# -*- coding: utf-8 -*-
#******************************************************************************
#   Name of the program: PyCPTAM
#   Title of the program: Python Module for Constructing Portfolios via Two
#   Alternative Methods
#   Version: 001
# 
#   This program is released under GNU General Public License, version 3.
# 
#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.
# 
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
# 
#   You should have received a copy of the GNU General Public License
#   along with this program.  If not, see <http://www.gnu.org/licenses/>.
# 
#   This software has been developed by Dr. Alan Mustafa under supervision of 
#   Prof. Abdulnasser Hatemi-J (Hatemi-J, 2012).
#   Contacts:
#    - Prof. Abdulnasser Hatemi-J: AHatemi@uaeu.ac.ae
#    - Dr. Alan Mustafa: Alan.Mustafa@ieee.org
#
#   The work is funded partially by a summer research grant provided by the 
#   UAE university, which is enormously appreciated. 
#
#   In case this module is used it needs to be cited as the following:
#   Mustafa A. and Hatemi-J A. (2023) PyCPTAM: Python Module for Constructing
#   Portfolios via Two Alternative Methods, Statistical Software Components,
#   Boston College Department of Economics
# 
#   Date: January 2023
#
#   © 2023 Dr. Alan Mustafa and Prof. Abdulnasser Hatemi-J
# 
#******************************************************************************
import numpy as np
import pandas as pd
import os
from datetime import datetime
#######################################
import tkinter as tk
# import tkinter as tk2
from tkinter.filedialog import askopenfilename
from tabulate import tabulate
###############################################################################
#                         Start of GUI
###############################################################################

#========================= functions =========================================

class create_window_menu_UI2(tk.Frame):
    def __init__(self, master):
        tk.Frame.__init__(self, master)
        self.master = master
        #============= Application Title --------------------------------------
        self.lblTitle = tk.Label(self, text="Construction of Portfolio via Two Alternative Methods", font=("Helvetica", 16))
        self.lblTitle.grid(row=1, column=0, columnspan=5, sticky="EW")        
        
        # hr = tk.Frame(self,height=10,width=850,bg="green")
        hr = tk.Frame(self,height=3,width=850,bg="green")
        hr.grid(row=2, column=0, columnspan=5, sticky="NWNESWSE")

        
        #============= Adding a Blank Row -------------------------------------
        self.lblBlnkRow = tk.Label(self, text="", font=("Helvetica", 12))
        self.lblBlnkRow.grid(row=16, column=0, sticky="EW")

        #============= Load My Data Button ---------------------------------
        self.btnSelectDataFile = tk.Button(self, text="Select the Dataset File", command=lambda: var_DatasetFile.set(os.path.split(askopenfilename())[1]), font=("Arial", 12))
        self.btnSelectDataFile.grid(row=20, column=0, sticky="E")

        var_DatasetFile = tk.StringVar()
        self.tbx_DatasetFile = tk.Entry(self, textvariable=var_DatasetFile, font=("Helvetica", 10), state="disabled", justify="center")
        self.tbx_DatasetFile.grid(row=20, column=1, sticky="EW")

        #============= Adding a label for OR sign -----------------------------
        self.btnLoadMydata = tk.Label(self, text="OR ", font=("Arial Narrow", 12))
        self.btnLoadMydata.grid(row=20, column=2, sticky="EW")

        #============= Load Sample Data Button --------------------------------
        self.btnLoadSmplData = tk.Button(self, text="Load the Sample Data \nand Calculate the Portfolio", command=lambda: loadSampleData(self), font=("Arial", 12))
        self.btnLoadSmplData.grid(row=20, column=3, rowspan=2, sticky="W")

        #============= Calculate Proftfolio Diversification Button ---------------------------------
        self.btnCalcPD = tk.Button(self, text="Calculate the Protfolio", command=lambda: LoadDataFile(var_DatasetFile,self), font=("Arial", 12))
        self.btnCalcPD.grid(row=21, column=0, sticky="E")

        #============= Dataset File Selection ---------------------------------
        self.btnExit = tk.Button(self, text="Close", command=self.master.destroy, font=("Arial", 12))
        self.btnExit.grid(row=22, column=3, sticky="W")
  
        #============= Start of Printing Data in a Table ----------------------
        self.msgOutput_lblHeader = tk.Label(self, text="", font=("Consolas", 12), anchor="w")
        self.msgOutput_lblHeader .grid(row=160, column=0, columnspan=3, sticky="ew")
  
        self.msgOutput_RunMsg2 = tk.Label(self, text="", font=("Consolas", 12), anchor="w")
        self.msgOutput_RunMsg2.grid(row=165, column=0, columnspan=3, sticky="ew")

        #=============       ---------------
        self.lblRprtDesc = tk.Message(self, text="", font=("Arial Narrow", 12), anchor="w", justify="left", bg='#f0f0f0')
        self.lblRprtDesc.bind("<Configure>", lambda e: self.lblRprtDesc.configure(width=e.width-5))
        self.lblRprtDesc.grid(row=165, column = 3, columnspan=2, sticky="W")

        #============= Printing Keys for the Data in the Table if needed ------
        self.msgOutput_tblKeys = tk.Message(self, text="", font=("Consolas", 12), anchor="w", justify="left")
        self.msgOutput_tblKeys.bind("<Configure>", lambda e: self.msgOutput_tblKeys.configure(width=e.width-10))
        self.msgOutput_tblKeys.grid(row=166, column=0, columnspan=3, sticky="ew")

        #============= Output EndNote         ---------------------------------
        hr = tk.Frame(self,height=1,width=850,bg="green")
        hr.grid(row=200, column=0, columnspan=4, sticky="NWNESWSE")

        self.msgEndNote = tk.Message(self, text="", font=("Helvetica", 8, "italic"), anchor="w", justify="left", bg="#d4d4d4")
        self.msgEndNote.bind("<Configure>", lambda e: self.msgEndNote.configure(width=e.width-10))
        self.msgEndNote.grid(row=210, column=0, columnspan=4, sticky="ew")
        
###############################################################################
#                           End of GUI                                        #
###############################################################################

###############################################################################
##################      START OF SAMPLE DATA    ###############################
###############################################################################

def loadSampleData(self):
    
    headers=["Date_of_Assets","USD-JPY","Brent Oil","DAX","Dow Jones"]

    dates = ['02/01/2019', '03/01/2019', '04/01/2019', '07/01/2019', '08/01/2019', '09/01/2019', '10/01/2019', '11/01/2019', '14/01/2019', '15/01/2019', '16/01/2019',
             '17/01/2019', '18/01/2019', '21/01/2019', '22/01/2019', '23/01/2019', '24/01/2019', '25/01/2019', '28/01/2019', '29/01/2019', '30/01/2019', '31/01/2019',
             '01/02/2019', '04/02/2019', '05/02/2019', '06/02/2019', '07/02/2019', '08/02/2019', '11/02/2019', '12/02/2019', '13/02/2019', '14/02/2019', '15/02/2019',
             '18/02/2019', '19/02/2019', '20/02/2019', '21/02/2019', '22/02/2019', '25/02/2019', '26/02/2019', '27/02/2019', '28/02/2019', '01/03/2019', '04/03/2019',
             '05/03/2019', '06/03/2019', '07/03/2019', '08/03/2019', '11/03/2019', '12/03/2019', '13/03/2019', '14/03/2019', '15/03/2019', '18/03/2019', '19/03/2019',
             '20/03/2019', '21/03/2019', '22/03/2019', '25/03/2019', '26/03/2019', '27/03/2019', '28/03/2019', '29/03/2019']

    asset1 = [108.88, 107.67, 108.53, 108.72, 108.75, 108.17, 108.42, 108.55, 108.17, 108.67, 109.09, 109.24, 109.78, 109.67, 109.38, 109.6, 109.64, 109.55, 109.36,
    109.39, 109.03, 108.88, 109.5, 109.89, 109.97, 109.97, 109.81, 109.73, 110.38, 110.48, 111, 110.48, 110.5, 110.62, 110.62, 110.86, 110.7, 110.69, 111.06, 110.58,
    111, 111.39, 111.92, 111.75, 111.89, 111.77, 111.59, 111.17, 111.2, 111.36, 111.17, 111.72, 111.47, 111.42, 111.39, 110.69, 110.81, 109.92, 109.97, 110.64, 110.52,
    110.64, 110.86]
    
    asset2 = [54.91, 55.95, 57.06, 57.33, 58.72, 61.44, 61.68, 60.48, 58.99, 60.64, 61.32, 61.18, 62.7, 62.74, 61.5, 61.14, 61.09, 61.64, 59.93, 61.32, 61.65, 61.89,
    62.75, 62.51, 61.98, 62.69, 61.63, 62.1, 61.51, 62.42, 63.61, 64.57, 66.25, 66.5, 66.45, 67.08, 67.07, 67.12, 64.76, 65.21, 66.39, 66.03, 65.07, 65.67, 65.86, 65.99,
    66.3, 65.74, 66.58, 66.67, 67.55, 67.23, 67.16, 67.54, 67.61, 68.5, 67.86, 67.03, 67.21, 67.97, 67.83, 67.82, 68.39]
    
    asset3 = [10580.19, 10416.66, 10767.69, 10747.81, 10803.98, 10893.32, 10921.59, 10887.46, 10855.91, 10891.79, 10931.24, 10918.62, 11205.54, 11136.2, 11090.11,
    11071.54, 11130.18, 11281.79, 11210.31, 11218.83, 11181.66, 11173.1, 11180.66, 11176.58, 11367.98, 11324.72, 11022.02, 10906.78, 11014.59, 11126.08, 11167.22, 11089.79,
    11299.8, 11299.2, 11309.21, 11401.97, 11423.28, 11457.7, 11505.39, 11540.79, 11487.33, 11515.64, 11601.68, 11592.66, 11620.74, 11587.63, 11517.8, 11457.84, 11543.48,
    11524.17, 11572.41, 11587.47, 11685.69, 11657.06, 11788.41, 11603.89, 11549.96, 11364.17, 11346.65, 11419.48, 11419.04, 11428.16, 11526.04]
    
    asset4 = [23346.24, 22686.22, 23433.16, 23531.35, 23787.45, 23879.12, 24001.92, 23995.95, 23909.84, 24065.59, 24207.16, 24370.1, 24706.35, 24706.35, 24404.48,
    24575.62, 24553.24, 24737.2, 24528.22, 24579.96, 25014.86, 24999.67, 25063.89, 25239.37, 25411.52, 25390.3, 25169.53, 25106.33, 25053.11, 25425.76, 25543.27, 25439.39,
    25883.25, 25883.25, 25891.32, 25954.44, 25850.63, 26031.81, 26091.95, 26057.98, 25985.16, 25916, 26026.32, 25819.65, 25806.63, 25673.46, 25473.23, 25450.24, 25650.88,
    25554.66, 25702.89, 25709.94, 25848.87, 25914.1, 25887.38, 25745.67, 25962.51, 25502.32, 25516.83, 25657.73, 25625.59, 25717.46, 25928.68]
    
    csvFileName = 'PD_Sample.csv' # PD: Portfolio Diversification

    df = pd.DataFrame(dates)
    df['Asset1'] = asset1
    df['Asset2'] = asset2
    df['Asset3'] = asset3
    df['Asset4'] = asset4
    
    df.columns = headers
    df.to_csv(csvFileName, header=True, index=False)

    calc_pd_vrar(df,self)

###############################################################################
##################      END SAMPLE DATA      ##################################
###############################################################################

###############################################################################
##################      START OF LOADING DATA FILE       ######################
###############################################################################

def LoadDataFile(fileName,self): # df: DataFrame
    theFile = pd.read_csv(fileName.get(), sep = ',', decimal = ',', header=0, index_col=False)
    df2 = pd.DataFrame(theFile)
    headers_list = list(df2.columns.values)
    for column in headers_list[1:]:
        df2[column] = df2[column].astype(np.float64)

    calc_pd_vrar(df2,self)
    
###############################################################################
##################       ENDING OF LOADING DATA FILE       ####################
###############################################################################

###############################################################################
#       Start of Calculations: Calculation for Constructing Portfolio         #
###############################################################################
def calc_pd_vrar(df,self): # df: DataFrame
    x = df.iloc[:, 1:].values;
    noOfCols = len(df.iloc[0, :].values);
    roa = np.exp(np.diff(np.log(x), axis = 0))-1    # => roa = (b2 - b1)/b1 : Return of Asset
    theCov = np.cov(roa, rowvar=False)
    Er = np.average(roa, axis=0)                    # Er: Average Return Values
    SD = np.std(roa, axis=0, ddof=1)
    RAdjR = np.divide(Er, SD)
    
    #===============        Calculating Hs&K and Cs&E     =====================
    # Hs: the selected columns from K
    # K: calculating values from both matrices of Ev and Cov
    # Cs: table of covariance
    # E: selected columns from Covariance table
    
    rows = len(theCov) - 1
    cols = len(theCov[0])
    
    Cij = np.array([[0 for i in range(cols)] for j in range(rows)], dtype=float)
    Kij = np.array([[0 for i in range(cols)] for j in range(rows)], dtype=float)

    for iRows in range(0,rows):
        for jCols in range(0,cols):
            Cij[iRows,jCols] = (2*theCov[iRows+1,jCols])-(2*theCov[iRows, jCols])
            Kij[iRows,jCols] = (Er[iRows]*2*theCov[iRows+1,jCols])-(Er[iRows+1]*2*theCov[iRows, jCols])
            
    theOnes = np.ones(rows+1)
    Cij = np.vstack([Cij, theOnes])
    Kij = np.vstack([Kij, theOnes])

    detC = np.linalg.det(Cij)
    detK = np.linalg.det(Kij)

    #===============        Calculating Ws      ===============================
    # Es stands for 'W (weight) for MV'
    # Ws stands for W (weight) for MRAR
    wRows = len(Kij)
    wCols = len(Kij[0])
    Ei = np.array([0 for i in range(wCols)], dtype=float)
    Wi = np.array([0 for i in range(wCols)], dtype=float)
    Eij = np.array([[0 for i in range(wCols-1)] for j in range(wRows-1)], dtype=float)
    Wij = np.array([[0 for i in range(wCols-1)] for j in range(wRows-1)], dtype=float)

    WijCol = 0
    for theWiCol in range(0,wCols):
        for jwCols in range(0,wCols):
            if theWiCol != jwCols:
            
                for iwRows in range(0,wRows-1):
                    Eij[iwRows,WijCol] = Cij[iwRows, jwCols]
                    Wij[iwRows,WijCol] = Kij[iwRows, jwCols]
                WijCol +=1
        sign_p = (theWiCol + 1) + wCols;    # One is added to theWiCol becuase the loop start from 0.
        sign_ = (-1)**sign_p;

        Ei[theWiCol] = sign_ * (np.linalg.det(Eij) / detC)
        Wi[theWiCol] = sign_ * (np.linalg.det(Wij) / detK)
        
        WijCol =0

    PD_MV_AR = np.sum(np.array(Er) * np.array(Ei))
    PD_MRAR_AR = np.sum(np.array(Er) * np.array(Wi))

    noOfAssets = noOfCols - 1;

    sigma_p_ = 0
    sigma_p_c_ = 0
    for sd_i in range(0,noOfAssets):
     	for sd_j in range(0,noOfAssets):
    
            w_sd_i = Ei[sd_i];
            w_sd_j = Ei[sd_j];
            w_D_sd_i = Wi[sd_i];
            w_D_sd_j = Wi[sd_j];
            
            sigma_p_ = sigma_p_ + (w_sd_i * w_sd_j * theCov[sd_i, sd_j]);
            sigma_p_c_ = sigma_p_c_ + (w_D_sd_i * w_D_sd_j * theCov[sd_i, sd_j]);
            
    PD_MV_sigma_p = np.sqrt(sigma_p_);
    PD_MRAR_sigma_p_c = np.sqrt(sigma_p_c_);    

    PD_MV_RAR = PD_MV_AR / PD_MV_sigma_p;
    PD_MRAR_RAR = PD_MRAR_AR / PD_MRAR_sigma_p_c;

    MV = [PD_MV_AR,PD_MV_sigma_p,PD_MV_RAR,'','']
    MRAR = [PD_MRAR_AR,PD_MRAR_sigma_p_c,PD_MRAR_RAR,'','']
    
    Asset_df = []
    Er_df = []
    SD_df = []
    RAdjR_df = []
    Ei_df = []
    Wi_df = []

    PD_MV = []
    PD_MRAR = []
    
    Asset_df = 'Assets'
    Er_lbl = 'E(r)'
    lbl_Note = 'Note'
    SD_df = 'Standard Deviasion'
    RAdjR_df = 'Risk Adjusted Return'
    Ei_df = 'w for MV'
    Wi_df = 'w for MRAR'
    
    PD_MV = 'Portfolio - Minimum Variance (MV)'
    PD_MRAR = 'Portfolio - Maximum Risk Adjusted Return (MRAR)'
    
    Asset_df = np.append(Asset_df,df.columns[1:])
    Er_df = np.append(Er_lbl,Er)
    SD_df = np.append(SD_df,SD)
    RAdjR_df = np.append(RAdjR_df,RAdjR)
    Ei_df = np.append(Ei_df,Ei)
    Wi_df = np.append(Wi_df,Wi)
    
    PD_MV = np.append(PD_MV,MV)
    PD_MRAR = np.append(PD_MRAR,MRAR)
    
    estResult=[]

    estResult = Asset_df
    estResult = np.vstack((estResult,Er_df))
    estResult = np.vstack((estResult,SD_df))
    estResult = np.vstack((estResult,RAdjR_df))
    estResult = np.vstack((estResult,Ei_df))
    estResult = np.vstack((estResult,Wi_df))
    
    estResult2 = estResult.transpose()
    estResult4 = np.vstack((estResult2,PD_MV))
    estResult5 = np.vstack((estResult4,PD_MRAR))
    
    # "ebs: Estimated Budget Shares" for the summary table
    esb_w_MV = "w_MV"
    esb_w_MRAR = "w_MRAR"

    wi_MV_1 = np.array(np.round(Ei, decimals = 5))
    wi_MRAR_1 = np.array(np.round(Wi, decimals = 5))

    wi_MV_1 = np.append(esb_w_MV,wi_MV_1)
    wi_MRAR_1 = np.append(esb_w_MRAR,wi_MRAR_1)
    
    Smry0 = np.vstack((Asset_df,wi_MV_1))
    Smry1 = np.vstack((Smry0,wi_MRAR_1))
    Smry = Smry1.transpose()
    
    Er_1 = np.array(np.sign(Er)).astype(object)
    Er_1[Er_1 == -1] = '*'
    Er_1[Er_1 == 1] = ''
    
    if (np.any(Er_1[:] == '*')):

        Er_df_onGUI = np.append(lbl_Note,Er_1)
        
        Smry_onGUI_1 = np.vstack((Smry1,Er_df_onGUI))
        Smry_onGUI = Smry_onGUI_1.transpose()
        infoText = """Two copies of the report of formats (*.csv) and (*.txt) with additional details have been added to the same folder as the program resides in [PyCPTAM_rprt_YMD_Time.csv/txt] formats!"""
        infoText_bg = '#cce7c9'
        keys_ = '\nDenotations:\n'
        keys_ += 'w: Weights as the Budget Shares\n'
        keys_ += 'MV: Minimum Variance method\n'
        keys_ += 'MRAR: Maximum Risk Adjusted Return method\n'
        keys_ += '*: This means that the value for the Average Return of the asset is negative and it should be removed from the portfolio'
        
    else:
        Smry_onGUI = Smry1.transpose()
        infoText = ""
        infoText_bg = '#f0f0f0'
        keys_ = '\nDenotations:\n'
        keys_ += 'w: Weights as the Budget Shares\n'
        keys_ += 'MV: Minimum Variance\n'
        keys_ += 'MRAR: Maximum Risk Adjusted Return\n'

    fileName,dt_string2 = create_rprt_file(estResult5,Smry,Smry_onGUI,infoText,infoText_bg,keys_,self);
    EndNote(fileName,self);
    
    return;
    
################################################
def create_rprt_file(theDF,Smry,Smry_onGUI,infoText,infoText_bg,keys_,self):    # theDF: New DataFrame

    #=============== creating Output Report File ==============================
    now = datetime.now()
    dt_string2 = now.strftime("%Y%m%d_%H%M%S")
    txtFileName = 'PyCPTAM_rprt' + '_' + dt_string2 + '.txt'
    output_rprt_file = open(txtFileName,'w')

    output_rprt_file.write('#############################################################################\n')
    output_rprt_file.write('#                                                                           #\n')
    output_rprt_file.write('#      PORTFOLIO DIVERSIFICATION RESULTS VIA TWO ALTERNATIVE METHODS        #\n')
    output_rprt_file.write('#                                                                           #\n')
    output_rprt_file.write('#############################################################################\n')
    output_rprt_file.write(tabulate(theDF))
    output_rprt_file.write('\n')
    output_rprt_file.close
    
    ############################
    csvFileName = 'PyCPTAM_rprt' + '_' + dt_string2 + '.csv'
    df = pd.DataFrame(theDF)
    df.to_csv(csvFileName, header=False, index=False)

    ############################
    self.msgOutput_lblHeader["text"] = "Estimated Budget Shares via Two Alternative Methods"
    self.msgOutput_RunMsg2["text"] = tabulate(Smry_onGUI, tablefmt='psql');
    self.lblRprtDesc["text"] = infoText
    self.lblRprtDesc["bg"] = infoText_bg
    self.msgOutput_tblKeys["text"] = keys_
    
    return(txtFileName,dt_string2);

################################################
def EndNote(fileName,self):

    output_rprt_file = open(fileName,'a');

    output_rprt_file.write('\n');
    output_rprt_file.write('==========================================================================================\n');
    output_rprt_file.write('|							REFERENCES													|\n');
    output_rprt_file.write('|	- Markowitz H. (1952) Portfolio Selection, Journal of Finance, vol. 7(1), 77-91.		|\n');
    output_rprt_file.write('|	- Hatemi-J A. and El-Khatib Y. (2015) Portfolio Selection: An Alternative Approach,	|\n');
    output_rprt_file.write('|	Economics Letters, vol. 135, 141-143.												|\n');
    output_rprt_file.write('|	- Hatemi-J A., Hajji, M.A. and El-Khatib Y. (2022) Exact solution for the portfolio 	|\n');
    output_rprt_file.write('|	diversification problem based on maximizing the risk adjusted return. Research in 	|\n');
    output_rprt_file.write('|	International Business and Finance, 59, 101548.										|\n');
    output_rprt_file.write('|																						|\n');
    output_rprt_file.write('==========================================================================================\n');
    output_rprt_file.write('\n');
    
    output_rprt_file.write('==========================================================================================\n');
    output_rprt_file.write('|							ADDITIONAL INFORMATION										|\n');
    output_rprt_file.write('|																						|\n');
    output_rprt_file.write('|	This program code is the copyright of the authors. Applications are allowed 			|\n');
    output_rprt_file.write('|	only if proper reference and acknowledgments are 									|\n');
    output_rprt_file.write('|	provided. For non-Commercial  applications only. No performance guarantee is			|\n');
    output_rprt_file.write('|	made. Bug reports are welcome. If this code is used for research or in any			|\n');
    output_rprt_file.write('|	other code, proper attribution needs to be included.									|\n');
    output_rprt_file.write('|																						|\n');
    output_rprt_file.write('|	© 2023 Dr. Alan Mustafa and Prof. Abdulnasser Hatemi-J								|\n');
    output_rprt_file.write('==========================================================================================\n');
    
    output_rprt_file.close;
    # --------------------------------------------------------------------------
    
    txtEndNote = "";
    txtEndNote = txtEndNote + """REFERENCES:
    - Markowitz H. (1952) Portfolio Selection, Journal of Finance, vol. 7(1), 77-91.
    - Hatemi-J A. and El-Khatib Y. (2015) Portfolio Selection: An Alternative Approach, Economics Letters, vol. 135, 141-143.
    - Hatemi-J A., Hajji, M.A. and El-Khatib Y. (2022) Exact solution for the portfolio diversification problem based on maximizing the risk adjusted return. Research in International Business and Finance, 59, 101548.

    ADDITIONAL INFORMATION:
    This program code is the copyright of the authors. Applications are allowed only if proper reference and acknowledgments are provided. For non-Commercial 
    applications only. No performance guarantee is made. Bug reports are welcome. If this code is used for research or in any other code, proper attribution 
    needs to be included.
    © 2023 Dr. Alan Mustafa and Prof. Abdulnasser Hatemi-J
    """
    self.msgEndNote["text"] = "%s" % (txtEndNote)
    
    return;    
###############################################################################
#              End of Calculations: Asymmetric Causality Test                 #
###############################################################################

#In the main function, create the GUI and pass it to the App class
def main():

    window2= tk.Tk()
    window2.title("PyCPTAM")
    # window2.geometry('950x900')
    window2.geometry('850x700')

    create_window_menu_UI2(window2).grid(row=0, column=0, columnspan=1, sticky="W")
    window2.mainloop()

#Run the main function
if __name__ == "__main__":
    main()