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Abstract. Inference for structural and treatment parameters while having high-
dimensional covariates in the model is increasingly common. The Neyman-orthogonal
(NO) estimators in Belloni, Chernozhukov, and Wei (2016) produce valid infer-
ences for the parameters of interest while using GLM lasso methods to select the
covariates. Drukker and Liu (2022b) extended the estimators in Belloni, Cher-
nozhukov, and Wei (2016) by using a BIC-stepwise method and a testing-stepwise
method as the covariate-selector. Drukker and Liu (2022b) found a family of data-
generating processes for which the NO estimator based on BIC-stepwise produces
much more reliable inferences than the lasso-based NO estimator. This paper
describes the implementation of posw: a Stata command for the stepwise-based
Neyman-orthogonal estimator for the high-dimensional linear, logit, and Poisson
models.
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1 Introduction

Many researchers face a situation in which they want to make inferences about a few
coefficients on variables of interest while having more control variables than they could
include in the model for the sample size at hand. This situation is a high-dimensional
model (HDM), and the sparse modeling approach is frequently applied. The sparse
modeling approach has three key features. First, the sparse modeling approach assumes
that the model is “sparse”. The model is sparse when the number of potential con-
trols that must be included in the model is small relative to the sample size. Second,
the sparse modeling approach uses a covariate-selection method to choose which of the
many potential controls must be included. Third, the sparse modeling approach uses an
estimator for the parameters of interest that is robust to the inevitable mistakes made
in the covariate-selection step. As discussed in Chernozhukov, Hansen, and Spindler
(2015), these robust estimators are known as Neyman-orthogonal (NO) estimators be-
cause they extend a technique derived in Neyman (1959) and Neyman (1979) and they
are robust to the covariate-selection mistakes made by high-quality covariate-selection
techniques.1

Why covariate-selection methods inevitably make mistakes deserves an explanation.
Covariate selection has a long and somewhat controversial history in statistics and

1. A high-quality covariate selection technique selects the required covariates at a fast enough rate,
see Chernozhukov, Hansen, and Spindler (2015).
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econometrics. When all of the nonzero coefficients are large enough in magnitude and
the model is sparse, some covariate-selection methods will include the required covariates
with probability approaching one as the sample size increases, under some regularity
conditions. These regularity conditions require a minimum ability of the statistical
model to approximate the true model and place limits on the possible joint distribution
of the covariates. The assumption that the nonzero coefficients are large enough in
magnitude is known as a “beta-min” assumption, and it is the crucial assumption. It is
now commonly accepted that the beta-min assumption is way too strong to be a part
of a realistic approach to estimation and inference.

While Leeb and Pötscher (2006), Leeb and Pötscher (2008), and Pötscher and Leeb
(2009) contain formal results and intuition based on uniform versus point-wise results,
there is a simple thought experiment that captures why the beta-min assumption is too
strong. It is frequently the case in applied studies that several coefficients have p-values
that are just a little too large to reject the null hypothesis that their true values are
zero. These covariates are on the border of being included or not in the model. The
beta-min assumption would require that the true values of the coefficients on these not-
included covariates are either zero or very close to zero, where the definition of very
close is a function of the sample size. Dropping the beta-min assumption allows for a
more realistic scenario in which these coefficients have nonzero values that are just a
little too small in magnitude to warrant including the covariates in the model, according
to the covariate-selection method.

Dropping the beta-min assumption implies that even the best possible covariate-
selection methods will omit some covariates whose coefficients are small in magnitude.
When we accept that covariate-selection methods make mistakes, we must use an estima-
tion technique that is robust to these mistakes in covariate selection. Naive estimators
that simply include the selected covariates in a model are not robust and do not provide
reliable inferences. In repeated samples, the random inclusion or exclusion of covariates
with small coefficients causes the distribution of the naive estimators to be multimodal.
Using a normal distribution to approximate this multimodal distribution produces un-
reliable results in theory and practice. Again, see Leeb and Pötscher (2006), Leeb and
Pötscher (2008), and Pötscher and Leeb (2009) for details.

Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni, Chernozhukov, and Hansen
(2014), Chernozhukov, Hansen, and Spindler (2015), and Belloni, Chernozhukov, and
Wei (2016) pioneered NO estimators that are robust the mistakes in covariate selection
made by high-quality covariate-selection methods. These theoretical studies formally
demonstrated that NO estimators based on lasso methods with a feasible version of the
optimal lasso tuning parameters produce valid inferences for the coefficients of inter-
est. The feasible version of the optimal lasso tuning parameters is known as the plugin
method. Drukker and Liu (2022b) and Drukker and Liu (2022a) extended the feasible
version to the GLM case.

Drukker and Liu (2022b) studied the finite-sample performance of the Lasso-based
NO estimator for the high-dimensional generalized linear model (GLM) using different
methods to select the lasso tuning parameters. The simulation results in Drukker and
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Liu (2022b) suggest both advantages and disadvantages of using the lasso as a covariate-
selection method in a NO estimator. The main advantage of the lasso-based NO es-
timator is speed. If the tuning parameters are appropriately chosen, the lasso-based
NO estimator can relatively quickly provide valid inferences in the presence of small
coefficients and many potential covariates. The main disadvantage of the lasso-based
NO estimator is that the simulations in Drukker and Liu (2022b) reveal a problematic
family of data-generating processes (DGPs) for which the lasso-based NO estimator
fails, regardless of the choice of the tuning parameter. The problematic family of DGPs
has coefficients that alternate in sign. Coefficients that alternate in sign are commonly
observed in models that use powers and interaction terms among covariates to approx-
imate nonlinear functional forms.

To accommodate this family of DGPs, Drukker and Liu (2022b) extended the lasso-
based NO estimator in Belloni, Chernozhukov, and Wei (2016) to BIC-stepwise-based
NO estimator for the high-dimensional GLM model. The simulation results in Drukker
and Liu (2022b) show that the BIC-stepwise-based NO estimator performs well on the
designs for which the lasso-based NO estimator failed.

The price of the increased performance was computation time. The BIC-stepwise-
based NO estimator is much slower than the lasso-based NO estimators 2. In practical
terms, the BIC-stepwise-based NO estimators become computationally infeasible for
huge numbers of potential covariates, which the lasso-based NO estimators can handle.

The good performance of the BIC-stepwise-based NO estimator is not without some
theoretical support. Kozbur (2020) presents conditions in which a testing-stepwise-
based NO estimator will produce valid inference. Ironically, the testing-stepwise-based
NO estimator did not perform well in the problematic DGP in Drukker and Liu (2022b).
One possible reason is that the significance level is essentially an unoptimized tuning
parameter in the covariate selection method. Personally, we recommend using the BIC-
based stepwise estimator instead of the testing-based stepwise estimator, but both are
available in posw.

We organize this paper as follows. Section 2 describes the high-dimensional GLM
model, the BIC-stepwise-based NO estimators, and the testing-stepwise-based NO es-
timators. Section 3 documents the syntax and options for the Stata command posw.
Section 4 shows a numerical example of using posw. Section 5 presents the simulation
results. Finally, section 6 concludes.

2 stepwise-based NO estimator for parameters in HDM

2.1 High-dimensional models

A cross-sectional high-dimensional generalized linear model (GLM) can be written as

2. For example, in a dataset with 1000 observations and 100 controls, the BIC-based popoisson takes
0.5 seconds while posw takes 24 seconds.
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E[yi|di,xi] = G(diα
′
0 + xiβ

′
0) (1)

where y is the outcome, di are the covariates of interest, xi are the control covariates
that potentially need to be included in the model, α0 are the coefficients on di, and β0

are the coefficients on xi. G() maps the linear index diα
′
0 + xiβ

′
0 to the conditional

mean. Although there are many other possibilities, three common models are when G()
is the identity function for linear models, when G() is the standard logistic function for
logit models, or when G() is the exponential function for (quasi) Poisson or exponential
conditional mean models.

The number of potential covariates in xi (px) can be larger than the sample size n.
We are interested in the case in which px is too large for a GLM regression of y on d
and x to produce reliable results for α, but the number of covariates in x that belong in
the model (sx) is not too large. Belloni, Chen, Chernozhukov, and Hansen (2012) and
Belloni, Chernozhukov, and Wei (2016) derive rates that must bind sx as a function of
n and px. The assumption that sx is not too large is the sparsity assumption mentioned
in the introduction.

The goal is to obtain reliable estimation and inference for α0. The covariates in di

must be specified a-priori, and their number is assumed to be small relative to n. Any
or all of the coefficients in α0 can be zero. Specifying a covariate to be of interest does
not imply that it has a nonzero effect.

The key features of a high-dimensional model are that we are only interested in
estimating α0, that there are too many covariates in x to to reliably estimate α0 using
a quasi-maximum-likelihood (QML) estimator of y on d and x, and that the sparsity
assumption holds.

The sparsity assumption makes the problem feasible and implies that we have a
covariate selection problem. Let x̃n be the subset of x that we need to include for a QML
estimator of y on d and x̃n to produce a root-n consistent and asymptotically normal
estimator for α0. Belloni, Chen, Chernozhukov, and Hansen (2012), Chernozhukov,
Hansen, and Spindler (2015), and Belloni, Chernozhukov, and Wei (2016) provide formal
statements and analyses of how to allow for and how to bind the approximation error.

Algorithm 1 gives the naive estimator for α0 estimator discussed in the Introduction.
Leeb and Pötscher (2006), Leeb and Pötscher (2008), and Pötscher and Leeb (2009)
show that naive estimators like the one in algorithm 1 do not have an asymptotic
normal distribution and that they can perform poorly in finite samples when some of
the coefficients are small in magnitude. In repeated samples, which of the covariates
with small coefficients are included is random. This random inclusion causes small
amounts of omitted-variable bias to be randomly added to the estimator. This random
omitted-variable bias makes the distribution of the naive estimator have a nonnormal
asymptotic distribution. Using a normal distribution to approximate this nonnormal
distribution can produce unacceptably poor results in finite samples.
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Algorithm 1: Naive estimator for α0

1. Use a feasible covariate-selection technique to select the subset of x that should
be included in the model. Call these selected covariates x̌.

2. Use a QML Poisson estimator of y on d and x̌ to estimate α0.

Instead of a naive estimator, posw implements NO estimators that were explicitly
designed to provide valid inference for α when some of the model’s coefficients are small
in magnitude. See Belloni, Chen, Chernozhukov, and Hansen (2012), Chernozhukov,
Hansen, and Spindler (2015), and Belloni, Chernozhukov, and Wei (2016) for formal
results. Instead of naively using the covariates selected in a model of y on d and x,
NO estimators use moment conditions that are robust to the inevitable mistakes that
covariate-selection methods make. The NO estimators use multiple covariate-selection
steps to form a moment condition for α that is orthogonal to the first-stage selection.
This process is an extension of the technique discussed in Neyman (1959) and Neyman
(1979), hence the NO moniker.

The NO estimators can be implemented using different covariate-selection tech-
niques. One popular choice is to use the lasso. Belloni, Chernozhukov, and Wei (2016)
derives the Lasso-based NO estimator for the high-dimensional GLM. It uses a par-
ticular version of the lasso that selects the tuning parameters using a plugin method.
In practice, the NO estimator’s performance critically depends on the choice of tuning
parameter selection method.

Drukker and Liu (2022b) studied the finite sample behavior of the lasso-based NO
estimator for the HDM using different tuning parameter selection methods. The sim-
ulation results reveal that a family of DGPs for which the lasso-based NO estimators
provide poor inferential results, but that BIC-stepwise-based NO estimator provide re-
liable inferential results.

Kozbur (2020) presents formal results for testing-stepwise selection for linear models.
These results show that testing-stepwise-based NO estimators will perform well in the
large sample under the conditions described in the paper. Given these formal results,
it is a little surprising that testing-stepwise-based NO estimators did not perform well
for the problematic DGP in Drukker and Liu (2022b). We conjecture that the poor
performance of testing-stepwise-based NO on the problematic DGP was due to the
choice of the significance level. In practice, we recommend the BIC-stepwise selection
because it avoids choosing the significance level and how well it has performed in our
simulations.

As discussed by Belloni and Chernozhukov (2011), the lasso can be viewed as a
convex approximation to the computationally infeasible problem of finding the subset
of covariates that best approximates a conditional expectation function. The family of
stepwise methods is another approach to solving this best-subset regression problem.
Stepwise methods are computationally feasible for many HDMs, but they take much
longer than lasso methods and become infeasible for very high-dimensional problems.
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2.2 Algorithms

The BIC-stepwise algorithm used by posw is algorithm 3 in Drukker and Liu (2022b).
The testing-based-stepwise algorithm used by posw is algorithm 4 in Drukker and Liu
(2022b).

Belloni, Chernozhukov, and Wei (2016) derived lasso-based NO estimators for the
GLM model. We implement versions of NO estimators that use BIC-stepwise or testing-
stepwise for covariate selection. Algorithm 2 provides the details about these versions
of the Belloni, Chernozhukov, and Wei (2016) NO estimator. Algorithm 2 generalizes
algorithm 6 in Drukker and Liu (2022b) from the Poisson-regression case to the GLM-
regression case.
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Algorithm 2: Stepwise-based NO GLM estimation

1. In a GLM model of y on d and x, use covariate selection to find the subset of
the x covariates that have nonzero coefficients. Denote this subset by x̃.

• For the BIC-stepwise NO estimator, we find the subset of the x that BIC
stepwise includes.

• For the testing-stepwise NO estimator, we find the subset of the x that
testing stepwise includes.

2. Use the unpenalized QML GLM regression estimator to estimate the coefficients
α̃ and β̃ in a GLM model of y on d and x̃.

3. Let s̃i = x̃iβ̃
′

be the ith observation of the predicted value of the linear index
xβ′.

4. Let ωi = G′(diα̃
′ + s̃i) be the ith observation of the predicted value of the

derivative of G(·). Let σ2
i = V̂ ar(yi|di,xi). Let fi = ωi/σi.

5. For each j ∈ {1, . . . , J}, use a linear stepwise of the jth variable in d on x using
observation-level weights fi, and let x̌j be the selected covariates.

• The BIC-stepwise NO estimator uses a weighted BIC-stepwise for covariate
selection.

• The testing-stepwise NO estimator uses a weighted testing-stepwise for
covariate selection.

6. For each j ∈ {1, . . . , J}, run a linear, ordinary least squares regression of the jth

variable in d on x̌j with observation-level weights fi. Let d̃j be the unweighted

residuals from this regression and let d̃j,i be the ith observation on d̃j .

7. Create the vector of instrumental variables z = (d̃1, . . . , d̃J) and zi be the ith
observation on this vector of instrumental variables. Note that
zi = (z1,i, . . . , zJ,i) = (d̃1,i, . . . , d̃J,i).

8. Compute α̂ by solving the J sample-moment equations

1

n

n∑
i=1

[yi −G(diα
′ + s̃i)] zi = 0

We use the standard robust estimator for the asymptotic variance of a
method-of-moments estimator.



8 posw

3 Syntax of posw

posw has the following syntax.

posw depvar varsofinterest
[

if
] [

in
]
, controls(varlist)

model(linear|logit|poisson)
[
method(bic|test) alpha(#)

]
where varofinterest is a varlist .

3.1 Options

controls(varlist) specifies the set of control variables, which control for omitted vari-
ables. Control variables are also known as confounding variables. posw uses the
forward stepwise to select the control variables for each of depvar and varsofinterest.
controls() is required.

model(linear|logit|poisson) specifies the model for the outcome variable depvar .
It can be one of linear, logit, or poisson model. model() is required.

method(bic|test) specifies the method used in stepwise covariate selection. It can
be one of bic and test. Specifying bic implies using the BIC-based stepwise.
Specifying test implies using the testing-based stepwise. The default is bic.

alpha(#) specifies the level of significance for the testing-based stepwise. The default
is 0.05.

3.2 Stored results

posw stores the following results in e().

Scalars
e(N) number of observations
e(k controls) number of controls
e(k controls sel) number of selected controls
e(k varsofinterest) number of variables of interest

Macros
e(cmd) posw
e(varsofinterest) variables of interest
e(depvar) dependent variable
e(controls sel) selected control variables
e(controls) control variables
e(model) type of model
e(title) title in estimation output
e(vcetype) robust
e(vce) Robust
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance-covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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4 A numerical example

We now illustrate the use of posw through an empirical example. We have an extract of
data in (Sunyer et al. 2017) to measure the effect of air pollution level on the student’s
response time. The model is

reacti = no2 classiα+ xiβ
′ + εi

where reacti is the response time of child i on a test, no2 classi is the pollution level
in the school attended by child i, xi is a high-dimensional control to be included in the
model, and εi is the disturbance term.

To start, we bring the data breathe into memory.

. use https://www.stata-press.com/data/r16/breathe, clear
(Nitrogen dioxide and attention)

Next, we need to define the control variables x. It would be tedious to separate the
factor variables from the continuous variables manually. Instead, we can use Stata’s
variable management tools vl. Here, we directly call a do-file from the Stata website to
save some typing.

. quietly do https://www.stata-press.com/data/r16/no2

The purpose of this do file is to define a global macro $fc for the factor control variables
and a global macro $cc for the continuous control variables. We can display their
content.

. display "$cc"
no2_home age age0 sev_home green_home noise_school sev_school precip siblings_o
> ld siblings_young

. display "$fc"
sex grade overweight lbweight breastfeed msmoke meducation feducation

Now, we can define the control variables as raw variables and the full second-order
interaction among them. The control variables are stored in global macro $controls
for later use.

. global controls (c.($cc) i.($fc))##(c.($cc) i.($fc))

Finally, we can fit our model using posw. We specify option controls() for the
control variables and the option model() for the linear model.

. posw react no2_class, controls($controls) model(linear)

select controls for react using stepwise bic
select controls for no2_class using stepwise bic

Partialing-out stepwise bic Number of obs = 1,036
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Number of controls = 516
Number of selected controls = 16
Wald chi2(1) = 20.97

Model: linear Prob > chi2 = 0.0000

Robust
react Coef. Std. Err. z P>|z| [95% Conf. Interval]

no2_class 2.493274 .54448 4.58 0.000 1.426113 3.560435

Note: Chi-squared test is a Wald test of the coefficients of the variables of
interest jointly equal to zero.

The results imply that another microgram of NO2 per cubic meter increases the
mean reaction time by 2.5 milliseconds. Only the coefficient on the covariate of interest
is estimated. The coefficients on the control covariates are not estimated. The cost of
using covariate-selection methods is that these estimators do not produce estimates for
the coefficients on the control covariates. Remarkably, there are 516 control variables,
and only 16 of them are selected.

5 Simulations

This section describes some Monte Carlo simulations that illustrate the good perfor-
mance of the posw command in linear, logit, and Poisson/exponential-conditional-
mean models. We note that the naive estimators perform unacceptably poorly on these
designs. 3

5.1 Designs

The design for the simulations reflects the structure of the high-dimensional GLM model.
In each design, there are a few covariates whose coefficients have values that are large
in magnitude, there are a few covariates whose coefficients have values that are small in
magnitude, and there are many covariates whose coefficients are zero. Following Drukker
and Liu (2022b), we specify the value of each small coefficient to be about two times its
standard error in the true model for the sample size used in the simulations. We specify
the value of each large coefficient to be about four times its standard error in the true
model for the sample size used in the simulations. These values encode a representation
of DGPs for which there is no beta-min condition. The small coefficients are close to
being statistically significant while the large coefficients should be statistically significant
in the vast majority of the repeated samples.

The DGPs for the three designs are given in equations (2)-(4).

3. For a more detailed simulation study on the comparison of the posw and popoisson, see Drukker
and Liu (2022b).
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linear yi = wi + εi (2)

logit yi = wi + εi > 0 (3)

poisson yi = exp(wi)εi (4)

For each design

wi = αbigdbig,i + αsmalldsmall,i + αzerodzero,i + xbig,iβ
′
big + xsmall,iβ

′
small

where

• dbig is the covariate of interest whose coefficient, αbig, is large;

• dsmall is the covariate of interest whose coefficient, αsmall, is small;

• dzero is the covariate of interest whose coefficient, αzero, is zero;

• xbig is the vector of control covariates whose coefficients, βbig, are large;

• xsmall is the vector of control covariates whose coefficients, βsmall, are small;

A type of Toeplitz structure is frequently used to generate the covariates in high-
dimensional models; see Belloni, Chen, Chernozhukov, and Hansen (2012) for an exam-
ple. In these Toeplitz structures, each covariate has an index j ∈ {1, . . . , p}, where p is
the total number of covariates in the model. (This includes the covariates of interest and
the control covariates.) Covariates with near-by indices are significantly correlated, but
the amount of correlation decays as the distance between the indices increases. Each
covariate was generated as

xj = .3xj−1 + .2 ∗ xj−4 + .2xj−8 + η

where η = (rchi2(25) − 25)/sqrt(50)), and rchi2(a) is the Stata function that gen-
erates draws from a χ2 distribution with a degrees of freedom. The distribution for η
has mean zero, variance one, and its higher moments are distinctly different than those
from a normal distribution.

For each design, we generated p = 100 covariates. For each draw, we drew 120
covariates and discarded the first 20 to burn in the Toeplitz structure.

• Covariate 1 is dbig, the covariate of interest whose coefficient is large.

• Covariates 2-5 are xbig, the control covariates whose coefficients are large.

• Covariate 6 is dsmall, the covariate of interest whose coefficient is small.
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• Covariates 7-10 are xsmall, the control covariates whose coefficients are small.

• Covariate 11 is dzero, the covariate of interest whose coefficient is zero.

• Covariates 12-100 are xzero, the control covariates whose coefficients are zero.

Here are true values for the coefficients.

Table 1: True coefficient values
Model Coefficient Value
Linear αbig .12
Linear αsmall .06
Linear βbig .12
Linear βsmall .06
Logit αbig .32
Logit αsmall .16
Logit βbig .32
Logit βsmall .16
Poisson αbig .08
Poisson αsmall .04
Poisson βbig .08
Poisson βsmall .04

Here is how the error term was generated for each design. For the linear design,
εi = (rchi2(25)− 25)/sqrt(50)), where rchi2(a) is the Stata function that generates
draws from a χ2 distribution with a degrees of freedom. This distribution has mean
zero, variance one, and its higher moments are distinctly different from those in a normal
distribution.

For the logit design, εi = rlogitic(), where rlogistic() generates draws from a
standard logistic distribution.

For the Poisson design, εi = rweibull(2, b), where rweibull(c,b) generate draws
from a Weibull distribution with shape parameter c and scale paramter b. We set
b = 1/exp(lngamma(1 + 1/2)) so that the mean of ε is 1. Note that we are drawing from
a conditional exponential mean model, not from a Poisson model.

We ran 2,400 repetitions for each design. There are 2,400 repetitions because we
used Stata’s stream random numbers to parallelize the simulations over 40 cores, with
60 repetitions on each core. (See help rngstream for an introduction to stream random
numbers.)
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5.2 Results

Tables 2, 3, and 4 summarize the simulation results. In short, we see that the NO
estimators in bic step and test step perform well and that the naive estimators in bic
naive and test naive do not perform well.

Here is how each table is structured.

• Model specifies the DGP design.

• Estimator specifies the estimator used for that row’s results.

• Mean specifies the sample mean of the estimates of that coefficient over the repe-
titions. The sample mean should be close to the true value given in table 1.

• SD specifies the sample standard deviation of the estimates of that coefficient over
the repetitions.

• SE specifies the sample mean of the standard errors of that coefficient over the
repetitions. The sample mean of the standard errors should be close to the sample
standard deviation of the estimates.

• RR specifies the rejection rate of a test against the true null hypothesis. The
significance level of each test was .05, so the RR should be close to .05.

Table 2: Result for large coefficient αbig

Model Estimator Mean SD SE RR
linear bic step 0.1172 0.0343 0.0336 0.060
linear test step 0.1157 0.0343 0.0337 0.059
linear bic naive 0.1381 0.0387 0.0316 0.146
linear test naive 0.1546 0.0420 0.0311 0.280
linear true 0.1198 0.0338 0.0332 0.055
logit bic step 0.3260 0.0854 0.0824 0.054
logit test step 0.3214 0.0863 0.0797 0.072
logit bic naive 0.3649 0.0921 0.0791 0.128
logit test naive 0.3980 0.0979 0.0769 0.240
logit true 0.3255 0.0824 0.0820 0.045
poisson bic step 0.0787 0.0192 0.0198 0.047
poisson test step 0.0796 0.0194 0.0192 0.052
poisson bic naive 0.1088 0.0246 0.0298 0.137
poisson test naive 0.0963 0.0224 0.0176 0.218
poisson true 0.0799 0.0185 0.0185 0.051
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Table 3: Result for small coefficient αsmall

Model Estimator Mean SD SE RR
linear bic step 0.0586 0.0339 0.0341 0.053
linear test step 0.0583 0.0338 0.0341 0.052
linear bic naive 0.0760 0.0360 0.0317 0.111
linear test naive 0.0868 0.0373 0.0314 0.188
linear true 0.0602 0.0327 0.0331 0.050
logit bic step 0.1640 0.0851 0.0837 0.055
logit test step 0.1632 0.0844 0.0813 0.061
logit bic naive 0.2005 0.0876 0.0780 0.112
logit test naive 0.2232 0.0868 0.0761 0.165
logit true 0.1643 0.0797 0.0809 0.052
poisson bic step 0.0381 0.0196 0.0200 0.048
poisson test step 0.0387 0.0193 0.0196 0.052
poisson bic naive 0.0612 0.0211 0.0308 0.032
poisson test naive 0.0530 0.0208 0.0176 0.168
poisson true 0.0391 0.0186 0.0185 0.055

Table 4: Result for zero coefficient αzero

Model Estimator Mean SD SE RR
linear bic step 0.0003 0.0341 0.0341 0.053
linear test step 0.0015 0.0343 0.0341 0.055
linear bic naive 0.0072 0.0338 0.0314 0.078
linear test naive 0.0147 0.0353 0.0312 0.114
linear true 0.0005 0.0320 0.0317 0.056
logit bic step 0.0020 0.0841 0.0837 0.050
logit test step 0.0051 0.0826 0.0815 0.054
logit bic naive 0.0136 0.0802 0.0765 0.064
logit test naive 0.0316 0.0813 0.0749 0.092
logit true -0.0002 0.0762 0.0773 0.040
poisson bic step 0.0014 0.0197 0.0200 0.051
poisson test step 0.0018 0.0197 0.0196 0.055
poisson bic naive 0.0131 0.0204 0.0310 0.013
poisson test naive 0.0070 0.0194 0.0175 0.100
poisson true 0.0003 0.0177 0.0177 0.050

6 Conclusion

We motivated and described posw, a Stata command for the stepwise-based Neyman-
orthogonal estimator in the linear, logit, and Poisson model. This command can be
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viewed as an alternative to the lasso-based NO estimators, which are implemented in
official Stata commands poregress, pologit, and popoisson. Simulations in Drukker
and Liu (2022b) show that the implemented BIC-stepwise-based NO can perform better
than the Lasso-based NO estimators for a family of DGPs.

The main cost of using a stepwise-based NO estimator instead of a lasso-based NO
estimator is an increase in computation time. Future development could speed up posw
by using cluster-parallel computation or the the sure-independence-screening version of
stepwise partialing-out estimator outlined in Drukker and Liu (2022b).
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