}) ] {marker description}{...} {title:Description} {phang} {cmd:oga} performs estimation and inference for high-dimensional regression models without imposing a sparsity assumption, based on the methodology of {browse "https://doi.org/10.1162/rest_a_01349":Cha, Chiang, and Sasaki}. The estimation procedure combines the orthogonal greedy algorithm (OGA), the high-dimensional Akaike information criterion (HDAIC), and double/debiased machine learning (DML). {marker options}{...} {title:Options} {phang} {bf:dimension({it:integer})} specifies the number of variables for {it:indepvarlist1} whose coefficients are to be displayed in the output table. The default is {bf:dimension(1)}. The value must be a positive integer no greater than the total number of variables in {it:indepvarlist1} and {it:indepvarlist2}. {phang} {bf:folds({it:integer})} sets the number {bf:K} of folds used for cross-fitting in the double/debiased machine learning (DML) procedure. The default is {bf:folds(5)}. The value must be an integer greater than 1. {phang} {bf:repdml({it:integer})} sets the number of resampling repetitions used for finite-sample adjustment in the double/debiased machine learning (DML) procedure. The default is {bf:repdml(5)}. The value must be a positive integer. {phang} {bf:cstar({it:real})} specifies the tuning parameter {bf:C*} for the high-dimensional Akaike information criterion (HDAIC). The default is {bf:cstar(2)}. {phang} {bf:cluster({it:varname})} specifies the variable used to define clusters. If this option is not specified, the command is executed without clustering. {marker usage}{...} {title:Usage Examples} {phang} Estimation of the partial effect of {bf:d} on {bf:y} controlling for 100 variables: {p_end} {phang}{cmd:. oga y d x1 ... x100}{p_end} {phang} Cluster-robust standard error by the clustering variable {bf:state}: {p_end} {phang}{cmd:. oga y d x1 ... x100, cluster1(state)}{p_end} {phang} Estimation of the partial effects of {bf:d1, d2, d3} on {bf:y} controlling for 100 variables: {p_end} {phang}{cmd:. oga y d1 d2 d3 x1 ... x100, dimension(3)}{p_end} {phang} etc. {p_end} {marker stored}{...} {title:Stored results} {phang} {bf:oga} stores the following in {bf:e()}: {p_end} {phang} Scalars {p_end} {phang2} {bf:e(N)} {space 10}observations {p_end} {phang2} {bf:e(dimension)} {space 2}number of {it:indepvarlist1} {p_end} {phang2} {bf:e(folds)} {space 6}number of folds for the cross fitting {p_end} {phang2} {bf:e(repdml)} {space 5}number of resampling for DML {p_end} {phang2} {bf:e(cstar)} {space 6}tuning parameter {bf: C*} {p_end} {phang} Macros {p_end} {phang2} {bf:e(cluster)} {space 4}clustering variable {p_end} {phang2} {bf:e(cmd)} {space 8}{bf:oga} {p_end} {phang} Matrices {p_end} {phang2} {bf:e(b)} {space 10}coefficient vector {p_end} {phang2} {bf:e(V)} {space 10}variance-covariance matrix of the estimators {p_end} {phang} Functions {p_end} {phang2} {bf:e(sample)} {space 5}marks estimation sample {p_end} {title:Reference} {p 4 8}Cha, Jooyoung, Harold D. Chiang, and Yuya Sasaki. Inference in High-Dimensional Regression Models without the Exact or Lp Sparsity. {it:Review of Economics and Statistics}. {browse "https://doi.org/10.1162/rest_a_01349":Link to Paper}. {p_end} {title:Authors} {p 4 8}Jooyoung Cha, Vanderbilt University, Nashville, TN.{p_end} {p 4 8}Harold D. Chiang, University of Wisconsin, Madison, WI.{p_end} {p 4 8}Yuya Sasaki, Vanderbilt University, Nashville, TN.{p_end}