{smcl} {* *! version 1 jan2013}{...} {cmd:help pvfix} {hline} {title:Title} {p2colset 8 20 21 2}{...} {p2col:{hi:pvfix} {hline 2}}Returns the present value of a series of equal payments (cash flows){p_end} {p2colreset}{...} {title:Syntax} {p 8 18 2} {cmd:pvfix} {cmd:, cf(#) nper(#)} {cmdab:freq:uency(}{help tsset:timeunit}{cmd:)} {cmd:rate(#)} [ {it:options} ] {synoptset 24 tabbed}{...} {synopthdr} {synoptline} {syntab:Main} {synopt:{cmd:cf(#)}}Value of the constant cash flows (positive number) {p_end} {synopt:{cmd:nper(#)}}Number of payment periods (positive integer) {p_end} {synopt:{cmdab:freq:uency:(}{it:timeunit}{cmd:)}}Time unit of payments (m, q, h, y) {p_end} {synopt:{cmd:rate(#)}}Nominal annual interest rate (in decimal form) {p_end} {syntab:Options} {synopt:{cmdab:extrap:ayment(#)}}Payment received other than {cmd:cf(#)} in the last period (positive number) {p_end} {synopt:{cmd:due(#)}}When payments are due or made: 0 = end of period (default), or 1 = beginning of period {p_end} {synopt:{cmdab:res:ult(}{it:mymatrix}{cmd:)}}Set the discounted cash flows' schedule matrix name {p_end} {synoptline} {p2colreset}{...} {marker statname}{...} {synoptset 17}{...} {synopt:{space 4}{it:timeunit}}definition{p_end} {space 4}{synoptline} {synopt:{space 4}{opt m}} monthly payments{p_end} {synopt:{space 4}{opt q}} quarterly payments{p_end} {synopt:{space 4}{opt h}} halfyearly payments{p_end} {synopt:{space 4}{opt y}} yearly payments{p_end} {space 4}{synoptline} {p2colreset}{...} {title:Description} {pstd} {cmd:pvfix} Returns the present value of a series of equal payments (based on a compounded constant interest rate). {cmd:pvfix} generates a three column matrix (rows = nper) containing the entire schedule of discounted cash flows distinguishing between: period number, discount factor and cash flows' present value. {dlgtab:Options} {phang} {opt cf(#)} Value of the constant cash flows. {phang} {opt nper(#)} Number of payment periods. For example, if you want the present value of five-year monthly cash flows, it will have 5*12 = 60 periods. The formula {opt nper(60)}. {phang} {cmdab:freq:uency:(}{it:timeunit}{cmd:)} Time unit of payments (m, q, h, y). Used to convert the annual interest rate into a periodic rate. {phang} {opt rate(#)} Nominal annual interest rate (in decimal form). {it:i.e.} an annual 5.24% interest rate should be written 0.0524. {phang} {cmdab:extrap:ayment(#)} Payment received other than {cmd:cf(#)} in the last period, default is 0. {phang} {opt due(#)} When payments are due or made: 0 = end of period (default), or 1 = beginning of period. {phang} {cmdab:res:ult(}{it:mymatrix}{cmd:)} Set the discounted cash flows' schedule matrix name saved in results, default is {bf:matpvcf}. {title:Examples} {phang}{cmd:. pvfix, cf(10000) nper(60) frequency(m) rate(.1125) due(1)}{p_end} {phang}{cmd:. pvfix, cf(1500) nper(5) frequency(y) rate(.125) res(cf1)}{p_end} {phang}{cmd:. mat list r(cf1)}{p_end} {title:Saved results} {pstd} {cmd:pvfix} saves the following in {cmd:r()}: {synoptset 15 tabbed}{...} {p2col 5 15 19 2: Scalars}{p_end} {synopt:{cmd:r(cf)}}cash flow value{p_end} {synopt:{cmd:r(nper)}}total number of payment periods{p_end} {synopt:{cmd:r(freq)}}number of payment within a year{p_end} {synopt:{cmd:r(iy)}}annual interest rate{p_end} {synopt:{cmd:r(due)}}due value{p_end} {synopt:{cmd:r(extrap)}}extra payment value{p_end} {synopt:{cmd:r(PV)}}Present value of constant cash flows{p_end} {p2col 5 15 19 2: Matrices}{p_end} {synopt:{cmd:r(matpvcf)}}schedule of discounted cash flows{p_end} {p2colreset}{...} {title:Author} Maximo Sangiacomo {hi:Email: {browse "mailto:msangia@hotmail.com":msangia@hotmail.com}}