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Professional Bettors, Odds-Arbitrage Competition, and Betting Market Equilibrium

Abstract

A slew of empirical evidence on horse racetrack betting mar-
kets points to betting biases and market inefficiency. More recent
empirical work has documented the absence of betting biases
in racetrack betting markets characterized by a high volume of
betting. This paper offers a competition-based model of betting
behavior that is consistent with the pattern of betting biases
reported in the literature. We postulate the existence of profes-
sional bettors who, being better informed and/or having different
objectives than the general betting population, engage in odds
arbitrage when doing so is profitable. We evaluate the case of
a single odds-arbitraging bettor first in order to establish the
fundamental properties of odds arbitrage. We then examine the
effects of entry of professional bettors who play a Nash game in
odds arbitrage; the results show that professionals’ participation
causes the final track odds to converge to the level implied by
the horses’ true win probabilities when there is a high volume of
betting.

JEL Codes: D0, L1, D8

Key words: professional bettors, odds arbitrage, betting mar-
ket equilibrium.
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1 Introduction

Nearly all of the existing literature on horse racetrack betting points to mar-

ket inefficiency. For example, the empirical results of Ali (1977), Hausch,

Ziemba and Rubinstein (1981), Asch and Quandt (1982, 1987) and Asch,

Malkiel and Quandt (1984) are all inconsistent with market efficiency.1 Bet-

ting biases have been found by nearly all previous researchers with the ex-

ception of Busche and Hall (1988) and Busche (1994).2 Betting biases in

horse track gambling markets are known to be the most robust anomalous

empirical regularity in studies of market efficiency (Thaler and Ziemba, 1988,

p. 163).

Busche and Walls (2000) provide empirical evidence showing that market

efficiency results across race tracks are systematically related to the volume

of betting.3 They argue that the linkage between market efficiency and

betting volume is consistent with Smith and Walker’s (1993ab) decision-cost

hypothesis in that we only observe non-optimal (inefficient) betting behavior

where the cost of non-optimal decisions is miniscule: “At race tracks with low

bet volumes the potential gains to a professional bettor are proportionally

small, so that deviations from the predictions of optimization theory—that
1See the recent survey article by Sauer (1998), the volume by Hausch, Lo and Ziemba

(1994) and the references therein for a more complete listing of papers relating to the
efficiency of racetrack betting markets.

2One particular betting bias—the favorite-longshot bias—where longshot horses are
overbet relative to the favorites has been found by virtually all researchers. However,
there is also some empirical evidence of favorites being overbet relative to longshots. The
model developed in this paper offers an explanation of why betting biases of either type
are not observed at horse tracks with a high volume of betting. Vaughan-Williams and
Paton (1998) address the differences between the different types of betting biases.

3Within a given race, empirical evidence also shows that the volume of betting causes
the track odds to converge toward the odds implied by optimal betting (Walls and Busche,
1996).

3



returns be equalized across horses—reflect the risk preferences of recreational

bettors” (p. 487). In their analysis they postulate that professional bettors

are attracted to the potential profits associated with large betting volumes,

and that competition for these potential profits accounts for the market

efficiency at these tracks.

In this paper we develop a model in which well-informed professional

bettors engage in arbitrage when faced with sufficiently profitable betting

opportunities. Our purpose is twofold. First, we explore the effects on ob-

served final track odds of professional bettors under the assumption that the

professionals are either better informed than the general betting public, or

that the two types of participants have different preferences, and therefore,

that there are opportunities for arbitrage to occur.4 Second, we identify

conditions under which races with initially biased odds present profitable

opportunities for professionals.

We will demonstrate that both the conditions required to support the

existence of professional bettors and the effect such bettors have on odds

are consistent with the market inefficiency results reported by the authors

cited above. The theoretical analysis in this paper proceeds by first exam-

ining the analytically tractable case of a single bettable horse and a single

odds-arbitraging bettor to establish the fundamental properties of odds ar-

bitrage. We then extend this simple model in two ways that are analytically

intractable and that we examine through simulations: First, we allow for
4We do not attempt to explain the existence of favorite-longshot biases in some betting

markets and longshot-favorite biases in others. Rather, we take these biases as given in
order to isolate the impact of professionals on odds in races that otherwise would have
such biases.
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the possibility that the single bettor may be faced with profitable bets on

more than one horse. Second, we model competition between multiple pro-

fessional bettors and examine the effects of entry of professional bettors who

play a Nash game in odds arbitrage. The findings show that the track odds

converge toward the odds implied by horses’ true win probabilities in the

number of competitors and entry is attracted by potential profits that are

proportional to the aggregate volume of betting.

2 A Single Professional Bettor with One Underbet
Horse

Consider the highly stylized case of a single professional bettor who faces

odds created by a large pool of casual (non-professional) bettors. The casual

bettors are assumed to behave naively in the sense that they place bets

based on their preferences and information but these bets are not necessarily

consistent with economic efficiency and, having bet, they do not reassess

and/or place new bets in response to subsequent changes in the odds.5 The

professional bettor is assumed to know the true win probabilities of each

horse. We also assume that the professional bettor is risk neutral in the

sense of maximizing expected profits given the initial odds. Finally, we

assume that the professional bettor observes the final odds set by the casual

bettors prior to placing bets.6

5In other words, consistent with the empirical literature cited above, we allow for
the possibility that the betting equilibrium in the absence of professional bettors has
systematically biased odds. We do not speculate about how such biased odds actually
arise and persist because our goal is to examine how and when professional bettors might
respond to such initially biased odds.

6With an added layer of complexity, this last assumption could be relaxed and the
professional bettor could make bets based on the expectation of the final odds implied

5



The initial track odds are determined by the total amount bet (the win

pool), the amount bet on individual horses, and the proportion of the win

pool which is extracted by the track (the so-called track take). Let Xi be

the number of dollars bet on horse i, W =
∑H

i=1 Xi be the win pool, and β

be the proportion (1−T ) where T is the track take. The initial odds vector

facing the bettor is

p = (p1, p2, ..., pH) (1)

where pi = Wβ/Xi. Potentially profitable arbitrage is possible for any

horse for which initial odds are such that pi > 1/πi where πi is the bettor’s

estimate of the probability that horse i wins the race.7

Suppose the initial odds vector presents the bettor with an arbitrage

opportunity for horse k.8 Then the bettor’s problem is to choose the optimal

bet on horse k, bk, to maximize

bk

(

πkβ
(

W + bk

Xk + bk

)

− 1
)

(2)

subject to the constraint that bk is non-negative. The first term in the

brackets is simply the expected return for every dollar bet on horse k while

the second term reflects the cost.9 The objective function is strictly con-

by the casual bettors. Given the assumption of risk neutrality, this would not change the
results qualitatively.

7We are restricting our analysis to simple win bets in which bettors place their money
on a horse to win. From the perspective of a risk-neutral professional bettor, complex
bets—exactas, quinellas, trifectas, etc.—are merely a computational problem. Analysis
of complex bets adds greatly to the algebraic complexity of the analysis without adding
anything fundamental to our understanding of the problem.

8We assume in this section that only one horse is sufficiently underbet by the amateur
pool to allow arbitrage. We also assume that the bettor does not cause any other horses
to become profitable betting prospects in the course of adding to the win pool by betting
on the underbet horse. These assumptions are relaxed below after the basic comparative
statics are derived for this simple case.

9We assume that the costs of physically placing the bet are small enough to ignore.
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cave in bk so if a non–negative bet is initially feasible, the optimal bet is

characterized by the following first order condition:

b∗k = Xk

(√

1 +
πk

1− πkβ

(

Wβ
Xk

− 1
πk

)

− 1

)

(3)

The first order condition has an interesting interpretation: Holding the ini-

tial track odds constant, the optimal bet for the professional is proportional

to the amount of money already bet on the horse. In other words, holding

the initial track odds constant, an increase in the pool size causes a propor-

tional increase in the size of the optimal bet. A related comparative static

is that the optimal bet on a horse is increasing in the bettor’s estimate of

the probability that the horse wins (again, holding the initial track odds

constant).10 Finally, the optimal bet is decreasing in the size of the track

take.11

Another way of interpreting the above comparative static results is in

terms of the proportion of professional bets among all bets.12 Rearranging

The costs of participating in the betting, which include forming an estimate of winning
probabilities, are discussed below in the context of competition among professional bettors.

10The comparative static is

∂bk

∂πk
=

Xk

2

[

1 +
πk

1− πkβ

(Wβ
Xk

− 1
πk

)

]−1/2

×
[

1
(1− πkβ)2

(Wβ
Xk

− 1
πk

)

+
1

πk(1− πkβ)

]

> 0

11The comparative static is

∂bk

∂T
= −∂bk

∂β
= −Xk

2

[

1 +
πk

1− πkβ

(Wβ
Xk

− 1
πk

)

]−1/2

×

[

(

πk

1− πkβ

)

W
Xk

+

(

πk

1− πkβ

)2 (Wβ
Xk

− 1
πk

)

]

< 0

12We owe this point and its development to an anonymous referee.
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equation (3) by bringing the leading Xk term to the left-hand side, it can be

seen clearly that the optimal bet on a particular horse k can be interpreted

in terms of the proportion of informed bets on that horse. Rearranging the

comparative static results (derived in footnotes 10 and 11) shows that they

can also be interpreted in terms of the proportion of informed bets. To

simplify the exposition in the remainder of the paper we will discuss the

comparative statics as absolute numbers since normalizing them to propor-

tions does not substantively alter the results.

We have assumed that the bettor knows the track odds and the pool size

prior to choosing and placing a bet. As bets take real time to place and as

there may be many actual profitable bets to place in a given race, the bettor

may have to place bets before the final track odds have been set and thus

may err ex post. This problem may not be severe if the track odds remain

stable as amateurs place their bets (which would be likely if amateurs all

had similar beliefs and preferences) and if the final pool size is predictable

with low variance. Before turning to the question of competition among

professional bettors we examine the slightly more complicated case in which

there are arbitrage opportunities for more than one horse and also allow for

the possibility that horses which initially are unprofitable become so as a

result of the bettor’s actions.

3 A Single Professional Bettor with Multiple Un-
derbet Horses

Consider the partition of the initial odds in which the professional bettor has

ranked the horses in descending order according to the difference between
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the initial odds net of the track take and the bettor’s estimate of the true

odds that the horse wins. In is case the highest expected return per dollar

bet will be achieved on horse number one and the lowest on the lowest ranked

horse as follows:

p∗1 −
1
π1
≥ p∗2 −

1
π2
≥ ... ≥ p∗H − 1

πH
(4)

where as before pi = Wβ
Xi

. The win pool increases as the professional bets

on the profitable horses. As a result, some horses which are initially unprof-

itable may become attractive as the odds get better with the rising win pool.

The professional’s problem is to choose the bets on each horse to maximize

expected profits or to maximize

H
∑

i=1

bi

[

πiβ

(

W +
∑

j 6=i bj + bi

Xi + bi

)

− 1

]

(5)

subject to the constraints bi ≥ 0 for i = 1, . . . , H.

The optimal bet vector is characterized by the following conditions for

k = 1, . . . , H:

(πkβ − 1 + C) b2
k + 2Xk (πkβ − 1 + C) bk (6)

+



πkβ



W +
∑

j 6=k

bj



 Xk − (1− C)X2
k



 ≤ 0

bk ≥ 0 with complementary slackness, and where C = β
∑

j 6=k
πjbj

Xj+bj
. These

conditions can be simplified as follows:

bi = Xi









1 +
πi

1− πiβ − β
∑

k 6=i
πkbk

Xk+bk

(7)

×





β
(

W +
∑

k 6=i bk

)

Xi
−

1− β
∑

k 6=i
πkbk

Xk+bk

πi









1/2

− 1










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for all i such that bi > 0.13 Otherwise, bk = 0.

There are two significant differences between this solution and the case

in which only a single horse is bet. First, each dollar bet on a horse increases

the expected payoff on all other horses bet. This effect is captured in the

term β
∑

k 6=i πkbk/(Xk+bk). When bets on more than one horse are allowed,

marginal horses may receive positive bets due to the favorable effects on the

odds of other horses being bet. The second difference is that the optimal

bet on horse i is no longer proportional to the amount of money initially

bet on horse i holding the initial odds constant.

We cannot analytically solve the equations listed above for the optimal

bet vector; however, we can solve numerically for the optimal bet vector

given the true win probabilities and the initial amount bet on each horse.14

In the simulation analysis discussed below, we have solved for and reported

the results of numerous alternative parameterizations of the model to show

how the optimal bet vector varies in response to changes in the initial bet

fractions, changes in the aggregate volume of betting, changes in the track

take, and changes in the win probabilities. To simplify our simulations and

to make the results more transparent, we have only reported simulations

of 3-horse races. Although the simulations reported here contain only 3

horses, the analysis is fully general because any qualitative result that can

be generated with a larger number of horses—say 7 or 11—can also be

generated in a 3 horse race by appropriately scaling the win probabilities
13This will be the case for any horse for which the initial odds permit profitable bets

and for any marginal horses for which the odds become favorable as bets are placed on
inframarginal horses.

14The source code for the computer program that solves for the optimal bet vector is
available from the the author’s web page.
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and the initial bet fractions on each horse.

We first analyze the case in which there is a single horse that is underbet

to demonstrate that the optimization program provides results similar to

what was derived analytically in the previous section. For simplicity, we

assume that there are three horses with true win probabilities of 0.6, 0.3,

and 0.1, the initial amount bet on each horse is 1000, and the track take is

18%.15 We calculate the optimal bet on each horse, then add 10 to the initial

amount bet on each horse and recalculate the optimal bet on horse 1. By

doing this, we show how the optimal bet on horse 1 varied in response to the

aggregate bet volume holding the initial odds constant. Figure 1 plots the

locus of optimal bets on horse 1 as the initial bet volume varies from 3000

to 6000 in the manner described above. It is clear from the simulation that

the optimal bet is linear in the aggregate bet volume holding initial odds

constant and this shows that our simulation model is consistent with the

analytical model depicted in Section 2 above.16 In Figure 1 we also plot the

expected profit to be earned from placing the corresponding optimal bet.17

Larger win pools correspond to larger optimal bets, and this translates into

larger expected profits for the professional bettor.18

In Figure 2 we examine a case in which two horses are initially under-
15The track take T at nearly all tracks is 18% of the win pool; the notable exceptions

are Hong Kong and Japan where the track takes are 17.5% and 26%, respectively. Tracks
also extract a fee from winners—known as breakage—by rounding winnings down to the
nearest nickel or dime. We do not explicitly model the effect of breakage, although it
would appear to affect favorites more than longshots.

16When only the ith horse is bet on, bk = 0 for all k 6= i, so the first order condition in
equation 7 is identical to the first order condition in equation 3.

17Since there is only one profitable horse in this simulation, the expected profit can be
calculated by evaluating equation 2.

18Larger expected profits in turn would be expected to attract entry, and we examine
the implications of this point in Section 4 below.
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bet. The true win probabilities and track take are as given in the previous

example, but the initial amounts bet on horses 1, 2, and 3, are 1000, 1000,

and 10, respectively. We solve for the optimal bet vector for this case, then

let the initial amount bet on horse 2—the only horse that is not a profitable

bet—increase in increments of 1, and then recalculate the optimal bet vec-

tor. The figure reveals that the optimal bets on horses 1 and 3 increase

linearly in the amount bet on the unprofitable horse. This illustrates how

the optimal bets increase as the initial odds vector is increasingly out of

whack with the inverse probability vector.

Finally, we examine how changes in the track take and changes in the win

probabilities affect the optimal bet vector to verify that these comparative

statics are the same as derived for the one-bettor-one-horse case in Section 2

above. To analyze how the track take affects the optimal bet vector, we

begin with the same win probabilities listed above and 1000 bet on each

horse. We then let the track take vary and calculate the optimal bet vector

for each alternative value of the track take. Figure 3 plots the optimal bet

vector as a function of the track take. For very high levels of the track

take—greater than or equal to 0.45—no bets are profitable. However, as

the track take decreases, horse 1 becomes a profitable bet. As the track

take continues to fall, horse 2 also becomes a profitable bet and the slope of

the optimal bet on horse 1 increases because bets on horse 2 make bets on

horse 1 more profitable.19 To analyze how the win probability affects the
19There is a convergent feedback mechanism between bets on profitable horses which

can be intuitively understood to operate as follows: A one dollar bet on horse 1 improves
the odds for horse 3, inducing a bet on horse 3 (of less than a dollar) which improves the
odds for horse 1, inducing a further bet on horse 1, and so on. As a result, when there is
only one bettable horse the effect of changes in the track take on bets is linear, but when
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optimal bet vector, we began with 1000 bet on each horse and we solved for

the optimal bet vector as the win probability on horse 1 varied from 0.01 to

0.99 where the win probabilities on horses 2 and 3 were set to 3/4 and 1/4

of the remaining probability; i.e. the odds ratio for horses 2 and 3 was fixed

at 3. Figure 4 shows the optimal bet vector for alternative win probabilities

on horse 1. The figure confirms our earlier comparative static (derived in

fn. 8) that the optimal bet is increasing in the win probability.

The effects on the final track odds of the professional bettor’s participa-

tion are not sensitive to the aggregate volume of betting holding the initial

odds constant. Increasing the win pool by proportionately increasing the

initial bets on all horses causes the optimal bets to be scaled up accordingly.

Thus, with a single professional bettor the final track odds cannot be driven

very close to the inverse win probabilities. However, as the volume of bet-

ting rises so do expected profits and this will attract entry of professional

bettors. In the following section we analyze a model of Nash competition in

odds arbitrage among professional bettors.

4 Odds-Arbitrage Competition among Professional
Bettors

Without barriers to entry, risk-neutral professional bettors will be expected

to enter as long as expected revenue covers the cost of participation. If all

professionals have access to the same information then their estimates of

the true odds for any given race should be identical.20 Given that placing

more than one horse can be bet the effects are non-linear.
20This is true under the assumption that all bettors use the best available predicting

technology. The authors of this paper are aware of two successful professional bettors in

13



bets takes place in real time, it is also reasonable to assume that there is

an optimal time to begin placing bets and an optimal order of betting when

multiple bets are placed by each bettor. In the absence of any evidence to

suggest otherwise, we therefore assume that the betting strategies of every

professional bettor are identical and we will look for an equilibrium.21 The

natural extension to the single bettor model is to look at Cournot strategies

for betting in which each of several bettors chooses the number of dollars to

bet on each horse where bets are placed simultaneously.

Consider first the case in which n risk-neutral professional bettors bet

on only one horse. Let bij be bettor j’s bet on horse i and assume that horse

i is the only profitable horse to bet on. Then bettor j’s problem is to choose

bij to

max bij

[

πiβ

(

W + bij +
∑

k 6=j bik

Xi + bij +
∑

k 6=j bik

)

− 1

]

(8)

subject to the constraints that bij ≥ 0. Solving the implied best response

function for strictly positive bij yields

bij =



Xi +
∑

k 6=j

bik









√

πiβ
1− πiβ

×

√

√

√

√

W +
∑

k 6=j bik

Xi +
∑

k 6=j bik
− 1− 1



 (9)

In the Nash equilibrium, all bettors choose the same strategy so bij =

bik = bi and the equilibrium bet must satisfy the following equation:

bi − (Xi + (n− 1) bi)

(√

πiβ
1− πiβ

×
√

W + (n− 1)bi

Xi + (n− 1)bi
− 1− 1

)

= 0 (10)

Hong Kong who use similar models to predict the true odds.
21There is potentially a strategic advantage to being the first professional to place a

bet. By placing the first bet, the bettor changes the odds which opponents face when
they make their own betting decisions. As a result, the first bettor would be able to place
a higher bet and earn higher expected profits. Hence, there is a clear incentive to be a
first mover. This is tempered to some extent by the fact that early betting is more risky
from the perspective of estimating the final track odds and the pool size.
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There is no analytical solution for bi which easily yields comparative statics.

However, as was the case with a single bettor, the equilibrium bid is increas-

ing in W , π and β, holding W/Xi constant.22 The equilibrium bid is also

decreasing in n, the number of bettors, while aggregate professional betting

nbi is increasing in n. This last result is of primary interest because it means

that the final track odds will get closer to the true odds as the number of

professionals who can be supported at a track increases.23 The number of

professional bettors participating will depend on the cost of participating,

the size of the pool and the track take, and on the distribution of initial

track odds. The cost of participating depends on the number of horses and

riders for which the bettors have to collect and maintain data and the speed

at which bets can be placed.

Let Cj be the cost of participating for bettor j in any given race.24

We have not characterized the Nash betting equilibrium for the case of n

bettors and H horses.25 However, assuming such an equilibrium exists we

can characterize the long-run equilibrium in which the number of bettors

is determined by a zero-profit constraint. Let bn
i be the equilibrium bet,

22For brevity we do not report here the simulation results showing that these compara-
tive statics hold. Instead we focus on the more interesting comparative statics relating to
the number of professional bettors.

23This is analogous to the standard result that the Cournot equilibrium approaches
the competitive equilibrium as the number of competitors increases. See, for example,
Novshek (1980).

24Most of the participation costs will be incurred as fixed costs in data collection and in
estimating the odds. These costs can be thought of as amortized over the betting lifetime
of the player. There are some marginal costs involved with actually placing bets which
may be empirically important. We have assumed that these costs are nonexistent for the
purposes of developing the model because including them does not change the qualitative
results while it does complicate the algebra.

25The equilibrium for this case is characterized by H expressions involving third degree
polynomials.
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for each of n professional bettors, on horse i when there are H horses.

Entry will occur until an additional bettor would cause profits to be negative

in expectation in a representative race. This can be summarized in the

following inequality:

H
∑

i=1

πiβbn
i

(

W +
∑H

k=1 nbn
k

Xi + nbn
i

)

− bn
i ≥ C (11)

≥
H

∑

i=1

πiβbn+1
i

(

W +
∑H

k=1 (n + 1)bn+1
k

Xi + (n + 1)bn+1
i

)

− bn+1
i

The far left hand side of the inequality is a representative professional bet-

tor’s expected return in equilibrium when there are a total of n professionals

playing and given the initial size of the betting pool, W , the initial amounts

bet on each of H horses, the Xi, and the probabilities of each horse winning,

the πi. The far right hand side of the inequality is identical except for the

addition of the n+1 professional player. The middle term in the inequality,

C, is the amortized costs of playing for the representative professional. It

is clear that anything that increases the return of a representative player

above the cost of entry will attract more players until.

We solve numerically for the optimal Nash equilibrium bets when n pro-

fessional bettors compete in betting on one horse.26 Because the compar-

ative statics regarding the track take, win probabilities, volume of betting,

etc., are the same as were shown earlier, we focus here on how the final track

odds are affected by changes in variables making professional betting more

profitable. We have already shown that professionals’ bets are increasing in

the probability that a horse wins, and that their bets are also increasing and
26The source code for the program that computes the Nash equilibrium bets for multiple

bettors is available on the author’s web page.
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proportional to the size of the win pool, holding the initial odds constant.

The potential profits from a large win pool would lead to entry of profes-

sional bettors and we would expect this to cause the odds to move closer to

the inverse probabilities. We examine this hypothesis in detail below.

First, we examine the effect of the number of bettors on the professionals’

individual and aggregate betting behavior. We set the win probability to

0.3, the track take set to 0.18, the initial amount bet on the horse 1000, and

the initial aggregate volume of betting 10000. We then varied the number of

bettors from 2 to 30 and calculated the individual bets (b) and the aggregate

volume of professional betting (b ∗ n). These quantities versus the number

of bettors are plotted in Figure 5. As the number of bettors increases, the

individual bets decrease, due to the nature of Cournot competition. We

expect that as the aggregate volume of professional betting increases the

final track odds will be driven closer to the inverse win probability.

We next examined the effect of the initial aggregate volume of betting,

holding initial odds constant, on the final track odds for varying numbers

of professional bettors competing in odds-arbitrage on a horse with a win

probability 0.3.27 Figure 6 shows the final track odds after the professionals

have placed their optimal bets for n = 2, 3, 4, and 5 bettors. It is apparent

from the figure that, with a fixed number of professional bettors, the final

odds vector is invariant to an increase in the volume of betting holding initial

odds constant.

We next examined the expected profits associated with different sized
27The initial amount bet on the horse is 100; the initial volume of betting is 1000; and

the track take is 0.18. The initial volumes bet on the horse and the initial total volume
of betting are scaled up by the same factor, so that the initial odds remain at 1000×0.82

100 .
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win pools and numbers of professional bettors, holding the initial odds con-

stant.28 Figure 7 shows the expected profit per professional bettor for differ-

ent initial win pools. The expected profit per bettor is increasing in the size

of the win pool for a given number of competitors. The increase in expected

profits comes entirely from the increase in the size of bets required to drive

the odds to the profit-maximizing level.29 In as much as profits increase in

the size of the win pool, more professional bettors can be expected to enter

as the size of the initial win pool grows.

We have already demonstrated that, holding the initial odds and the

number of professionals constant, the final odds vector is invariant to the

volume of betting. We also showed that an increase in the initial odds

causes expected profits per professional bettor to rise and therefore would

be expected to attract more professional bettors. Finally, we showed that

the final odds for the underbet horse fall as the number of professional

bettors increases. Figure 8 combines all of this information into a single

graph that shows how final track odds for the underbet (overbet) horse fall

(rise) toward the zero-profit odds. The final track odds converge rapidly in

the number of professional bettors towards the inverse win probability of

3.33.30 Analytically, it is straightforward to show that a single professional

bettor would bet so that the final track odds would be about 5.13.31 With
28Using the same parameter values as discussed in footnote 25, the number of profes-

sional bettors is increased from two to five to examine how expected profits per bettor
falls as entry occurs.

29Recall that the final track odds are invariant to the size of the win pool, holding the
number of professional bettors constant.

30The final track odds approach but can never reach the inverse win probabilities due
to the track take T .

31From equation (3) above, a single bettor’s optimal bet would be $714, and this would
cause the final track odds to become 5.13.
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2 Cournot competitors the simulated final odds are about 4.25, and they

fall to 3.8 with the entry of another 2 competitors. Even a small number

of competitors can have a dramatic impact in driving the final track odds

towards the level implied by the true win probabilities, with the divergence

depending on the level of the track take parameter β.

5 Conclusion

In this paper we have presented a competition-based model of betting that

is consistent with the empirical regularity of market inefficiency at horse

tracks with low volumes of betting and the lack of such a bias at tracks

with high volumes of betting. We modeled the effects of profit-maximizing

professional bettors and found that the participation of professionals caused

the final track odds to converge toward the levels implied by the true win

probabilities when expected profits were sufficiently large to attract entry.

Because the potential profits of bettors are increasing in the volume of bet-

ting, professional bettors’ participation would be expected to drive the odds

toward the levels implied by the horses’ win probabilities at tracks with

large win pools because this increases the proportion of informed bets. And

a higher proportion of informed bets limits the divergence of the actual odds

from the correct/true odds, though the degree of divergence would nonethe-

less be dependent on the track take.
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Figure 1: Optimal Bet and Expected Profit with 1 Profitable Horse
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Figure 2: Optimal Bets with 2 Profitable Horses
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Figure 3: Optimal Bets versus Track Take
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Figure 4: Optimal Bets versus Win Probability
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Figure 5: Number of Bettors versus Individual and Aggregate Bet Volume
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Figure 6: Effects of Number of Professionals and Bet Volume on Final Track
Odds
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Figure 7: Effects of Number of Professionals and Bet Volume on Expected
Profit
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Figure 8: Effects of Number of Professional Bettors on Final Track Odds
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