
Introducing PARALLEL: Stata Module for

Parallel Computing [draft]

George Vega Yon∗

Research Department

Chilean Pension Supervisor

This version September 26, 2012

Abstract

Inspired in the R library “snow” and to be used in multicore CPUs,

parallel implements parallel computing methods through an OS’s shell

scripting (using Stata in batch mode) to accelerate computations. By

splitting the dataset into a determined number of clusters this module

repeats a task simultaneously over the data-clusters, allowing to increase

efficiency between two and five times, or more depending on the number

of cores of the CPU. Without the need of StataMP, parallel is, to the

author’s knowledge, the first user contributed Stata module to implement

parallel computing.

Keywords: Parallel Computing, High Performance Computing, Simulation Methods, CPU

JEL Codes: C87, C15, C61

∗gvega at spensiones.cl. Thanks to Damian C. Clarke, Félix Villatoro and Eduardo Fajnzyl-

ber and the Research team of the Chilean Pension Supervisor for their valuable contributions.

The usual disclaimers applies.

1

1 Introduction

Currently home computers are arriving with extremely high computational ca-

pabilities. Multicore CPUs, standard in today’s industry, expand the bound-

aries of productivity for the so called multitasking-users. Motivated by the

video games industry, manufacturers have forged a market for low-cost process-

ing units with the number-crunching horsepower comparable to that of a small

supercomputer (?, ?).

In the same way, data availability has improved in a significant manner. Big-

Data is an active topic by computer scientists and policy-makers considering the

number of open-data initiatives taking place around the globe giving access to

administrative data. Resources that, despite being available to researchers and

policy makers, have not been exploited as they should.

The limited use of these social data resources is not a coincidence. As Gary

King states in ? (?), issues involving privacy, standardized management and

lack of statistical computing tools are still unsolved both for social scientists,

and policy-makers. parallel aims to make a contribution to these issues.

2 Parallel Computing

In simple terms, parallel computing is the simultaneous use of multiple compute

resources to solve a computational problem (?, ?). Parallelism can take place

through several levels starting from (a) bit level, (b) instruction level, (c) data

level and up to (d) task level. parallel uses data level parallelism, which

basically consists in simultaneously repeating an instruction over independent

groups of data.

Using parallel computing allows the user to drastically decrease the time

required to complete a computational problem. This is especially important for

data scientists such as empirical economists and econometricians, given that in

this way it is possible to implement algorithms characterized by a large number

of calculations or, in the case of Stata, code interpretation such as flow-control

statements like loops.

Flynn’s taxonomy classification provides a simple way to classify the type of

parallelisms that researchers may require. Based on the type of instruction and

the type of data, both of which can be single or multiple, Flynn identifies four

classes of computer architectures (?, ?).

According to this classification, parallel would follow a Single Instruction

2

Table 1: Flynn’s taxonomy
Single Instruction Multiple Instruction

Single Data SISD MISD
Multiple Data SIMD MIMD

Multiple Data (SIMD) design, where the parallelism takes place by repeating

a single task over groups of data. Even though this is a very simple form of

parallelism, significant improvements can be achieved from its use.

With regards to the size of the improvements, following Amdahl’s law,

the speed improvement S depends upon (a) the proportion of potential de-

serialization P ; this is, the proportion of the algorithm that can be implemented

in a parallel fashion, and (b) the number of fractions to be split, N .

S =
1

(1− P) + P
N

(1)

Thus, if P tends to one, the potential speed gains S will be equal to N .

In the same way, as P approaches to zero, any parallelization attempt will

be worthless1. Considering this, theoretically, SIMD class may reach perfect

scaling.

3 Parallel Computing in Econometrics

Even though parallel computing is not a new idea2, economics has drawn rela-

tively little from parallel computing. In ? (?) efforts are made by introducing a

new C library based on matrix programming language Ox with the objective to

promote parallel computing in social sciences. Using alternative approach, and

after experimenting with GPU based parallel computing, ? (?) show that using

this approach to solve a Real Business Cycle model and using a consumer level

NVIDIA video card, it is possible to reach speed improvements of around two

hundred times, with this being a lower bound.

Statistical packages are also advancing in this line. Matlab provides its own

Parallel Computing Toolbox3 which makes it possible to implement parallel

computing methods through multicore computer, GPUs and computer clusters.

1A good technical review on modern themes on parallel computing is provided by ? (?)
2Applied sciences, physics, computer science and industry have taken considerable advan-

tage of it.
3http://www.mathworks.com/products/parallel-computing/

3

http://www.mathworks.com/products/parallel-computing/

GNU open-source R also has several libraries to implement parallel computing

algorithms such as parallel, snow, and so forth4. And Stata with its Multi-

Processor edition, StataMP, implementing bit level parallelization makes it pos-

sible to achieve up to (or greater than) constant scale speed improvements (?,

?).

4 PARALLEL: Stata module for parallel com-

puting

Inspired by the R library “snow” and to be used in multicore CPUs, parallel

implements parallel computing methods through OS’s shell scripting (using

Stata in batch mode) to speedup computations by splitting the dataset into

a determined number of clusters5 in such a way to implement a data parallelism

algorithm.

As exposed in Figure 1, right after parallel splits the dataset into n clusters

it starts n new independent stata instances in batch mode over which the same

task is simultaneously executed. By default all the loaded instance globals and,

optionally, programs and mata objects/programs are passed through. After

every cluster stops the resulting datasets are appended and returned to the

current stata instance without modifying other elements.

4For more details see CRAN Task View on High-Performance and Parallel Computing
With R http://cran.r-project.org/web/views/HighPerformanceComputing.html

5It is important to distinguish between two different ways to understand a cluster. In
computer science a cluster, or computer cluster, refers to a set of computers connected so that
they to work as a single system. Here, in the other hand, as this module is intended to be use
by statisticians and social scientist in general, I refer to a cluster as a package of data which
in this case does not necessary contains related observations (clustered).

4

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Figure 1: How parallel works

Data

globals programs

mata

objects

mata

programs

Cluster
3

Cluster
2

Cluster
1

... Cluster
n

Splitting the data set

Passing
objects

Cluster
3’

Cluster
2’

Cluster
1’

... Cluster
n’

Task (stata batch-mode)

Data’

globals programs

mata

objects

mata

programs

Appending the data set

Starting (current) stata instance loaded
with data plus user defined globals,
programs, mata objects and mata

programs

A new stata instance (batch-mode) for
every data-clusters. Programs, globals and
mata objects/programs are passed to them.

The same algorithm (task) is simultane-
ously applied over the data-clusters.

After every instance stops, the data-clusters
are appended into one.

Ending (resulting) stata instance loaded
with the new data.

User defined globals, programs, mata
objects and mata programs remind un-
changed.

5

The number of efficient computing clusters depends upon the number of

physical cores (CPUs) with which your computer is built, e.g. if you have a

quad-core computer, the correct cluster setting should be four. In the case of

simultaneous multithreading, such as that from Intel’s hyper-threading tech-

nology (HTT), setting parallel following the number of processors threads,

as it was expected, hardly results into a perfect speedup scaling. In spite of

it, after several tests on HTT capable architectures, the results of implement-

ing parallel according to the machines physical cores versus its logicals shows

small though significant differences.

parallel is especially handy when it comes to implementing loop-based

simulation models (or simply loops), Stata commands such as reshape, or any

job that (1) can be repeated through data-blocks, and (2) routines that processes

big datasets.

In the case of (pseudo) random number generation, parallel allows to set

one seed per cluster with the option seeds(numlist).

At this time parallel has been successfully tested in Windows and Unix

machines. Tests using Mac OS are still pending.

4.1 Syntax

parallel’s simplistic syntax is one of its key features. In order to use it, only two

commands needed be entered: parallel setclusters, which tells parallel

how many blocks of data are to be built (and thus how many Stata batch mode

instances are needed to be run), and parallel do (to run a do-file in parallel)

or parallel: (to use it as a prefix to parallelize a command). More, detailed,

as specified in its help-file:

Setting the number of clusters (blocks of data)

parallel setclusters #

Parallelizing a dofile

parallel do filename [,options]

Parallelizing a stata command

parallel [, options]: stata_cmd

Removing auxiliary files

parallel clean [parallelid]

6

5 Results

In what follows, I present some results testing the efficiency of parallel over

different hardware and software configurations using StataSE. The tables sum-

marize the results. The first row presents the time required to complete the

task using a single processor (cluster or thread as a computer scientist may

prefer). The second line shows the total time spent to complete the task using

parallel, while the following three distinguish between setup (time taken to

prepare the algorithm), compute (execution time of the task as such) and finish

(mainly appending the datasets). Finally the last two show the ratio of CPU

time over compute and total time respectively. Every time measure is presented

in seconds.

It is important to consider that both setup time and finishing time increases

as the problem size scales up.

All the test were performed checking whether if the parallel implementation

returned different results from the serial implementation.

5.1 Serial replacing using a loop

This first test consists on, after a generation of N pseudo-random values, using

stata’s rnormal() function, replacing each and every one of the observations

in a serial way (loop) starting from 1 to N . The observation’s variable was

replaced using the PDF of the normal distribution.

f(x) =
1√
2π
e

−x2

2 (2)

The code to be parallelized is

--------------- begin of do-file -------------

local size = _N

forval i=1/‘size’ {

qui replace x = 1/sqrt(2*‘c(pi)’)*exp(-(x^2/2)) in ‘i’

}

--------------- end of do-file ---------------

which is contained inside a do-file named “myloop.do”, and can be executed

through four clusters with parallel as it follows

parallel setclusters 4

parallel do myloop.do

7

This algorithm was repeated over

N ∈ {10, 000; 100, 000; 1, 000, 000; 10, 000, 000}

Table 2: Serial replacing using a loop on a Windows Machine (2 clusters)
Problem Size

10.000 100.000 1.000.000 10.000.000
CPU 0.12 1.22 11.72 58.03
Total 0.81 1.53 7.96 36.13

Setup 0.02 0.08 0.56 2.86
Compute 0.55 1.20 7.10 32.65
Finish 0.25 0.25 0.30 0.62

Ratio (compute) 0.23 1.01 1.65 1.78
Ratio (total) 0.15 0.80 1.47 1.61
Tested on an Intel Core i5 M560 (dual-core) machine

Table 3: Serial replacing using a loop on a Linux Server (4 clusters)
Problem Size

10.000 100.000 1.000.000 10.000.000
CPU 0.25 1.79 17.64 176.16
Total 0.45 1.00 5.14 42.61

Setup 0.02 0.11 0.81 5.16
Compute 0.23 0.67 3.86 35.98
Finish 0.21 0.23 0.46 1.47

Ratio (compute) 1.13 2.68 4.57 4.90
Ratio (total) 0.56 1.79 3.43 4.13
Tested on an Intel Xeon X470 (octa-core) machine

8

5.2 Reshaping a large database

Reshaping a large database is always a time consuming task. This example

shows the execution of Stata’s reshape wide command for a large administra-

tive dataset which contains unemployment insurance solicitations made by its

users, i.e. a panel dataset.

The task was repeated over different sample sizes

N ∈ {1, 000; 10, 000; 100, 000; 1, 000, 000; 10, 000, 000}

Using parallel prefix syntax, the command is as it follows

parallel, by(numcue) force:reshape wide ///

tipsolic rutemp opta derecho ngiros, i(numcue) j(tiempo)

where the options by consider observations grouping in so as not to split in

between and force, jointly used with by, tells parallel not to check whether

if the dataset is actually sorted by, in this case, numcue.

Table 4: Reshaping wide a large database on a Windows Machine (2 clusters)
Problem Size

100000 1000000 2000000
CPU 4.95 48.03 101.38
Total 5.04 39.58 81.40

Setup 0.23 1.15 1.92
Compute 4.34 34.96 72.14
Finish 0.47 3.46 7.35

Ratio (compute) 1.14 1.37 1.41
Ratio (total) 0.98 1.21 1.25
Tested on an Intel Core i5 M560 (dual-core) machine

9

Table 5: Reshaping wide a large database on a Windows Machine (4 clusters
with HTT)

Problem Size
100000 1000000 2000000

CPU 4.91 50.48 106.03
Total 4.42 29.00 69.69

Setup 0.45 2.06 3.51
Compute 3.84 23.57 55.86
Finish 0.13 3.37 10.31

Ratio (compute) 1.28 2.14 1.90
Ratio (total) 1.11 1.74 1.52
Tested on an Intel Core i5 M560 (dual-core) machine

Table 6: Reshaping wide a large database on a Linux Server (4 clusters)
Problem Size

100.000 1.000.000 5.000.000
CPU 9.00 101.94 564.13
Total 4.41 43.92 317.60

Setup 0.77 1.43 10.03
Compute 3.17 38.52 283.05
Finish 0.47 3.98 24.53

Ratio (compute) 2.84 2.65 1.99
Ratio (total) 2.04 2.32 1.78
Tested on an Intel Xeon X470 (octa-core) machine

Table 7: Reshaping wide a large database on a Linux Server (8 clusters)
Problem Size

100000 1000000 5000000
CPU 9.21 98.87 534.34
Total 3.95 47.08 233.90

Setup 0.94 2.63 18.37
Compute 2.46 40.13 188.47
Finish 0.55 4.32 27.07

Ratio (compute) 3.74 2.46 2.84
Ratio (total) 2.33 2.10 2.28
Tested on an Intel Xeon X470 (octa-core) machine

5.3 Extended test: Monte Carlo Simulation

In ? (?) a simple Monte Carlo experiment is perform which simulates the

performance of a estimator of sample mean, x̄, in a context of heteroskedasticity.

10

The model to be

yi = µ+ εi ∼ N(0, σ2) (3)

Let ε be a N(0, 1) variable multiplied by a factor czi, where zi varies over i.

We will vary parameter c between 0.1 and 1.0 and determine its effect on the

point and interval estimates of µ; as a comparison, we will compute a second

random variable which is homoskedastic, with the scale factor equalling cz̄.

From web dataset census2 the variables age, region (which can be 1, 2, 3

or 4) and the mean of region are used as µ, zi and z̄ respectively.

The simulation program, stored in “mcsimul1.ado”, is defined as

--------------- begin of ado-file ------------

program define mcsimul1, rclass

version 10.0

syntax [, c(real 1)]

tempvar e1 e2

gen double ‘e1’=invnorm(uniform())*‘c’*zmu

gen double ‘e2’=invnorm(uniform())*‘c’*z_factor

replace y1 = true_y + ‘e1’

replace y2 = true_y + ‘e2’

summ y1

return scalar mu1 = r(mean)

return scalar se_mu1 = r(sd)/sqrt(r(N))

summ y2

return scalar mu2 = r(mean)

return scalar se_mu2 = r(sd)/sqrt(r(N))

return scalar c = ‘c’

end

--------------- end of ado-file --------------

In what is next, the do-file that runs the simulation, stored as “monte-

carlo.do”, it is compound of two parts: (a) setting the iteration range by which

c is going to vary, and (b) looping over the selected range. For the first part

the do-file uses the local macro pll instance which is the numer of the parallel

stata instance running, thus there are as many as clusters have been declared,

11

number available with the global macro PLL CLUSTERS. This way, if the macro

PLL CLUSTERS equals two and the macro pll instance equals une, then the

range will be defined from one to five6.

--------------- begin of do-file -------------

// Defining the loop range

local num_of_intervals = 10

if length("‘pll_id’") == 0 {

local start = 1

local end = ‘num_of_intervals’

}

else {

local ntot = floor(‘num_of_intervals’/$PLL_CLUSTERS)

local start = (‘pll_instance’ - 1)*‘ntot’ + 1

local end = (‘pll_instance’)*‘ntot’

if ‘pll_instance’ == $PLL_CLUSTERS local end = 10

}

local reps 1000

// Loop

forval i=‘start’/‘end’ {

qui webuse census2, clear

gen true_y = age

gen z_factor = region

sum z_factor, meanonly

scalar zmu = r(mean)

qui {

gen y1 = .

gen y2 = .

local c = ‘i’/10

set seed ‘c’

simulate c=r(c) mu1=r(mu1) se_mu1 = r(se_mu1) ///

mu2=r(mu2) se_mu2 = r(se_mu2), ///

saving(cc‘i’, replace) nodots reps(‘reps’): ///

mcsimul1, c(‘c’)

}

}

--------------- end of do-file ---------------

This do-file will be executed from stata using parallel do syntax. As there

6Note that if the local macro pll id, which contains a special random number that identifies
an specific parallel run (more details in its help file), length is zero it means that the do-file
is not running in parallel mode, thus it is been executed in a serial way where the loop range
starts from one to ten.

12

is no need of splitting any dataset (these are loaded every time that the main

loop simul.do’s loop runs), we add the option nodata. This way the main do-

file will look like this Finally, the do-file from which parallel runs the simulation

--------------- begin of do-file -------------

clear all

parallel setclusters 5

parallel do loop_simul.do, nodata

--------------- end of do-file ---------------

By this parallel will start, in this case, five new independent stata in-

stances, each one looping over the ranges 1/2, 3/4, 5/6, 7/8 and 9/10 respec-

tively.

Most of the code has been exactly copied with the exception of the addition

of a new code line set seed. In order to be able to compare both serial and

parallel implementations of the algorithm it was necessary to set a particular

seed for each loop, inside “montecarlo.do” right before simulate command.

Table 8: Monte Carlo Experiment on a Windows Machine
Number of Clusters
2 4

CPU 28.50 28.92
Total 17.49 18.30

Setup 0.11 0.12
Compute 17.27 18.07
Finish 0.11 0.11

Ratio (compute) 1.65 1.60
Ratio (total) 1.63 1.58
Tested on a Intel Core i5 M560 (dual-core) machine

13

Table 9: Monte Carlo Experiment on a Linux Server
Number of Clusters
2 3 5

CPU 40.97 39.01 36.44
Total 18.35 15.20 7.62

Setup 0.11 0.11 0.12
Compute 18.13 14.99 7.41
Finish 0.10 0.10 0.10

Ratio (compute) 2.26 2.60 4.92
Ratio (total) 2.23 2.57 4.78
Tested on a Intel Xeon X470 (octa-core) machine

6 Concluding Remarks

As stated by computer scientist Ph.D. Wen-Mei Hwu7, parallel computing is

the future of supercomputing, and giving the computer industry’s fast pace of

development, scientists in various areas are making real efforts to promote its

usage. In spite of this, many of social scientist do not work with it due to its

lack of user-friendly implementations.

In the case of Stata, parallel is, to the authors knowledge, the first public

user-contribution to parallel computing. The major benefits, measured in terms

of speedups, can be reached by simulation models and non-vectorized operations

such as control-flow statements. Speed gains are directly related to the propor-

tion of the algorithm that can be de-serialized and the number of processors

with which the parallelization is made, making possible reach near to constant

scale improvements.

Notwithstanding the simplicity of this type of parallelism, giving to its easy

way, it seems like a worthy activity for a wide range of social scientists and

researchers.

7Chief Scientist at Parallel Computing Institute http://parallel.illinois.edu/news-and

-media/gpus-path-future

14

http://parallel.illinois.edu/news-and-media/gpus-path-future
http://parallel.illinois.edu/news-and-media/gpus-path-future

	Introduction
	Parallel Computing
	Parallel Computing in Econometrics
	PARALLEL: Stata module for parallel computing
	Syntax

	Results
	Serial replacing using a loop
	Reshaping a large database
	Extended test: Monte Carlo Simulation

	Concluding Remarks

