*! Date : 08 May 2018 *! Version : 1.0 /* 08/05/18 v1.0 Initial version complete */ program define opchar_gs, rclass version 11.0 syntax, [J(integer 2) n(numlist) a(numlist miss) r(numlist miss) k(numlist) /// pi(numlist) SUMmary(integer 0) PLot(string) *] local xopt `"`options'"' preserve if ("`method'" == "") { local method "all" } ///// Perform checks on input variables //////////////////////////////////////// if (`j' <= 1) { di "{error} J must be an integer greater than or equal to one." exit(198) } if ("`n'" ~= "") { local lenn:list sizeof n if (`lenn' ~= `j') { di "{error} n must be a numlist of length J, containing integer elements." exit(198) } forvalues i = 1/`lenn' { local ni:word `i' of `n' if (`ni' <= 0 | mod(`ni', 1) ~= 0) { di "{error} n must be a numlist of length J, containing integer elements." exit(198) } } } if ("`a'" ~= "") { local lena:list sizeof a if (`lena' ~= `j') { di "{error} a must be a numlist of length J, containing integer elements." exit(198) } forvalues i = 1/`lena' { local ai:word `i' of `a' if (`ai' ~= .) { if (`ai' < 0 | mod(`ai', 1) ~= 0) { di "{error} a must be a numlist of length J, containing integer elements." exit(198) } } } } if ("`r'" ~= "") { local lenr:list sizeof r if (`lenr' ~= `j') { di "{error} r must be a numlist of length J, containing integer elements." exit(198) } forvalues i = 1/`lenr' { local ri:word `i' of `r' if (`ri' ~= .) { if (`ri' <= 0 | mod(`ri', 1) ~= 0) { di "{error} r must be a numlist of length J, containing integer elements." exit(198) } } } } if ("`a'" ~= "" & "`r'" ~= "") { forvalues i = 1/`lena' { local ai:word `i' of `a' local ri:word `i' of `r' if (`ai' >= `ri') { di "{error} Elements in a must be strictly less than their corresponding element in r." exit(198) } } } if ("`k'" ~= "") { local lenk:list sizeof k if (`lenk' >= `j') { di "{error} k must be a numlist of length at most J, containing integer elements." exit(198) } forvalues i = 1/`lenk' { local ki:word `i' of `k' if (`ki' <= 0 | mod(`ki', 1) ~= 0) { di "{error} k must be a numlist of length at most J, containing integer elements." exit(198) } } } if ("`pi'" ~= "") { local lenpi:list sizeof pi forvalues i = 1/`lenpi' { local pii:word `i' of `pi' if (`pii' > 1 | `pii' < 0) { di "{error} Elements in pi must belong to [0,1]." exit(198) } } } if (`j' ~= 2 & ("`n'" == "" | "`a'" == "" | "`r'" == "")) { di "{error} For J not equal to 2, n, a, and r must be specified" exit(198) } // Set up matrices to pass to mata if ("`n'" ~= "") { local matan "" foreach i of local n{ if "`matan'" == "" local matan "`i'" else local matan "`matan',`i'" } mat n = (`matan') } else { mat n = . } if ("`a'" ~= "") { local mataa "" foreach i of local a{ if "`mataa'" == "" local mataa "`i'" else local mataa "`mataa',`i'" } mat a = (`mataa') } else { mat a = . } if ("`r'" ~= "") { local matar "" foreach i of local r{ if "`matar'" == "" local matar "`i'" else local matar "`matar',`i'" } mat r = (`matar') } else { mat r = . } if ("`k'" ~= "") { local matak "" foreach i of local k{ if "`matak'" == "" local matak "`i'" else local matak "`matak',`i'" } mat k = (`matak') } else { mat k = . } if ("`pi'" ~= "") { local matapi "" foreach i of local pi{ if "`matapi'" == "" local matapi "`i'" else local matapi "`matapi',`i'" } mat pi = (`matapi') } else { mat pi = . } if ("`plot'" ~= "") { if ("`plot'" ~= "power" & "`plot'" ~= "ess") { di "{error} plot must be one of: power and ess." exit(198) } } ///// Compute and Output /////////////////////////////////////////////////////// mata: OpcharGS(`j', "`method'", `summary', "`plot'", `"`xopt'"') matrix colnames pmf = pi s m k "f(s,m|pi)" return mat pmf = pmf if (`j' == 2) { matrix colnames opchar = pi "P(pi)" "ESS(pi)" "VSS(pi)" "Med(pi)" "A1(pi)" "A2(pi)" "R1(pi)" "R2(pi)" "S1(pi)" "S2(pi)" "cum(S1(pi))" "cum(S2(pi))" "max(N)" } else { matrix colnames opchar = pi "P(pi)" "ESS(pi)" "VSS(pi)" "Med(pi)" "A1(pi)" "A2(pi)" "R1(pi)" "R2(pi)" "S1(pi)" "S2(pi)" "cum(S1(pi))" "cum(S2(pi))" "max(N)" } return mat opchar = opchar return mat J = J return mat n = n return mat a = a return mat r = r return mat k = k return mat pi = pi return mat summary = summary restore end ///// Mata //////////////////////////////////////////////////////////////////// mata: void OpcharGS(J, method, summary, plot, xopt) { n = st_matrix("n") if (n == .) { n = (10, 19) } a = st_matrix("a") if (a == .) { a = (1, 5) } r = st_matrix("r") if (r == .) { r = (., 6) } k = st_matrix("k") if (k == .) { k = (1::J)' } pi = st_matrix("pi") if (pi == .) { pi = 0.01*(0::100) } ///// Print Summary ////////////////////////////////////////////////////////// ///// Main Computations ////////////////////////////////////////////////////// terminal = terminal_states_gs(J, a, r, n, k) pmf = J(rows(terminal)*length(pi), 5, 0) for (i = 1; i <= length(pi); i++) { pmf[(1 + (i - 1)*rows(terminal))::(i*rows(terminal)), ] = pmf_gs(pi[i], J, a, r, n, k) } opchar = J(length(pi), (J == 2 ? 14 : 18), 0) for (i = 1; i <= length(pi); i++) { pmf_i = select(pmf, pmf[, 1] :== pi[i]) opchar[i, ] = int_opchar_gs(pi[i], J, a, r, n, runningsum(n), k, pmf_i) if (summary == 1 & mod(i, 100) == 0) { printf("{txt}...performance for {res}%g{txt} elements of pi evaluated...\n", i) } } if (plot == "power") { st_matrix("opchar", opchar) stata("qui svmat opchar") stata(`"twoway line opchar2 opchar1, xtitle({&pi}) ytitle(P({&pi}))"'+ xopt) } else if (plot == "ess"){ st_matrix("opchar", opchar) stata("qui svmat opchar") stata(`"twoway line opchar3 opchar1, xtitle({&pi}) ytitle({it:ESS}({&pi}))"'+ xopt) } ///// Return ///////////////////////////////////////////////////////////////// if (summary == 1) { printf("...outputting.") } st_matrix("pmf", pmf) st_matrix("opchar", opchar) st_matrix("J", J) st_matrix("n", n) st_matrix("a", a) st_matrix("r", r) st_matrix("k", k) st_matrix("pi", pi') st_matrix("summary", summary) } // Function to determine terminal states in a group sequential design real matrix terminal_states_gs(real scalar J, real rowvector a, real rowvector r, real rowvector n, real rowvector k) { a[mm_which(a :== .)] = J(1, length(mm_which(a :== .)), -1) r[mm_which(r :== .)] = J(1, length(mm_which(r :== .)), sum(n) + 1) terminal = J(1, 3, 0) if (a[1] >= 0) { s1 = 0::a[1] terminal = (terminal \ (s1, J(a[1] + 1, 1, n[1]), J(a[1] + 1, 1, 1))) } if (r[1] <= n[1]) { s1 = r[1]::n[1] terminal = (terminal \ (s1, J(n[1] - r[1] + 1, 1, n[1]), J(n[1] - r[1] + 1, 1, 1))) } cont = (max((0, a[1] + 1)), min((r[1] - 1, n[1]))) if (J >= 3) { for (j = 1; j <= J - 2; j++) { num_rows = cont[2] + n[j + 1] - cont[1] + 1 vals = cont[1]::(cont[2] + n[j + 1]) upd = (vals, J(num_rows, 1, sum(n[1::(j + 1)])), J(num_rows, 1, j + 1)) terminal = (terminal \ select(upd, upd[, 1] :<= a[j + 1] :| upd[, 1] :>= r[j + 1])) cont = (min(select(upd, upd[, 1] :> a[j + 1])[, 1]), max(select(upd, upd[, 1] :< r[j + 1])[, 1])) } } num_rows = cont[2] + n[J] - cont[1] + 1 vals = cont[1]::(cont[2] + n[J]) terminal = (terminal \ (vals, J(num_rows, 1, sum(n)), J(num_rows, 1, J))) keep_rows = mm_which(terminal[, 3] :== k[1]) if (length(k) > 1) { for (els = 2; els <= length(k); els++) { keep_rows = (keep_rows \ mm_which(terminal[, 3] :== k[els])) } } terminal = terminal[keep_rows, ] return(terminal) } // Function for determining pmf of group sequential design real matrix pmf_gs(real scalar pi, real scalar J, real rowvector a, real rowvector r, real rowvector n, real rowvector k,| real colvector dbinom_pi) { a[mm_which(a :== .)] = J(1, length(mm_which(a :== .)), -1) r[mm_which(r :== .)] = J(1, length(mm_which(r :== .)), sum(n) + 1) if (args() < 7) { dbinom_pi = J(max(n) + 1, J, 0) for (j = 1; j <= J; j++) { dbinom_pi[1::(n[j] + 1), j] = binomialp(n[j], 0::n[j], pi) } } pmf_mat = J(sum(n) + 1, J, 0) pmf_mat[1::(n[1] + 1), 1] = dbinom_pi[1::(n[1] + 1), 1] cont = (max((0, a[1] + 1)), min((r[1] - 1, n[1]))) for (j = 1; j <= J - 1; j++) { for (i = cont[1]; i <= cont[2]; i++) { pmf_mat[(i + 1)::(i + 1 + n[j + 1]), j + 1] = pmf_mat[(i + 1)::(i + 1 + n[j + 1]), j + 1] :+ pmf_mat[i + 1, j]*dbinom_pi[1::(n[j + 1] + 1), j + 1] } pmf_mat[(cont[1] + 1)::(cont[2] + 1), j] = J(cont[2] - cont[1] + 1, 1, 0) upd = cont[1]::(cont[2] + n[j + 1]) cont = (min(select(upd, upd :> a[j + 1])), max(select(upd, upd :< r[j + 1]))) } if (length(k) < J) { for (stage = 1; stage <= J; stage++) { if (!any(stage :== k)) { pmf_mat[, stage] = J(sum(n) + 1, 1, 0) } } pmf_mat = pmf_mat/sum(pmf_mat) } terminal = terminal_states_gs(J, a, r, n, k) if (sum(pmf_mat :> 0) > 1) { f = . for (j = 1; j <= J; j++) { f = (f \ select(pmf_mat[, j], pmf_mat[, j] :> 0)) } pmf = (J(rows(terminal), 1, pi), terminal[, 1], terminal[, 2], terminal[, 3], f[2::length(f)]) } else { pmf = (J(rows(terminal), 1, pi), terminal[, 1], terminal[, 2], terminal[, 3], J(rows(terminal), 1, 0)) non_zero = (mm_which(rowsum(pmf_mat) :> 0) - 1, mm_which(colsum(pmf_mat :> 0))) pmf[mm_which(pmf[, 2] :== non_zero[1] :& pmf[, 4] :== non_zero[2]), 5] = 1 } return(pmf) } // Function for determining operating characteristics of group sequential design real rowvector int_opchar_gs(real scalar pi, real scalar J, real rowvector a, real rowvector r, real rowvector n, real rowvector N, real rowvector k,| real matrix pmf_pi) { if (args() < 8) { pmf_pi = pmf_gs(pi, J, a, r, n, k) } A = J(1, J, 0) R = J(1, J, 0) for (j = 1; j <= J; j++) { A[j] = sum(select(pmf_pi, pmf_pi[, 2] :<= a[j] :& pmf_pi[, 4] :== j)[, 5]) R[j] = sum(select(pmf_pi, pmf_pi[, 2] :>= r[j] :& pmf_pi[, 4] :== j)[, 5]) } S = A + R cum_S = runningsum(S) if (any(cum_S :== 0.5)) { Med = 0.5*(N[mm_which(cum_S :== 0.5)] + N[mm_which(cum_S :== 0.5) + 1]) } else { Med = N[mm_which(cum_S :> 0.5)[1]] } return((pi, sum(R), sum(N:*S), sum(N:^2:*S) - sum(N:*S)^2, Med, A, R, S, cum_S, sum(n))) } end