{smcl} {* *! version 0.9.3 04aug2025}{...} {hi:psr} {hline 2} Propensity score residual regression for overlap-weight average treatment effect {marker syntax}{...} {title:Syntax} {p 8 16 2} {opt psr} {depvar} {it:treatment_var covariates} {ifin} [{cmd:,} {it:options}] {p 8 16 2} {cmd:psr} {depvar} {cmd:(} {it:treatment_var} {cmd:=} {it:instrument} {cmd:)} {it:covariates} {ifin} [{cmd:,} {it:options}] {synoptset 12 tabbed}{...} {synopthdr} {synoptline} {syntab:Model} {synopt :{opt l:ogit}}specifies to use logit instead of probit for propensity/instrument score regression.{p_end} {synopt :{opt ord:er(#)}}specifies the maximum polynomial order q for predicting the dependent variable by the fitted linear index or the fitted probability. The default value is {cmd:2}.{p_end} {synopt :{opt usep:rob}}uses the fitted probability for the prediction of the dependent variable instead of fitted linear index. The linear index is used, if this option is not called for.{p_end} {syntab:Reporting} {synopt :{opt aux:iliary}}reports results from auxiliary regression for covariate slopes with the standard errors.{p_end} {synopt :{opt v:erbose}}displays all intermediate step results.{p_end} {synopt :{opt vv:erbose}}is the same as {cmd:auxiliary} and {cmd:verbose} options used together.{p_end} {synoptline} {marker description}{...} {title:Description} {p 4 4 2} {cmd:psr} implements OLS with propensity score residual and IV regression with instrument score residual. The first syntax fits OLS and the second the IV regression. The covariates should be exogenous always. {title:Examples} {pstd}OLS with propensity score residuals{p_end} {phang2}{cmd:. {stata use flu, clear}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal, order(3)}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal, logit}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal, aux}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal, v}}{p_end} {phang2}{cmd:. {stata psr outcome receive age female white copd heartd renal, vv}}{p_end} {pstd}IV regression with instrument score residuals{p_end} {phang2}{cmd:. {stata use nlsdat, clear}}{p_end} {phang2}{cmd:. {stata gen d = ed76 > 12}}{p_end} {phang2}{cmd:. {stata global X0 age76 black reg662-reg669 smsa66r}}{p_end} {phang2}{cmd:. {stata global X1 ${X0} smsa76r reg76r}}{p_end} {phang2}{cmd:. {stata psr lwage76 (d = nearc4) ${X1}, vv}}{p_end} {phang2}{cmd:. {stata psr lwage76 (d = nearc4) ${X0}, vv}}{p_end} {title:Stored results} {cmd:psr} stores the following in {cmd:e()}: {synoptset 23 tabbed}{...} {p2col 5 23 26 2: Scalars}{p_end} {synopt:{cmd:e(N)}}number of observations{p_end} {synopt:{cmd:e(q)}}polynomial order for outcome prediction{p_end} {p2col 5 23 26 2: Matrices}{p_end} {synopt:{cmd:e(b)}}coefficient vector (average treatment effect){p_end} {synopt:{cmd:e(V)}}variance of the estimator{p_end} {synopt:{cmd:e(b_bin)}}coefficient vector from probit/logit regression{p_end} {synopt:{cmd:e(V_bin)}}variance-covariance matrix of the estimators from probit/logit regression{p_end} {synopt:{cmd:e(b_aux)}}coefficient vector from auxiliary regression{p_end} {synopt:{cmd:e(b_aux)}}variance-covariance matrix from auxiliary regression{p_end} {p2col 5 23 26 2: Macros}{p_end} {synopt:{cmd:e(cmd)}}{cmd:psr}{p_end} {synopt:{cmd:e(depvar)}}name of output variable{p_end} {synopt:{cmd:e(model)}}{cmd:ols} or {cmd:iv}{p_end} {synopt:{cmd:e(pscmd)}}binary model classifier ({cmd:probit} or {cmd:logit}){p_end} {synopt:{cmd:e(predictor)}}{cmd:xb} or {cmd:pr}{p_end} {p2col 5 23 26 2: Functions}{p_end} {synopt:{cmd:e(sample)}}marks estimation sample{p_end} {marker authors}{...} {title:Authors} {pstd} Chirok Han{break} Department of Economics{break} Korea University{break} Seoul, Republic of Korea{break} chirokhan@korea.ac.kr {pstd} Myoung-jae Lee{break} Department of Economics{break} Korea University{break} Seoul, Republic of Korea{break} myoungjae@korea.ac.kr {marker references}{...} {title:References} {marker Lee2018}{...} {phang} Lee, M. J. 2018. Simple least squares estimator for treatment effects using propensity score residuals. {it:Biometrika} 105: 149-164. {p_end} {marker Lee2021}{...} {phang} Lee, M. J. 2021. Instrument residual estimator for any response variable with endogenous binary treatment. {it:Journal of the Royal Statistical Society (Series B)} 83(3): 612-635.