
powersim

–

Stata module for simulation-based power analysis

for linear and generalized linear models

–

Tutorial

version 1.0

Joerg Luedicke

September 3, 2013

1

Contents

Introduction . 3

Basic functionality . 3

Example 1: Differences in means . 6

Example 2: Interaction effects among correlated predictors in a
linear model . 11

Example 3: Logistic regression model with an interaction effect
in a 2x2 balanced block design . 16

Example 4: Extended use – using an existing do-file 18

Example 5: Advanced use – simulating power of a cross-level
interaction effect in a linear mixed effects model 21

Example 6: Beyond power – using powersim for simple Monte
Carlo experiments . 27

References . 30

2

Introduction

The Stata package powersim exploits the flexibility of a simulation-based ap-
proach to the analysis of statistical power by providing a facility for automated
power simulations in the context of linear and generalized linear regression mod-
els. The package supports a wide variety of uni- and multivariate covariate dis-
tributions and all family and link choices that are implemented in Stata’s glm
command (as of version 13). The package mainly serves two purposes: First, it
provides access to simulation-based power analyses for researchers without much
experience in simulation studies. Second, it provides a convenient simulation
engine for more advanced users who can easily complement the automated data
generation with their own code for creating more complex synthetic datasets.
Beyond that, powersim can be used as a convenient tool for simple Monte Carlo
experiments in a regression modeling context.

Statistical power in the context of a null hypothesis significance testing
framework is thought of as the probability of correctly rejecting the null-hypothesis
when it is indeed false. Power is thus the complement of the Type-II error rate
β, the rate at which a null hypothesis is not rejected (at a given level of α)
when it is false. If we only allow for the distinct events of either rejecting or not
rejecting a null-hypothesis and the null-hypothesis can be either true or false,
we have the following four conditional probabilities:

H0 true H0 false
fail to reject H0 1− α β
reject H0 α 1− β

where α is the Type-I error probability (detecting an effect when there is none)
and β is the probability of committing a Type-II error, the failure to detect
an effect if there indeed is one in the larger population. Thus 1 − β is the
probability of correctly rejecting a false null-hypothesis, and this is the quantity
that powersim estimates via simulation.

Basic functionality

The primary purpose of powersim is to compute statistical power with respect
to specified hypotheses in a point null hypothesis significance testing framework.
However, powersim can also be used for quickly generating synthetic datasets or
for performing simple Monte Carlo experiments. In any case, powersim requires
the specification of a data generating process. A data generating model can be
specified by either using command options or by providing an existing do-file.
If command options are used, users need to specify a distributional family, a
link function, covariates (with specified distributions; up to three covariates can
be specified), the true parameter values, and optionally up to three interaction
effects. Normally distributed covariates can be drawn from multivariate normal
distributions by specifying Pearson correlation coefficients. Based on these in-
puts, powersim automatically creates a do-file which is used for data generation

3

throughout the simulations. Depending on a user’s purposes, it happens that
the specification of a data generating process is not directly possible via com-
mand options. In this case users can feed an existing do-file to powersim which
needs to contain all specifications of the data generating model (including the
link function), except for the distributional family. Also note that this do-file
must contain the placeholder bp for the effect of interest. bp will be filled in
by the effect sizes (population parameters) that are specified via the command
option b(). If users want to provide an existing do-file it is recommended to
create one with powersim and then use that file as a template.

It further needs to be decided whether the predictor data be generated inside
or outside the actual simulation loops. If the predictor data itself is regarded
as random then it should be put inside the simulations such that new data
be generated for each Monte Carlo replication. If, on the other hand, predictor
data is regarded as fixed (e.g., an experimental design variable) the data may be
generated outside the simulation loops so that the only stochastic component of
the simulations is the error variance as defined by the choice of a distributional
family.

Users also need to specify an analysis model for which either Stata’s regress
or glm commands may be used. powersim collects the coefficient of interest
and its standard error from the saved results of these commands. The effect
of interest must be specified using the position() option. Using the force
option allows users to use model commands other than regress or glm. Please
see example 5 below for a list of conditions that need to be met in order for
other commands to work with powersim. By default, significance tests and
95% confidence interval coverages are based on the normal distribution for any
models other than regress (for which Student’s t distribution is assumed). This
default behavior can be changed, however.

Note that powersim replaces the data in memory with a dataset that
contains results from each Monte Carlo replication for further analysis. Also
note that a scalar with the name bp is defined by the program which would
override an existing scalar that happened to have the same name. In case users
specify multivariate normal data, Stata matrices with the names M, SD, and
C are created which would replace any existing matrices with these names.

Finally, a note on random number generation: official Stata RNGs are used
for all distributional families, except for the inverse Gaussian distribution. Ran-
dom deviates from the inverse Gaussian distribution are drawn using a Mata
translation of the user-written rndivgx command (Hilbe and Linde-Zwirble
(1995)). Random deviates from the negative binomial distribution are drawn
using (continuous) Poisson-gamma mixture distributions. The following table
provides an overview over powersim’s (essential) usage of the different RNGs
in generating the outcome variable y; xb is the linear predictor defined in the
generated or provided do-file:

4

family [#] generation of outcome variable y
gaussian # y = rnormal(xb,#)
igaussian # y = rig(xb,#)
binomial # y = rbinomial(#,xb)
poisson y = rpoisson(xb)
nbinomial # y = rpoisson(xb*rgamma(1/#, #))
gamma # y = rgamma(xb,#)

Specific usage and features of powersim are explained below by going through
a number of worked examples. Each example highlights different features but
example 1 and 2 cover the most basic ones. Not all options are shown in the
examples, type help powersim in Stata for more details.

For a brief general introduction to power analysis, see chapter 20 in Gelman
and Hill (2007). For a Stata related introduction to simulation-based power
analysis, see Feiveson (2002). For a Stata related introduction to generalized
linear models, see Hardin and Hilbe (2012), which also includes a chapter on
data fabrication and simulation.

5

Example 1: Differences in means

Suppose we would be interested in calculating power for testing differences in
means between two equally sized groups, assuming a linear model with Gaussian
errors. We could do that using the analytical approach with Stata’s power
command. With the following code we can request a plot of power as a function
of sample size, by effect size. We are interested in power calculations for sample
sizes ranging from N=10 to N=100, at intervals of 10, and for three different
effect sizes 0.4, 0.5, and 0.6, measured at standard deviation scale:

. power twomeans 0 (0.4 0.5 0.6), n(10(10)100) ///
> graph(ylabel(0(.1)1) title("") subtitle("") ///
> xval recast(line))

The resulting graph is shown in Figure 1.

Figure 1: Analytically derived power curves for a mean comparison test

6

Now we can replicate these results using simulations. In the powersim code
below, we specify effect sizes as a numlist (option b(); the position() option
is required for the specification of the matrix position of b in matrix e(b) of the
analysis model; this is to tell powersim where to find the coefficient of interest in
the analysis model), the desired α-level, sample sizes, and the number of Monte
Carlo replications. We also define our data generating model by choosing a
distributional family, a link function, and a covariate. Regarding the family,
the 1 after gaussian is the value of the standard deviation of the Gaussian
residuals. We would not need to specify it here since 1 is the default, but did
so for explicity. The specification of our covariate involves four inputs: first, an
arbitrary variable name, the second input is the placeholder bp with which we
tell powersim that this is the variable for which effect we intend to simulate the
statistical power and that the specified effect sizes will be plugged in for this
variable. The third input specifies the distribution of the covariate which in this
case consists of fixed design blocks of equal size. Finally, the last input specifies
the number of blocks where the number can range between two and four. Our
data generating model can thus be expressed as

y = bp ∗ x1 + ε , ε∼N (0, 1) (1)

The dofile() option at the very bottom is required and we have to specify a
filename for the do-file that powersim automatically generates. Finally, we can
specify our analysis model after the colon by using Stata’s regress command:

7

. powersim , ///
> b(0.4 0.5 0.6) ///
> pos(1) ///
> alpha(0.05) ///
> sample(10(10)100) ///
> nreps(10000) ///
> family(gaussian 1) ///
> link(identity) ///
> cov1(x1 _bp block 2) ///
> dofile(example1_dofile, replace) : reg y x1

(output omitted)

Power analysis simulations

Effect sizes b: .4 .5 .6
H0: b = 0
Sample sizes: 10 20 30 40 50 60 70 80 90 100
alpha: .05
N of replications*: 10000

do-file used for data generation: example1_dofile
Model command: reg y x1

Power by sample and effect sizes:

Specified effect
Sample size
size .4 .5 .6

10 0.091 0.107 0.138
20 0.130 0.185 0.246
30 0.189 0.259 0.352
40 0.235 0.340 0.458
50 0.287 0.408 0.543
60 0.331 0.481 0.627
70 0.376 0.534 0.698
80 0.418 0.603 0.756
90 0.465 0.648 0.799
100 0.508 0.693 0.843

Total N of requested MC replications: 300000
Total N of successful MC replications: 300000

* per sample and effect size combination

8

Figure 2: Simulated power curves for a mean comparison test

We could now use powersimplot as a post-estimation command in order to plot
the power curves:

. powersimplot

The resulting graph is shown in Figure 2. We can see that we essentially get
the same results as we did with the analytical approach.

Results from each Monte Carlo replication are available in a dataset and
can be further analyzed. We will get back to this in one of the other examples
below. The dataset contains the following variables:

9

. describe

Contains data from ex1b_results.dta
obs: 300,000
vars: 9 24 Jul 2013 17:44
size: 15,300,000

storage display value
variable name type format label variable label

nd double %10.0g Iteration ID
esize double %10.0g Specified effect size
esize_id byte %8.0g eid Specified effect size (as factor

variable)
n double %10.0g Sample size
b double %10.0g Estimated coefficient b
se double %10.0g Standard error of b
p double %10.0g p-value
power byte %8.0g 1 = p < .05
c95 byte %8.0g 95% CI coverage (1=covered)

Sorted by:

10

Example 2: Interaction effects among correlated
predictors in a linear model

Suppose now that we would be interested in the power of a test of an interaction
effect between two normally distributed variables that are correlated with ρ =
0.5. We define our predictor variables using the cov1() and cov2() options,
requesting two normally distributed variables. We use the inter1() option to
specify the interaction effect and since this is the effect of interest we use the
placeholder bp. This model can be expressed as:

y = 5− 0.5x1 + 0.4x2 + 0.1x1x2 + ε (2)

with ε∼N (0, 0.842) and (x1, x2)∼N (µ,Σ) with µ =
(

0
2

)
,Σ =

[
1

0.5 1.52

]
.

This time we will generate the data inside the simulation loop since, unlike
in the previous example where we had a fixed design variable, we regard both
covariates as random variables, as a part of the stochastic process.

Now, before we run this we could first check a few more things. With
the dryrun option we request an overview of our data generating and analysis
models, while with the detail option we also request a view on the do-file
content which is used for generating the predictor data. Very important to
check is the specified column position of the effect of interest in the analysis
model. Since the variables in the analysis model command could be specified
in arbitrary order and with different syntax, we have to tell powersim where to
find the effect of interest. In this case we can see that we correctly specified 3
as the column position in the displayed e(b) matrix.

. powersim , ///
> b(0.1) ///
> pos(3) ///
> alpha(0.05) ///
> sample(200) ///
> nreps(1000) ///
> family(gaussian .84) ///
> link(identity) ///
> cons(5) ///
> cov1(x1 -0.5 normal 0 1) ///
> cov2(x2 0.4 normal 2 1.5) ///
> inter1(_bp x1*x2) ///
> corr12(0.5) ///
> inside ///
> seed(1234) ///
> addscalar(r2) ///
> dofile(example2_dofile, replace) ///
> dryrun detail : reg y c.x1##c.x2

powersim dry run:

do-file used for data generation:

. *---------------------------

. // Generating predictor data

.

11

. matrix __M=(0, 2)

. matrix __SD=(1, 1.5)

. matrix __C = (1, 0.5, 1)

.

. drawnorm x1 x2 , ///
> means(__M) sds(__SD) corr(__C) ///
> cstorage(upper) forcepsd double

.

.

. *---------------------------

.

. *---

. // Link function with specified parameters

. * link = identity

.

. generate double xb = 5 + -0.5*x1 + 0.4*x2 + _bp*x1*x2

.

. *---

.
end of do-file

Data generating model: family(gaussian .84) link(identity)
Analysis model command: reg y c.x1##c.x2

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 -.5
x2 .4

c.x1#c.x2 .1

_cons 5

Matrix e(b) from analysis model (check column position of effect of interest):

e(b)[1,4]
c.x1#

x1 x2 c.x2 _cons
y1 -.5 .4 .1 5

Position specified in option position(#): 3

SD of Gaussian error: .84

Now we could still do some more checking by generating a single realization
of a dataset which is created under the specified data generating model (using
the gendata option). If more than one effect size is specified in b(), powersim
will use the first from the provided list to generate the data. By default, a
dataset with N = 10, 000 observations is created which can be changed with the
nobs() option. The following example also demonstrates that no analysis model
need to be specified when one is only generating a single dataset. It would also
be legal syntax to include the analysis model command (after a colon), although
it will not do anything. After we have created the dataset we could, for example,
fit the analysis model to the data just to check whether everything works out
as expected:

12

. powersim , ///
> b(0.1) ///
> pos(3) ///
> alpha(0.05) ///
> sample(200) ///
> nreps(1000) ///
> family(gaussian .84) ///
> link(identity) ///
> cons(5) ///
> cov1(x1 -0.5 normal 0 1) ///
> cov2(x2 0.4 normal 2 1.5) ///
> inter1(_bp x1*x2) ///
> corr12(0.5) ///
> inside ///
> seed(1234) ///
> addscalar(r2) ///
> dofile(example2_dofile, replace) ///
> gendata

. reg y c.x1##c.x2

Source SS df MS Number of obs = 10000
F(3, 9996) = 1320.69

Model 2872.10059 3 957.366865 Prob > F = 0.0000
Residual 7246.09372 9996 .724899332 R-squared = 0.2839

Adj R-squared = 0.2836
Total 10118.1943 9999 1.01192062 Root MSE = .85141

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 -.5000145 .0143256 -34.90 0.000 -.5280955 -.4719334
x2 .3941009 .0066056 59.66 0.000 .3811526 .4070492

c.x1#c.x2 .1061116 .005203 20.39 0.000 .0959126 .1163105

_cons 5.005941 .0161153 310.63 0.000 4.974352 5.037531

We could also inspect the data more closely (e.g., by plotting certain aspects
of the data) in order to check whether the data are consistent with our ideas
about the data generating process and our hypotheses. But now we finally run
our simulations:

. powersim , ///
> b(0.1) ///
> pos(3) ///
> alpha(0.05) ///
> sample(200) ///
> nreps(1000) ///
> family(gaussian .84) ///
> link(identity) ///
> cons(5) ///
> cov1(x1 -0.5 normal 0 1) ///
> cov2(x2 0.4 normal 2 1.5) ///
> inter1(_bp x1*x2) ///
> corr12(0.5) ///
> inside ///
> seed(123) ///
> addscalar(r2) ///
> dofile(example2_dofile, replace) : reg y c.x1##c.x2

13

Power simulations:

Model: reg y c.x1##c.x2
Effect: b = 0.100
alpha: .05

n of replications: 1000
sample size: 200

1 2 3 4 5
.. 50
(output omitted)
.. 1000

Power analysis simulations

Effect sizes b: .1
H0: b = 0
Sample sizes: 200
alpha: .05
N of replications*: 1000

do-file used for data generation: example2_dofile
Model command: reg y c.x1##c.x2

Power by sample and effect sizes:

Speci
fied
effec
t

Sample size
size .1

200 0.778

Total N of requested MC replications: 1000
Total N of successful MC replications: 1000

* per sample and effect size combination

Note that we also added the addscalar() option which can be used to grab
a certain scalar from what is stored in e() in the wake of a fitted analysis model.
For example, in this case we grabbed the R2 from each replication which is added
to the results dataset. We could be interested in how the R2 can be expected
to be distributed under the defined model:

. scdensity r2

14

Figure 3: Non-parametrically estimated probability density of R2 from 1, 000
MC replications (estimated with the scdensity command, available from SSC
[Luedicke (2012)])

15

Example 3: Logistic regression model with an in-
teraction effect in a 2x2 balanced block design

What follows is an example where we generate and analyze the data using a
binomial model with a logit link function. Covariates are assumed to be fixed,
arising from a 2x2 balanced block experimental design. We specify this design by
using the block22() option. With the fifth argument of that option we specify
that the interaction effect will be generated (by leaving out the fifth argument
we would omit the interaction effect). Since this is our effect of interest, we
call it bp. We could have included a number after the family name with the
family() option which would indicate the number of trials. Here we use the
default of 1, i.e., we specify the Bernoulli model:

y∼Binomial(1, p) (3)

where p is

Pr(y = 1) = logit−1(0.3x1 + 0.5x2 + bpx1x2) (4)

. powersim , ///
> b(0(0.4)1.6) ///
> alpha(0.05) ///
> pos(8) ///
> sample(400 800) ///
> nreps(500) ///
> family(binomial) ///
> link(logit) ///
> block22(0.3 x1 0.5 x2 _bp) ///
> silent ///
> dofile(example3_dofile, replace) ///
> : glm y i.x1##i.x2, family(binomial) link(logit)

Power analysis simulations

Effect sizes b: 0 .4 .8 1.2 1.6
H0: b = 0
Sample sizes: 400 800
alpha: .05
N of replications: 500

do-file used for data generation: example3_dofile
Model command: glm y i.x1##i.x2, family(binomial) link(logit
>) iterate(200)

Power by sample and effect sizes:

Sample Specified effect size
size 0 .4 .8 1.2 1.6

400 0.050 0.142 0.440 0.802 0.918
800 0.064 0.302 0.758 0.962 0.994

.

16

Figure 4: Simulated power as a function of effect size for two sample sizes

. powersimplot, esize

Now we used powersimplot with the esize option in order to plot the simulated
power as a function of effect size, rather than as a function of sample size. The
plot is shown in Figure 4.

17

Example 4: Extended use – using an existing do-
file

Feiveson (2002) uses an example of an experiment with rats in which power is
computed for the effect of a drug dose on a Poisson distributed outcome y. The
assumed model is:

y∼Poisson(exp(bp ∗ x)) (5)

where x is a covariate with three levels for dosages 0.2, 0.5, and 1.0 mg. The
number of rats per dose level is supposed to be fixed and the hypothesized
effect size is bp = 0.64, to be tested against zero. We first set up powersim to
generate data with three equally sized groups using the cov1(... block 3)
specification and request a detailed dry run:

. powersim , ///
> b(0.64) ///
> alpha(0.05) ///
> pos(1) ///
> sample(30(30)210) ///
> nreps(500) ///
> family(poisson) ///
> link(log) ///
> cov1(x1 _bp block 3) ///
> seed(1234) ///
> dry det ///
> dofile(example4_dofile, replace) ///
> : glm y x1, family(poisson) link(log)

powersim dry run:

do-file used for data generation:

. *---------------------------

. // Generating predictor data

.

.

. generate int x1 = cond(mod(_n-1, 3) == 1, 1, cond(mod(_n-1, 3) == 0, 2, 3))

.

. *---------------------------

.

. *---

. // Link function with specified parameters

. * link = log

.

. generate double xb = exp(_bp*x1)

.

. *---

.
end of do-file

Data generating model: family(poisson) link(log)
Analysis model command: glm y x1, family(poisson) link(log) iterate(200)

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y

18

x1 .64
_cons 1.60e-12

Matrix e(b) from analysis model (check column position of effect of interest):

e(b)[1,2]
y: y:
x1 _cons

y1 .64 1.599e-12

Position specified in pos() option: 1

(Note: Displayed coefficients are approximate, use only for checking input.)

We can then open the do-file that we just generated by typing:

. doedit example4_dofile.do

and make the necessary changes. After saving it we have:

. clear

. noisily do example4_dofile

. *---------------------------

. // Generating predictor data

.

.

. generate int x1 = cond(mod(_n-1, 3) == 1, 1, cond(mod(_n-1, 3) == 0, 2, 3))

.

. qui recode x1 1=0.2 2=0.5 3=1

.

. *---------------------------

.

. *---

. // Link function with specified parameters

. * link = log

.

. generate double xb = exp(_bp*x1)

.

. *---

.
end of do-file

Now we can run the simulations by specifying using instead of the dofile
option:

19

. powersim using example4_dofile , ///
> b(0.64) ///
> alpha(0.05) ///
> pos(1) ///
> sample(30(30)210) ///
> nreps(500) ///
> family(poisson) ///
> seed(1234) ///
> silent ///
> : glm y x1, family(poisson) link(log)

Power analysis simulations

Effect sizes b: .64
H0: b = 0
Sample sizes: 30 60 90 120 150 180 210
alpha: .05
N of replications: 500

do-file used for data generation: example4_dofile
Model command: glm y x1, family(poisson) link(log) iterate(2
> 00)

Power by sample and effect sizes:

Specif
ied

effect
Sample size
size .64

30 0.284
60 0.532
90 0.670
120 0.842
150 0.880
180 0.936
210 0.968

20

Example 5: Advanced use – simulating power of
a cross-level interaction effect in a linear mixed
effects model

By default, only Stata’s regress and glm commands can be used for the spec-
ification of an analysis model, but other estimation commands can be used by
specifying the force option. However, users need to make sure that the estima-
tion command is suitable and that powersim properly picks up the results that
are stored by the analysis command. For an estimation command to work with
powersim the following three conditions have to be met:

• The estimation command must store point estimates in e(b).

• It must store the variance estimates in e(V) such that when, say, a co-
efficient of interest is stored in e(b)[1,3], the corresponding variance
estimate is stored in e(V)[3,3].

• The variance estimate has to be on the variance scale such that its square
root reflects the standard error of the corresponding point estimate.

Also note that, by default, significance tests (and 95% CI coverages) are based
on the assumption of a normally distributed test statistic for any analysis model
other than regress (for which Student’s t distribution is used). This default
behavior can be changed with the df() option.

The following example shows how to use powersim in combination with
Stata’s mixed command for simulating power of a cross-level interaction effect
in a linear multilevel/mixed effects model. Suppose that we assume the following
data generating model:

yij = 1 + 0.3x1ij − 0.5x2ij + 0.4x3i + 0.05x3ix2ij + ζ1i + ζ2ix2ij + εij (6)

where x1ij and x2ij are level-1 predictors with (x1ij , x2ij)∼N (µ,Σ),

µ =
(

5
5

)
,Σ =

[
1

0.5 1

]
and x3i is a level-2 predictor with x3i∼Gamma(α = 5, β = 2). The three
error terms correspond to the varying intercept variation ζ1i∼N (0, 0.52), the
variation of the varying coefficient ζ2i∼N (0, 0.32), and the level-1 residual er-
rors εij∼N (0, 0.82). Thus, we have a 2-level model with two correlated level-1
predictor variables and one level-2 predictor variable and are interested in com-
puting power for the cross-level interaction effect between x3i and x2ij while
the effect of x2ij on yij is assumed to vary across level-2 units. Based on this
assumed data generating process we can set up a do file with which we define
our predictor data as well as our data generating model (except for the level-1
errors which we will specify via powersim’s family() option):

21

. noisily do example5_dofile

. *---------------------------

. // Generating predictor data

.

. * Level 2 ID

. gen ID2 = _n

.

. * Level 2 errors (uncorrelated)

. gen u = rnormal(0,0.5)

. gen rc = rnormal(0,0.3)

.

. * Level 2 covariate

. gen x3 = rgamma(5, 2)

.

. * N observations per cluster

. expand 10
(270 observations created)

.

. * Level 1 covariates

. matrix __M=(5, 5)

. matrix __SD=(1, 1)

. matrix __C = (1, 0.5, 1)

. drawnorm x1 x2 , ///
> means(__M) sds(__SD) corr(__C) ///
> cstorage(upper) forcepsd double

.

. *---------------------------

.

. *---

. // Link function with specified parameters

. * link = identity

.

. generate double xb = 1 + 0.3*x1 + -0.5*x2 + 0.4*x3 + _bp*x3*x2 + x2*rc + u

.

. *---

.
end of do-file

22

We can now use this do-file to generate a single dataset and, for instance, fit
our analysis model to the fabricated data:

. powersim using example5_dofile, ///
> pos(4) ///
> b(0.05) ///
> sample(25 40) ///
> family(gaussian 0.8) ///
> gen nobs(40) seed(123)

.

. mixed y x1 c.x2##c.x3 || ID2 : x2 , nolog

Mixed-effects ML regression Number of obs = 400
Group variable: ID2 Number of groups = 40

Obs per group: min = 10
avg = 10.0
max = 10

Wald chi2(4) = 215.50
Log likelihood = -559.75811 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .3445344 .0511637 6.73 0.000 .2442554 .4448134
x2 -.3400779 .1588752 -2.14 0.032 -.6514676 -.0286881
x3 .4239126 .0603022 7.03 0.000 .3057224 .5421028

c.x2#c.x3 .0369216 .014156 2.61 0.009 .0091763 .0646668

_cons .8227497 .669868 1.23 0.219 -.4901674 2.135667

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

ID2: Independent
var(x2) .0584067 .017283 .0327029 .1043133

var(_cons) .4074977 .2997653 .0963741 1.723018

var(Residual) .6740335 .0516584 .5800225 .783282

LR test vs. linear regression: chi2(2) = 386.04 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

.

. * SD of level 1 residuals:

. di exp([lnsig_e]_b[_cons])

.82099544

. * SD of varying intercepts:

. di exp([lns1_1_2]_b[_cons])

.63835543

. * SD of varying coefficients:

. di exp([lns1_1_1]_b[_cons])

.24167486

23

Now we could further inspect the data in order to check whether they are
consistent with our hypothesis. For example, we could visualize our cross-level
interaction using Stata’s margins and marginsplot commands:

. foreach v of varlist x1 x2 x3 {
2. sum `v´, meanonly
3. gen c_`v´ = `v´ - r(mean)
4. }

. mixed y c_x1 c.c_x2##c.c_x3 || ID2 : x2 , nolog

Mixed-effects ML regression Number of obs = 400
Group variable: ID2 Number of groups = 40

Obs per group: min = 10
avg = 10.0
max = 10

Wald chi2(4) = 215.50
Log likelihood = -559.75811 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

c_x1 .3445344 .0511637 6.73 0.000 .2442554 .4448134
c_x2 .0486189 .0641461 0.76 0.448 -.0771051 .174343
c_x3 .6102728 .0542813 11.24 0.000 .5038834 .7166623

c.c_x2#c.c_x3 .0369216 .014156 2.61 0.009 .0091763 .0646668

_cons 7.265125 .2215881 32.79 0.000 6.830821 7.69943

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

ID2: Independent
var(x2) .0584067 .017283 .0327029 .1043133

var(_cons) .4074977 .2997653 .0963741 1.723018

var(Residual) .6740335 .0516584 .5800225 .783282

LR test vs. linear regression: chi2(2) = 386.04 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

.

. margins , dydx(c_x2) at(c_x3=(-8(2)14))

(output omitted)
.
. marginsplot, ylabel(-1(0.25)1, angle(0) grid)

Variables that uniquely identify margins: c_x3

The resulting plot is shown in Figure 5. We can see how the effect of x2ij on
yij is expected to vary as a function of x3i.

24

Finally, we run our simulations for 25 and 40 level-2 units with 10 level-1 units
in each cluster:

. powersim using example5_dofile, ///
> b(0.05) ///
> pos(4) ///
> sample(25 40) ///
> nreps(1000) ///
> family(gaussian 0.8) ///
> inside ///
> seed(123) ///
> force : mixed y x1 c.x2##c.x3 || ID2 : x2 , iterate(20)

(output omitted)

Power analysis simulations

Effect sizes b: .05
H0: b = 0
Sample sizes: 25 40
alpha: .05
N of replications*: 1000

do-file used for data generation: example5_dofile
Model command: mixed y x1 c.x2##c.x3 || ID2 : x2 , iterate(2
> 0)

Power by sample and effect sizes:

Specif
ied

effect
Sample size
size .05

250 0.715
400 0.911

Total N of requested MC replications: 2000
Total N of successful MC replications: 1994

* per sample and effect size combination

We can see that we reach a statistical power of around 0.7 (N = 250) and 0.9
(N = 400) for the test of our cross-level interaction effect. The output also
shows that only 1, 994 of the requested 2, 000 Monte Carlo replications were
successful. In this case, this is due to six models not converging within the
specified limit of 20 iterations.

25

Figure 5: Visualization of the cross-level interaction effect from the linear two-
level mixed-effects model

26

Example 6: Beyond power – using powersim for
simple Monte Carlo experiments

We can also use powersim to perform simple Monte Carlo experiments in a
regression modeling context. Suppose that we would like to learn about the
performance of conventional standard errors in Poisson regressions as compared
to robust standard errors when the data are slightly overdispersed. With the
following powersim code we specify a data generating model from the negative
binomial family with overdispersion α = 0.2 in order to generate overdispersed
count data. We then loop over powersim twice to fit Poisson models with
conventional standard errors the first time, and models with robust standard
errors the second time around. We use the saving() option to save the results
from each loop:

. forvalues i = 0/1 {
2.

. if `i´ == 1 local robust robust
3.

. powersim , ///
> b(0) ///
> pos(1) ///
> sample(500) ///
> nreps(4000) ///
> family(nbinomial 0.2) ///
> link(log) ///
> cov1(x1 _bp beta 4 2) ///
> cov2(x2 -0.5 gamma 2 1) ///
> cons(1) ///
> inside ///
> seed(123) ///
> saving(psim_data`i´, replace) ///
> dofile(example5_dofile, replace) ///
> : glm y x1 x2, fam(poisson) link(log) `robust´
4. }

(output omitted)

. gen method = "ROBUST"

. append using psim_data0.dta, nolabel

. quietly replace method = "OIM" if method == ""

After appending the data we can now analyze the results for which we
could use the user-written Stata modules simpplot (Buis (2012)) and simsum
(White (2010)), for example. Since we generated our data under the true null-
hypothesis, we know that the p-values should follow a uniform distribution on
(0, 1) if point and variance estimates are unbiased. Since we have the same
point estimates in this example, differences between the estimators with respect
to their discrepancies from the uniform distribution will be due to the estimated
standard errors. With simpplot we can nicely plot such discrepencies and Fig-
ure 6 shows that our significance test indeed does not perform very well with
conventional variance estimation. Note that we would not have to reshape the

27

Figure 6: Distribution of p-values (shown as deviations from their nominal level)
from Poisson models fit to overdispersed count data (simpplot example)

data but that way we can overlay the two lines within one graph. Without
reshaping we could use simpplot’s by() option.

. keep nd method b se p

. reshape wide b se p, i(nd) j(method) string
(note: j = OIM ROBUST)

(output omitted)

. label variable pOIM "OIM SE"

. label variable pROBUST "robust SE"

. simpplot p*, overall
not enough replications to compute overall bounds; the returned bounds have an
approximate overall error rate of 0.125

28

Finally, we can use simsum in order to summarize our simulation results
more formally:

. simsum b*, se(se*) true(0) format(%6.0g)

Starting to process results ...

Statistic OIM b ROBUST b

Non-missing point estimates 4000 4000

Non-missing standard errors 4000 4000

Bias in point estimate .0054 .0054

Empirical standard error .2616 .2616

% gain in precision relative to method OIM b . 0

RMS model-based standard error .2296 .2606

Relative % error in standard error -12.25 -.3852

Coverage of nominal 95% confidence interval 91.15 94.43

Power of 5% level test 8.85 5.575

29

References

Buis, M. L. 2012. SIMPPLOT: Stata module creating a plot describing p-values
from a simulation by comparing nominal significance levels with the coverages.
Statistical Software Components, Boston College Department of Economics.
URL http://ideas.repec.org/c/boc/bocode/s457467.html.

Feiveson, A. H. 2002. Power by simulation. Stata Journal 2(2): 107–124(18).
URL http://www.stata-journal.com/article.html?article=st0010.

Gelman, A., and J. Hill. 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge et al.: Cambridge University Press.

Hardin, J., and J. Hilbe. 2012. Generalized Linear Models and Extensions -
Third Edition. College Station, TX: Stata Press.

Hilbe, J., and W. Linde-Zwirble. 1995. Random num-
ber generators. Stata Technical Bulletin 28: 20–21. URL
http://www.stata.com/products/stb/journals/stb28.pdf.

Luedicke, J. 2012. SCDENSITY: Stata module to perform uni-
variate self-consistent density estimation. Statistical Software
Components, Boston College Department of Economics. URL
http://ideas.repec.org/c/boc/bocode/s457486.html.

White, I. 2010. SIMSUM: Stata module to perform analyses of
simulation studies including Monte Carlo error. Statistical Soft-
ware Components, Boston College Department of Economics. URL
http://ideas.repec.org/c/boc/bocode/s457170.html.

30

