
The Stata Journal (yyyy) vv, Number ii, p. 1

posis: Stata command for the
sure-independence-screening
Neyman-orthogonal estimator

David M. Drukker
Sam Houston State University

Di Liu
Stata

Abstract. Inference for structural parameters in a high-dimensional model has be-
come increasingly popular. Belloni et al. (2016) proposed a Lasso-based Neyman-
orthogonal estimator that produces valid inference for the coefficients of interests
in the generalized linear model. Drukker and Liu (2022) extends their estima-
tor by using a BIC-stepwise-based Neyman-orthogonal estimator and the simula-
tions show the advantage of using BIC-based stepwise as the covariate-selection
technique. However, the BIC-stepwise-based NO estimator becomes computa-
tional infeasible when there are much more control variables. To overcome this
computational bottleneck, Drukker and Liu (2022) proposes to combine the sure-
independence-screening technique with BIC-based-stepwise in order to improve
the computational speed while maintaining a similar or better statistical perfor-
mance. This paper presents the implementation of posis: a Stata command for a
iterative-sure-independence-screening-based Neyman orthogonal estimator for the
high-dimensional linear, logit, and Poisson models.

Keywords: posis, isis, high-dimensional model, partialing-out, sure independence
screening, Neyman-orthogonal, generalized linear model, post-selection inference

1 Introduction

The growing use of flexbile functional forms and the availability of many covariates
in “big data” environments have created an abundance of data in which researchers
now have access to hundreds or thousands of covariates. This abundance of data allows
researchers to build more more flexible models that better approximate reality. But this
abundance of data also forces us to perform covaraite selection, because including all
the available covariates is not feasible. Covariate selection raises a theoretical challenge
and a computational challenge. The theoretical challenge is how to find estimators
that provide valid inference after performing covariate selection. The computational
challenge is how to quickly perform covariate selection when there are many covariates.

There are two key ingredients to solving the theoretical challenge: the sparsity as-
sumption and the Neyman orthogonality property. The sparsity assumption requires
that only a few of the many available covariates need to included in the model. Spar-
sity means covariate selection is part of the solution. But covariate selection cannot be
performed without error unless the unrealistic “beta-min” condidion is imposed. The

© yyyy StataCorp LLC st0001

2 posis

beta-min condition requires that the coefficients in the model are either large in magni-
tude or exactly zero. When this unrealistic assumption is made covariate selection can
be performed without error, in large samples. Without a beta-min condition, selection
make some small mistakes in repeated samples. See Leeb and Pötscher (2006), Leeb
and Pötscher (2008), and Pötscher and Leeb (2009) for more details. We do not impose
impose a beta-min condition, so we need an estimator that is robust to mistakes made
by first-stage covariate selection method.

Estimators that are Neyman orthogonal (NO) are robust to the errors made in the
first-stage covariate selection. NO estimators extend a technique derived in Neyman
(1959) and Neyman (1979). Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni,
Chernozhukov, and Hansen (2014), Chernozhukov, Hansen, and Spindler (2015), and
Belloni, Chernozhukov, and Wei (2016) developed NO estimators that are robust to
covariate-selection mistakes.

Models with many covariates that potentially might need to be included are called
high-dimensional models. High-dimensional models that are subject to a sparsity con-
straint are called sparse high-dimensional models. High-dimensional models allow the
number of potential covariates p to be greater than the sample size N . Ultra-high-
dimensional models allow p to be much larger N . Ultra-high-dimensional models that
obey a sparsity condition are called sparse ultra-high dimensional models. The methods
and software discussed in the paper are useful for the case in which p is greater than N
or p is much greater than N .

Drukker and Liu (2022) studied the finite-sample performance of some NO estima-
tors for a sparse high-dimensional generalized linear model (GLM). The NO estima-
tors differed in their covariate-selection techniques, which included the Lasso, and BIC
stepwise. Both the Lasso-based NO estimator and BIC-stepwise-based NO estimator
peformed well for some of the data-generating processes (DGPs). But Drukker and Liu
(2022) found a family of DGPs for which the Lasso-based NO estimator produced unre-
liable estimates, while the BIC-stepwise-based NO estimator performed well. The price
of the better statistical performance came at the cost of dramatically increased com-
putational time. The BIC-stepwise-based NO estimator takes much longer to compute
than the Lasso NO estimator.

To solve this computational challenge, we combined the technique of sure-independence-
screening (SIS) with the NO estimator so that it can handle many more potential covari-
ates. Fan and Lv (2008a) proposed the sure independence screening method for linear,
sparse ultra-high-dimensional models. Fan et al. (2009a) and Fan and Song (2010a) ex-
tended this method to the generalized linear model. The SIS technique first prescreens
the potential controls to dramatically reduce the number of potential controls from the
original high-dimensional set to a much smaller set. Then a Lasso or BIC-based stepwise
method is used to select from the smaller set.

To improve the selection accuracy, Fan and Lv (2008b) also proposed the iterative
sure independence screening (ISIS). This procedure uses the joint covariate information

D. Drukker, D. Liu 3

while keeping the computation fast. Fan et al. (2009b) and Fan and Song (2010b)
extended the ISIS framework to the generalized linear model.

Drukker and Liu (2022) provides simulation evidence that the ISIS-Lasso estimator
and the ISIS-BIC-based-stepwise NO estimator perform as well as their counterparts
without using ISIS while dramatically reducing the computational time. Note that ISIS
reduces the computation time and the increases the selection accuracy when p is greater
than N . The methods and the software discussed in the article improve the computation
and the statistical results when p is greater than N .

In this paper, we describe two Stata commands: 1) isis implements the covariate
selector that combines a version of ISIS with Lasso or BIC stepwise techniques for the
linear, logit, and Poisson models; 2) posis implements the ISIS-based NO estimator for
the linear, logit, and Poisson models. This paper can also be seen as a follow-up paper
to Drukker and Liu, in which we described posw that implements the BIC-stepwise NO
estimator without using the ISIS techniques.

We organize this paper as follows. Section 2 describes the algorithms for the iterative
version of sure-independence-screening and the SIS-based NO estimator. Section 3
provides details on the syntax of isis and posis. Section 4 illustrates the use of isis
and posis through some numerical examples. Section 5 presents simulation results.
Finally, section 6 concludes.

2 Algorithms

2.1 High-dimensional GLM

Consider the high-dimensional generalized linear model (GLM)

E(yi|di,xi) = G(diα
′ + xiβ

′) (1)

where

• yi is the outcome variable.

• di is a low-dimensional vector of predefined variables of interest. We want to make
inferences about the corresponding coefficients α.

• xi is a ultra-high-dimensional, or high-dimensional, vector of controls. xi has
dimension 1 × p and β is the corresponding coefficient vector. The methods
discussed below are useful when p > N/ ln(N).

• G() is the link function, which is the identity function, the exponential function,
or the logit function for the linear model, Poisson/Expoential mean model, and
the logit model, respectively.

4 posis

We assume β is sparse, so only s∗ of the elements in β are nonzero. (s∗ is a small
number, where small is relative to the sample size.) Of course, we do not know which
s∗ elements in β have nonzero coefficients, so covariate selection is required.

In this section, we describe the algorithm of ISIS when using Lasso or BIC stepwise
as a covariate-selection technique for the linear, logit, and Poisson models. We also
present the algorithm for the ISIS-based NO estimator for coeficients of interest in
a sparse high-dimensional GLM model. Although we only use ISIS in practice , the
original SIS can help us understand the intuition. Section 2.2 presents the algorithm for
the original SIS. Section 2.3 describes the ISIS algorithm for the GLM model. Section
2.4 shows the algorithm of ISIS-based NO estimator.

2.2 Original sure independence screening

When we talk about covariate selection, there is no need to distinguish between the
variables of interest and the controls. Thus we use a compact notation.

E(yi|w) = G(wiθ
′) (2)

Where wi is an ultra-high-dimensional vector or a high-dimensional vector, of potential
controls and θ is the corresponding coefficient vector.

The original SIS algorithm consists of two steps. First, pick q variables by ranking
the marginal maximum likelihood estimates (MMLEs). Second, use Lasso or BIC-based
stepwise to select variables among the q variables picked in the first step.

The MMLE for θj , the jth element in θ, is the solution of the component-wise
maximum likelihood estimation.

(θ̂Mj , θ̂
M
0) = arg max

θ0,θj

N∑
i=1

Q(yi, θ0 + wi,jθj) (3)

For each j in {1, . . . , p}, we compute the MMLE and then rank them by their

magintudes. Only the top q variables are selected. Denote Â1 as the index of the
selected variables. Â1 is defined as

Â1 = {1 ≤ j ≤ p : |θ̂Mj | ≥ δn} (4)

where the threshold δn is set such that only q variables are selected. In theory, q is
O(bN/ logNc), step (a) in algorithm provides the value of q for each model. This
screening step effectively reduces the model size from p to q, a number much below N .

LetM∗ be the true model. Under some regularity regularity conditions that restrict
the correlations between the wj variables and that enforce a sparsity constraint, then

the probability that Â1 contains the true model M∗ converges to 1. Precisely, given a
sequence of δn,

P (M∗ ⊂ Â1)→ 1

D. Drukker, D. Liu 5

Â1 may also contain many unimportant variables, so the second step is to use a
covariate-selection technique to reduce the model further. For example, we can use
Lasso with penalty parameters selected by the plugin method to select variables among
the q variables screened in the first step.

Algorithm 1 provides details of the implementation of the original SIS. All the control
variables are assumed to be normalized to have a mean of 0 and a standard deviation
of 1.

Algorithm 1: Original SIS

1. Set initial conditions.

a. Set q, the screening model size. By default, the value of q depends on the
model. In particular,

q Model
bN/log(N)c linear
bN/(4log(N))c logit
bN/(2log(N))c Poisson

b. Set variable selection technique. It can be Lasso or BIC-based stepwise.

2. For j ∈ {1, . . . , p}, compute the marginal maiximum likihood esimator (MMLE)

θ̂Mj as

(θ̂Mj , α̂
M) = arg max

α,θj

N∑
i=1

Q(yi, α+ wi,jθj)

3. Let Â1 be the set of indicies of the q largest-in-magnitude estimated coeffcients.

Formally, let θ̃M contain the values of |θ̂Mj |, sorted from largest to smallest. Let

δ = θ̃Mq , which the q(th) largest |θ̂Mj |.

Denote Â1 as the index of the selected variables.

Â1 = {1 ≤ j ≤ p : |θ̂Mj | ≥ δ}

4. Use the specified covariate selection technique to select variables among the q
variables in Â1. The final selected variables are denoted as M̂1.

6 posis

2.3 Iterative sure independence screening

The original SIS procedure fails (1) if there is a variable that is marginally unrelated
but jointly related to the outcome, or (2) if there is a variable that is jointly unrelated
to the outcome but has a higher marginal correlation with the outcome than some other
variables that belong in the model. In the first scenario, an important variable will be
omitted. In the second case, the selected covariates will include unimportant variables
and will exclude some important features from the model.

To overcome the limitation of the original SIS, Fan and Lv (2008b) also proposed
the ISIS algorithm. It uses joint covariate information, while keeping the computations
fast. Fan et al. (2009b) extends it to the GLM model.

In order to use the joint covariate information, Fan et al. (2009b) introduces the
screening framework using the conditional marginal maximum likelihood estimates (CMM-

LEs). Let M̂1 be the index of the selected model in the original SIS and let j be an

index not in M̂1, then the CMMLE for θj conditional on M̂1 is defined as the solution
to the following optimization problem.

(θ̃Mj , θ̃
M
0 , θ̃

M

M̂1
) = arg max

θ0,θM̂,θj

N∑
i=1

Q(yi, θ0 + w
i,M̂1

θ′M̂1
+ wi,jθj) (5)

For each j /∈ M̂1, we compute their CMMLE estimate and rank them by their
magnitude. Only k2 = q − |M̂1| variables are selected and denote Â2 as the index of

selected variables. Â2 is defined as

Â2 = {j /∈ M̂1 : |θ̃Mj | ≥ δn} (6)

Again, δn is set such that only k2 variables are picked.

Then, we use a covariate selection technique such as Lasso to perform covariate
selection among all the variables selected in M̂1 and Â2. Namely, we select among the
covariates in M̂1 ∪Â2. We can understand this step in two ways. First, Â2 can be seen
as the important variables omitted in M̂1, and then it is natural to merge it with M̂1.
Second, the covariate selection is necessary to delete any unimportant variables in M̂1

and Â1. Denote the selected covariates in this step as M̂2.

Based on M̂2, we can repeat the above procedure until the covariate selection con-
verges or the maximum number of iterations is attained. Algorithm 2 describes the
details of the iterative SIS procedure. All the control variables are assumed to be nor-
malized to have a mean of 0 and a standard deviation of 1.

D. Drukker, D. Liu 7

Algorithm 2: Iterative SIS

1. Set initial conditions.

a. Set q, the screening size. (See Algorithm (1) for details)

b. Set lmax, the maximum number of iteration

c. Set M̂0, the initial set of selected variables, to be an empty set

d. Set the selection covariate technique. It can be Lasso, or BIC-based
stepwise.

2. For l from 1 to lmax, do the following loop.

a. For each j /∈ M̂l−1, compute the CMMLEs θ̂Mj conditional on the set of

covariates defined in M̂l−1

(θ̃Mj , α̃
M
0 , θ̃

M

M̂l−1
) = arg max

α,θM̂,θj

N∑
i=1

Q(yi, α+ w
i,M̂l−1

θ′M̂l−1
+ wi,jθj)

b. Let Âl be the set of indicies of the kl largest-in-magnitude estimated
coeffcients, where

kl =

{
b 2q3 c if l = 1

q − |M̂l−1| if l > 1

Formally, let θ̌M be p− |M̂l−1| vector containing the values of |θ̃Mj |
(j /∈ M̂l−1), sorted from largest to smallest. Let δ = θ̌Mkl , which is the kl(th)

largest |θ̃Mj |.
Denote the selected variables as Âl.

Âl = {j /∈ M̂l−1 : |θ̃Mj | ≥ δ}

c. For all the variables in Âl ∪ M̂l−1, apply the specified covariate-selection

technique. Denote the selected variable as M̂l.

d. Exit the loop if |M̂l| = q, or M̂l = M̂j for some j < l, or l = lmax.

3. The selected covariates are M̂l.

8 posis

2.4 Sure-independence-screening-based NO GLM estimaion

Belloni, Chernozhukov, and Wei (2016) derived lasso-based NO estimators for the GLM
model. We implement the versions of NO estimators that use the iterative sure inde-
pendence screening for covariate selection. Algorithm 3 provides the details about these
versions of the Belloni, Chernozhukov, and Wei (2016) NO estimator. For inference, we
need to distinguish the variables of interests and controls. Thus, we come back to use
the notation in Equation (1).

D. Drukker, D. Liu 9

Algorithm 3: ISIS-based NO GLM estimation

1. In a GLM model of y on d and x, use ISIS to find the subset of the x covariates
with nonzero coefficients. Denote this subset by x̃.

2. Use the unpenalized QML GLM regression estimator to estimate the coefficients
α̃ and β̃ in a GLM model of y on d and x̃.

3. Let s̃i = x̃iβ̃
′

be the ith observation of the predicted value of the linear index
xβ′.

4. Let ωi = G′(diα̃
′ + s̃i) be the ith observation of the predicted value of the

derivative of G(·). Let σ2
i = V̂ ar(yi|di,xi). Let fi = ωi/σi.

5. For each j ∈ {1, . . . , J}, use the ISIS for the jth variable in d on x using
observation-level weights fi, and let x̌j be the selected covariates.

6. For each j ∈ {1, . . . , J}, run a linear, ordinary least squares regression of the jth

variable in d on x̌j with observation-level weights fi. Let d̃j be the unweighted

residuals from this regression and let d̃j,i be the ith observation on d̃j .

7. Create the vector of instrumental variables z = (d̃1, . . . , d̃J) and zi be the ith
observation on this vector of instrumental variables. Note that
zi = (z1,i, . . . , zJ,i) = (d̃1,i, . . . , d̃J,i).

8. Compute α̂ by solving the J sample-moment equations

1

n

n∑
i=1

[yi −G(diα
′ + s̃i)] zi = 0

We use the standard robust estimator for the asymptotic variance of a
method-of-moments estimator.

3 Syntax

We document the syntax and options for isis and posis as follows.

3.1 Syntax of isis

isis depvar controls
[

if
] [

in
] [

weight
]

, model(model spec)[
method(method spec) always(varlist) maxiter(#)

]

10 posis

where depvar is a varname, controls is a varlist , and only fw and iw are allowed as the
weights.

Options for isis

controls specifies the set of control variables, which control for omitted variables. Control
variables are also known as observed confounding variables and as covariates.

model(model spec) specifies the model. method spec is one of linear, logit, or poisson.
Option method() is required.

method(method spec) specifies the covariate selection technique to be used within sure
independence screening. The default is method(lasso, bic).

The syntax of method spec is one of the following

method spec Description
stepbic BIC-based stepwise
lasso, lasso spec lasso

lasso spec specifies how to choose the tuning parameter in lasso. It is one of the
following

lasso spec Description
cv cross-validation
plugin plug-in method
adaptive adaptive lasso
bic minimize BIC

always(varlist) specifies the variables will always be included in the model. The default
is none.

maxiter(#) specifies the maximum number of iterations. The default is 5.

3.2 Syntax of posis

The syntax of posis is

posis depvar varsofinterest
[

if
] [

in
]

, controls(varlist) model(model spec)[
method(method spec) maxiter(#)

]
where depvar is a varname, varsofinterest are variables for which coefficients and

their standard errors are estimated.

D. Drukker, D. Liu 11

Options for posis

controls(varlist) specifies the set of control variables, which control for omitted vari-
ables. Control variables are also known as observed confounding variables and as
covariates. Option controls() is required.

model(model spec) specifies the model. method spec is one of linear, logit, or poisson.
Option method() is required.

method(method spec) specifies the variable selection technique to be used within sure
independence screening. The default is method(lasso, bic).

The syntax of method spec is one of the following

method spec Description
stepbic BIC-based stepwise
lasso, lasso spec lasso

lasso spec specifies how to choose the tuning parameter in lasso. It is one of the
following

lasso spec Description
cv cross-validation
plugin plug-in method
adaptive adaptive lasso
bic minimize BIC

maxiter(#) specifies the maximum number of iterations. The default is 5.

3.3 Stored results

isis stores the following results in e().

12 posis

Scalars
e(N) number of observations
e(screen size) screen size
e(iter) actual number of iterations
e(maxiter) maximum number of iterations
e(k controls) number of controls
e(k controls sel) number of selected controls

Macros
e(cmd extend) isis
e(title) title in estimation output
e(selopt) selection method suboptions
e(selcmd) selection method command
e(depvar) dependent variable
e(model) type of model
e(allvars sel) name of the selected variables
e(allvars) name of all the variables

Matrices
e(b) coefficient vector

Functions
e(sample) marks estimation sample

posis stores the following results in e().

Scalars
e(N) number of observations
e(k controls) number of controls
e(k controls sel) number of selected controls
e(k varsofinterest) number of variables of interest
e(rank) rank of e(V)

Macros
e(cmd) posis
e(varsofinterest) variables of interest
e(depvar) dependent variable
e(controls sel) selected control variables
e(controls) control variables
e(model) type of model
e(title) title in estimation output
e(vcetype) robust
e(vce) Robust
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance-covariance matrix of the estimators

Functions
e(sample) marks estimation sample

4 Numerical examples

We will illustrate the use of isis and posis through some examples. In these examples,
we use the simulated data in test.dta, which has 500 observations. In test.dta, the

D. Drukker, D. Liu 13

dependent variable is y, there are 3 variables of interest named d1, d2, and d3, and there
are 597 covariates which are named as x1 - x597. When we combine the variables of
interest with the covariates, there 600 variables. Note that there are more candidate
variables than there are observations.

After reading in test.dta into Stata, we define some global macros to save some
typing. We put the names the variables of interest into the global macro dvars. We
put the names of the control variables into the global macro controls. And, finally, we
put the names of the variables of interest and the names of the control variables into
the global macro allvars.

. use test, clear

.

. global dvars d*

. global controls x*

. global allvars d* x*

Example 1: covariate selection with isis

In this example, we illustrate the use of isis for an outcome y that we would model
using a linear regression. In this example, we use the default covariate-selection method,
which is the BIC-lasso method. When discussing the covariate-selection techniques such
as lasso or isis, there is no need to distinguish between the variables of interest and
the controls. All the covariates are treated as potential variables to be chosen. Thus,
we use the global macro allvars to specify the list of potential covariates. We specify
option model(linear) to conduct a linear regression covariate selection. Finally, we
specify option method(stepbic) to use the BIC-based stepwise method as the covariate
selection technique.

. isis y $allvars, model(linear)

Iteration 1:
CMMLE over 600 variables
SIS picked 53 variables
lasso selected 11 variables among 53 controls

Iteration 2:
CMMLE over 589 variables
SIS picked 69 variables
lasso selected 11 variables among 80 controls

Covariate selection converged.

Iterative sure independence screening Number of obs = 500
Max number of iterations = 5
Actual number of iterations = 2
Screen size = 80

model : linear Number of controls = 600
method: lasso bic Number of selected controls = 11

14 posis

y Coefficient

x4 .1752422
x3 .2264602
d1 .1980964
x10 .1969763
x2 .0653429
x5 .074989
x9 .0693233
x8 .0917194

x285 -.1052104
x428 -.1147566
x511 .1376979
_cons -.0704456

As discussed in algorithm 2, each iteration of ISIS has three steps. First, in step 2a),
it selects a set of variables to include in the CMMLE set. In the output above, each
line of CMMLE over # variables says how many variables were searched over in the
CMMLE step in that iteration. Second, in step 2b), the ISIS algorithm selects a subset

of the CMMLE variables into an SIS set. The SIS set is denoted Âl in the algorithm and
the isis output above reports the number of variables in Âl as the number of variables
that SIS picked, for each iteration. Third, in step 2c), the ISIS algorithm uses the
lasso or BIC stepwise to select a candidated set of covariates. For each iteration, the
output above reports the number of variables selected by BIC lasso.

When the set of candidate covariates selected by the lasso or BIC stepwise does
not change from one iteration to the next, the ISIS algorithm has converged. In this
example, the ISIS algorithm converged after two iterations.

The output table reports estimated coefficients for each of the variables included in
the converged set of covariates.

Here are some explanations about the output-header information.

• The “Number of selected controls” is 11, which implies that only 11 variables are
chosen from all the 600 controls.

• The “Max number of iterations” is 5, the default number of maximum iterations.
The “Actual number of iterations” is 2 because the covariate selection converged
after 2 iterations.

• The “Screen size” is 80, which implies that the BIC lasso will only do covariate
selection among 80 variables at the maximum. Compared with doing BIC lasso
on the original 600 variables, this step dramatically decreases the computational
burden. Note that the screen size is obtained via b500/ ln(500)c = 80; see the
table in step 1a) of algorithm 1.

• Unlike a traditional estimation command such as regress, isis does not report

D. Drukker, D. Liu 15

standard errors or t-tests against zero because these inferential statistics are un-
reliable without making an unrealistic beta-min assumption.

To see the selected covariates, we can display the ereturn results e(allvars sel).

. di `"`e(allvars_sel)´"´
x4 x3 d1 x10 x2 x5 x9 x8 x285 x428 x511

The selected covariates can be used either for prediction or inference. For prediction,
we can use the selected variables and their coefficients estimates to construct the out-
of-sample prediction. For inference, we need to construct an NO estimator using the
isis as the covariate-selection technique and make inference on the variables of interests,
which is implemented in posis.

Example 2 illustrates an example of using isis for prediction. Example 3 illustrates
an example of using posis for inference.

Example 2: prediction with isis

For prediction, we first need to split the original data into training and testing samples.
The training data is used to perform covariate selection, while the testing data is used
to evaluate the out-of-sample prediction performance based on the selected covariates.
We use splitsample to split the data into two parts. 60% of the data is used as the
training sample, while the remaining part is used as a testing sample. The new variable
gr indicates the type of sample.

. splitsample, generate(group) split(0.6 0.4)

. label define lb 1 "Training" 2 "Testing"

. label values group lb

. tabulate group

group Freq. Percent Cum.

Training 300 60.00 60.00
Testing 200 40.00 100.00

Total 500 100.00

Next, we use isis to peform covariate selection in the training sample. Notice that
we add “gr == 1” to restrict the estimation sample to be training data only. We also
specify option method(lasso, plugin) to use lasso with plugin penalty parameter as
a covariate-selection technique. The interpretation of the output is the same as in
Example 1. For later reference, we store the estimation results as isis.

. isis y $allvars if group == 1, model(linear)

Iteration 1:

16 posis

CMMLE over 600 variables
SIS picked 34 variables
lasso selected 4 variables among 34 controls

Iteration 2:
CMMLE over 596 variables
SIS picked 48 variables
lasso selected 7 variables among 52 controls

Iteration 3:
CMMLE over 593 variables
SIS picked 45 variables
lasso selected 7 variables among 52 controls

Covariate selection converged.

Iterative sure independence screening Number of obs = 300
Max number of iterations = 5
Actual number of iterations = 3
Screen size = 52

model : linear Number of controls = 600
method: lasso bic Number of selected controls = 7

y Coefficient

x460 -.1841022
x8 .080793
x16 .0753784
x4 .212914
x3 .2167369
x10 .2431481
d1 .2126844

_cons -.0549942

. estimate store isis

As a comparison with isis result, we also run a lasso with plugin penalty parameter.
The result is stored as lasso.

. lasso linear y $allvars if group == 1, sel(plugin)

Computing plugin lambda ...
Iteration 1: lambda = .2670831 no. of nonzero coef. = 4
Iteration 2: lambda = .2670831 no. of nonzero coef. = 4

Lasso linear model No. of obs = 300
No. of covariates = 600

Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda .2670831 4 0.2206 920.7542

* lambda selected by plugin formula assuming heteroskedastic errors.

. estimate store lasso

D. Drukker, D. Liu 17

Based on the selected covariates, we can evaluate their out-of-sample prediction
performance using lassogof.

. lassogof isis lasso, over(group)

Penalized coefficients

Name group MSE R-squared Obs

isis
Training .911803 0.3798 300
Testing .8957799 0.4089 200

lasso
Training 1.145958 0.2206 300
Testing 1.148989 0.2418 200

The R-squared or the MSE in the testing sample measures the out-of-sample pre-
diction performance. The greater the R-squared (or the smaller the MSE), the better
the prediction is. Clearly, the lasso-based sure independence screening is better than
the straight lasso in this example. As a result, we can use the isis result to make the
prediction.

Finally, we load a data test new.dta, which does not contain the dependent vari-
able. We use the results from isis to predict the outcome.

. use test_new, clear

. estimates restore isis
(results isis are active now)

. predict yhat
(option xb assumed; fitted values)

Example 3: inference with posis

We can use isis to select the covariates for predictive model, in which case we think of the
naive estimator that uses the selected covariates as producing estimates that minimize a
bias-variance trade off. But we can not do reliable inference because covariate selection
techniques such as ISIS make unavoidable mistakes. If we want to make inferences on a
subset of parameters in the model, we need to use posis, which uses the NO approach
to construct an estimator that is robust to the covariate-selection mistakes.

For example, in the data test.dta, we want to make inference on the coefficients
for d1, d2, and d3 while treating all the other variables as potential controls. The
global macro dvars defines the variables of interest. (We want to make inferences the
coefficients on the variables in dvars.) The global macro controls defines the control
variables. posis uses isis to select the relevant controls as part of the NO estimator
given in algorithm 3.

18 posis

Here is the posis output. We specify controls($controls) to use control variables
defined in the global macro controls. We use model(linear) for the linear model.
Finally, we specify method(stepbic) to use the BIC-stepwise ISIS as the covariate-
selection technique.

. use test, clear

. posis y $dvars, controls($controls) model(linear) method(stepbic)

select controls for y using ISIS stepbic
select controls for d1 using ISIS stepbic
select controls for d2 using ISIS stepbic
select controls for d3 using ISIS stepbic

Partialing-out ISIS Number of obs = 500
Number of controls = 597
Number of selected controls = 43

Method: stepbic Wald chi2(3) = 16.49
Model: linear Prob > chi2 = 0.0009

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

d1 .1625513 .0425851 3.82 0.000 .0790859 .2460166
d2 .027177 .0403703 0.67 0.501 -.0519474 .1063014
d3 .0230802 .0443444 0.52 0.603 -.0638333 .1099937

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

After we note that only 43 of the 597 controls were selected in the NO estimator,
we can interpret the results as we would for regress. For example, the estimated
coefficient on d1 is 0.163, which implies that an increase of one unit in d1 will increase
the dependent variable by an estimated amount of 0.163. Standard inference tools such
as test or testnl can also be used to test different hypotheses. For example, we use
the sotable, discussed in Drukker (2022), to get an output table with p-values and a
confidence band that accounts for the multiple comparisons made.

. sotable

Max-t results
p-value = 0.000

Critical value = 2.385

y Coef. Std. Err. z P>|z| [95% Conf. Band]

d1 .1625513 .0425851 3.817 0.000 .0609704 .2641322
d2 .027177 .0403703 0.673 0.875 -.0691208 .1234747
d3 .0230802 .0443444 0.520 0.937 -.0826972 .1288576

As expected, the non-zero p-values are much larger and the confidence intervals are
much wider, after we account for comparing all three parameters with zero.

D. Drukker, D. Liu 19

5 Simulations

We conducted a simulation study to measure the finite-sample statistical performance
of posis and to measure the computational-speed gain of posis compared with other
NO estimators that don’t use an ISIS covariate-selection technique. As a benchmark,
we also use a ISIS-based naive estimator to illustrate that the naive estimator cannot
provide reliable inference while the partialling-out estimator can. Thus, we compare
two versions of NO estimators in simulations:

• naive isis: A naive estmiator that uses the BIC-stepwise ISIS technique as the
covariate-selection method. This estimator is implemented as a straightforward
isis wth options method(stepbic) and always(dvars), where dvars are vari-
ables of interest that we want to make inference.

• posis: An NO estimator that uses the BIC-stepwise ISIS technique as the covariate-
selection method; this estimator is implemented in posis with option method(stepbic).

• posw: An NO estimator that uses a BIC-stepwise as the covariate-selection
method, without the ISIS framework; this estimator is implemented in posw with
option method(bic).

5.1 Designs

We compare these two estimators in linear, logit, and Poisson models. The DGP for
the three models can be summarized in the following steps.

1. The outcome variable yi is generated as

linear yi = wi + εi

logit yi = wi + εi > 0

Poisson yi = rpoisson(exp(wi))

where wi is a linear combination of the variables of interest and the control vari-
ables (see step 2 for details), εi is an error term which varies across the models
(see Step 3 for details), and rpoisson(µ) is a Stata function that generates draws
from the Poisson distribution with mean µ.

2. The term wi has a common structure as

wi = dbig,iαbig + dsmall,iαsmall + dzero,i ∗ 0 + x′big,iβbig + x′small,iβsmall

where

• dbig,i is a variable of interest with a large coefficient αbig.

• dsmall,i is a variable of interest with a small coefficient αsmall.

20 posis

• dzero,i is a variable of interest with coefficient 0.

• xbig,i is a vector of controls with large coefficient βbig.

• xsmall,i is a vector of controls with small coefficient βsmall.

The covariates (This includes the variables of interests and the control variables)
are generated from a type of Toeplitz structure; see Belloni, Chen, Chernozhukov,
and Hansen (2012) for an example. These Toeplitz structures allow the covariates
to have different degrees of correlation depending on the variable indices. In par-
ticular, each covariate has an index j ∈ {1, . . . , p}, where p is the total number
of covariates in the model. Covariates with near-by indices values are more cor-
related than the covariates with far-away indices. Each covariate was generated
as

xj = .3xj−1 + .2 ∗ xj−4 + .2xj−8 + η

For each draw, we drew p covariates and discarded the first 25 to burn in the
Toeplitz structure. where η = (rchi2(25) − 25)/sqrt(50)), and rchi2(a) is the
Stata function that generates draws from a χ2 distribution with a degrees of
freedom. The distribution for η has mean zero, variance one, and its higher
moments are distinctly different from a normal distribution.

For each design, we generated p covariates.

• Covariate 1 is dbig, the covariate of interest whose coefficient is large.

• Covariates 2-5 are xbig, the control covariates whose coefficients are large.

• Covariate 6 is dsmall, the covariate of interest whose coefficient is small.

• Covariates 7-10 are xsmall, the control covariates whose coefficients are small.

• Covariate 11 is dzero, the covariate of interest whose coefficient is zero.

• Covariates 12-p are xzero, the control covariates whose coefficients are zero.

The size of large coefficients is twice that of the small coefficients. Here are the
true values of the coefficients.

D. Drukker, D. Liu 21

Table 1: True values of coefficients
Model Coefficient value
linear αbig 0.16

αsmall 0.08
βbig 0.16
βsmall 0.08

logit αbig 0.32
αsmall 0.16
βbig 0.32
βsmall 0.16

Poisson αbig 0.32
αsmall 0.16
βbig 0.32
βsmall 0.16

The numbers of observations (N) and the number of covariates (p) for each design
are defined as

Table 2: Values of N and p
Model N p
linear 1000 600
logit 2000 1000
Poisson 500 600

3. Here is how the error term εi is generated. For the linear model, εi = (rchi2(25)−
25)/sqrt(50)), and rchi2(a) is the Stata function that generates draws from a
χ2 distribution with a degrees of freedom. The distribution for ε has a mean
zero, variance one, and its higher moments are distinctly different from thoese of
a normal distribution.

For the logit design, εi = rlogitic(), where rlogistic() generates draws from a
standard logistic distribution.

We ran 3, 000 repetitions for each design.

5.2 Results

Tables 3–5 summarize the simulation results for posis and posw estimators. In short,
both partialing-out estimators perform well in terms of consistency and the rejection
rate while the naive estimator can not provide valid inference. However, posis is much
faster than posw, see details in Table 6. 1

1. The simulation times are average computation time over 3, 000 repetitions.

22 posis

For each model and estimator, the simulation results in Tables 3–5 are summarized
as follows.

• Mean specifies the sample mean of the point estimate of the coefficient over the
simulation repetitions. The value of the mean should be close to the true values
in Table 1.

• SD specifies the standard deviation of the point estimates.

• SE specifies the sample mean of the standard errors over the repetitions. The
sample mean of standard errors should be close to the standard deviation of the
point estimates.

• Rej. Rate specifies the rejection rate of a test against the null hypothesis that the
point estimates of coefficient equal to its true value. The significance level of the
test is 0.05, so the rejection rate should be close to 0.05.

Table 3: Results for the large coefficient αbig

Mean SD SE Rej. Rate

linear
naive isis 0.1739 0.0396 0.0317 0.138
posis 0.1522 0.0351 0.0336 0.069
posw 0.1522 0.0351 0.0336 0.069

logit
naive isis 0.3528 0.0675 0.0573 0.140
posis 0.3330 0.0631 0.0602 0.064
posw 0.3330 0.0631 0.0602 0.064

poisson
naive isis 0.3234 0.0379 0.0305 0.117
posis 0.3202 0.0601 0.0587 0.059
posw 0.3194 0.0677 0.0666 0.057

D. Drukker, D. Liu 23

Table 4: Results for the small coefficient αsmall
Mean SD SE Rej. Rate

linear
naive isis 0.0923 0.0376 0.0317 0.117
posis 0.0747 0.0343 0.0341 0.051
posw 0.0747 0.0343 0.0341 0.051

logit
naive isis 0.1867 0.0655 0.0561 0.120
posis 0.1659 0.0625 0.0608 0.058
posw 0.1659 0.0625 0.0608 0.058

poisson
naive isis 0.1620 0.0385 0.0322 0.101
posis 0.1594 0.0653 0.0625 0.061
posw 0.1595 0.0713 0.0696 0.061

Table 5: Results for the zero coefficient αzero
Mean SD SE Rej. Rate

linear
naive isis 0.0042 0.0335 0.0311 0.068
posis -0.0006 0.0336 0.0341 0.047
posw -0.0006 0.0336 0.0341 0.047

logit
naive isis 0.0052 0.0591 0.0544 0.074
posis 0.0011 0.0624 0.0607 0.058
posw 0.0011 0.0624 0.0607 0.058

poisson
naive isis 0.0007 0.0380 0.0320 0.096
posis -0.0013 0.0654 0.0631 0.055
posw -0.0008 0.0720 0.0698 0.055

24 posis

Table 6: Results for computation time

Timing (seconds)

linear
naive isis 58.00
posis 198.19
posw 276.01

logit
naive isis 183.67
posis 630.26
posw 1019.14

poisson
naive isis 144.67
posis 555.33
posw 1524.12

6 Conclusion

We motivate and present Stata commands isis and posis. isis implements the itera-
tive sure-independence screening (ISIS) combined with the Lasso or stepwise covariate-
selection technique. posis implements a ISIS-based NO estimator for the inference
in the high-dimensional linear, logit, and Poisson model. posis can be viewed as an
extension of posw, which implements a NO estimator using straightforward stepwise
methods. The simulations show that, compared with posw, posis can greatly improve
the computational speed while maintaining similar or better statistical performance.

D. Drukker, D. Liu 25

Appendix

The Q() is defined as

• For linear models,

Q(yi,xiβ
′) =

(
yi − xiβ

′)2
• For Poisson models

Q(yi,xiβ
′) = −[yixi,tβ

′ − exp(xiβ
′)− ln(yi!)]

• For logit models

Q(yi,xiβ
′) = ln[1 + exp(xiβ

′)]− yi(xiβ)

1 References
Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen. 2012. Sparse models and meth-

ods for optimal instruments with an application to eminent domain. Econometrica
80(6): 2369–2429.

Belloni, A., V. Chernozhukov, and C. Hansen. 2014. Inference on treatment effects after
selection among high-dimensional controls. The Review of Economic Studies 81(2):
608–650.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized
linear models with many controls. Journal of Business & Economic Statistics 34(4):
606–619.

Chernozhukov, V., C. Hansen, and M. Spindler. 2015. Valid Post-Selection and Post-
Regularization Inference: An Elementary, General Approach. Annual Review of
Economics 7(1): 649–688.

Drukker, D., and D. Liu. posw: A Stata Command for the stepwise Neyman-orthogonal
estimator. Accepted by The Stata Journal .

Drukker, D. M. 2022. Simultaneous tests and confidence bands for Stata estimation
commands. Accepted by The Stata Journal .

Drukker, D. M., and D. Liu. 2022. Finite-sample results for lasso and stepwise Neyman-
orthogonal Poisson estimators. Econometric Reviews 41(9): 1047–1076.

Fan, J., and J. Lv. 2008a. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
70(5): 849–911.

26 posis

. 2008b. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society. Series B: Statistical Methodology 70(5): 849–
911. https://www.jstor.org/stable/20203862.

Fan, J., R. Samworth, and Y. Wu. 2009a. Ultrahigh dimensional feature selection:
beyond the linear model. The Journal of Machine Learning Research 10: 2013–2038.

. 2009b. Ultrahigh Dimensional Feature Selection: Beyond the Linear Model.
Journal of Machine Learning Research 10: 2013–2038.

Fan, J., and R. Song. 2010a. Sure independence screening in generalized linear models
with NP-dimensionality. The Annals of Statistics 38(6): 3567–3604.

. 2010b. Sure independence screening in generalized linear models with NP-
dimensionality. Annals of Statistics 38(6): 3567–3604.

Leeb, H., and B. M. Pötscher. 2006. Can one estimate the conditional distribution of
post-model-selection estimators? The Annals of Statistics 34(5): 2554–2591.

. 2008. Sparse estimators and the oracle property, or the return of Hodges’
estimator. Journal of Econometrics 142(1): 201–211.

Neyman, J. 1959. Optimal asymptotic tests of composite statistical hypotheses. In
Probability and Statistics: The Harald Cramer Volume, ed. U. Grenander, 213–234.

. 1979. C(α) tests and their use .

Pötscher, B. M., and H. Leeb. 2009. On the distribution of penalized maximum like-
lihood estimators: The LASSO, SCAD, and thresholding. Journal of Multivariate
Analysis 100(9): 2065–2082.

About the authors

David M. Drukker is an Associate Professor in the Department of Economics and International
Business of Sam Houston State University.

Di Liu is a Principal Econometrician in StataCorp in the United States.

	posis: Stata command for the sure-independence-screening Neyman-orthogonal estimatorto.44em.D. Drukker, D. Liu

