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Quantitative Haplotype Analysis

Abstract

An EM-algorithm is implemented to analyse the relationship between a normally
distributed trait and a person’s haplotype when phase is not known. Parameters are es-
timated by using two models, a log-linear regression model of haplotype frequencies and
a linear regression model for the relationship between quantitative trait and haplotype.
Simulation models are used to investigate the power of the method and to see the effects

of the Hardy Weinberg Equilibrium assumption on power.
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1 Introduction

When a disease mutation occurs, it is in complete linkage disequilibrium (LD) with
neighbouring loci. This LD is eroded over generations but can persist between tightly-
linked loci for many generations. Association studies are used to detect trait loci by
exploiting LD with adjacent markers and can be dichotomised into family-based and
population-based studies. Family-based tests such as the Transmission Disequilibrium
Test (Spielman et al. 1993) have become very popular, however family-based studies are
not ideal for some situations: high-risk family data may not be available when there is a
late-onset disease, or when the disease itself may interfere with reproduction. Population-
based studies can be used in a more general setting although there is also the possibility
that any significant association may be due to confounding by population stratification
(Balding et al. 2001).

Population-based case-control association studies compare allele frequencies between
cases and controls. In the absence of confounding significant differences indicate that
different alleles carry different risks or that this locus is in LD with a causal locus. There
are numerous diseases that are quantitative by nature (e.g. hypertension, diabetes, e.t.c.)
and for these categorisation into two levels loses information. For quantitative association
study a common approach is to investigate whether people carrying a particular allele
have different mean traits.

Haplotype analysis is a means to detect chromosomal regions that either harbour,
or that are in strong LD with, the disease-predisposing locus. With sufficient power,
haplotype analysis should be able to isolate the locus of interest. Case-control haplotype
analysis was described by (Chiano and Clayton 1998) and the algorithm described here
extends this work to accommodate a quantitative outcome. The methods presented are

most likely to apply to high-density SNP maps, even though there may be statistical
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difficulties (Chapman and Wijsman 1998; Xiong and Jin 1999), for example high num-
bers of parameters; Intermediate models, ones that are not saturated, may alleviate the
problems by having fewer parameters.

When phase is known, association analysis can be carried out using regression models
in any standard statistical package. However, the basic regression-based approach can
not be used directly for diploid genotypes when phase is unknown; Explanatory variables
can not be constructed as the “true haplotypes” are not observed. Unknown phase can
be defined in terms of a missing data problem and analysed accordingly either using
Bayesian methods (Ayres and Balding 2001) or the likelihood-based EM algorithm ap-
proach (Excoffier and Slatkin 1995; Hawley and Kidd 1995; Chiano and Clayton 1998;
Mander 2000). Unlike Bayesian methods, likelihood-based approaches allow hypothesis
testing and do not rely on prior distributions; testing rather than estimation is the focus
of this paper.

Simulated data are used to demonstrate the power of the algorithm for testing associa-
tion to a quantitative trait. Various levels of deviation from Hardy-Weinberg Equilibrium
are investigated in order to determine the impact on power. It can be seen that excess

heterozygosity leads to lower power.

2 Methods

The following section outlines a new implementation of the EM algorithm (Dempster
et al. 1977) for detecting association to a quantitative trait. When the trait is normally
distributed, and phase is known, linear regression may be used to test for association.
The method can be extended to other types of statistical models but is beyond the scope
of this paper.

The next sections illustrate the possible parameters in the regression linear predictors
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when the phase is known. The same models are used in the EM algorithm for resolving
phase.

For illustrative purposes two diallelic loci are used to show the possible parameters;
the number of parameters are minimised with diallelic loci. Let the alleles at the first
locus be a and A and at the second locus, b and B. The two-locus double homozygote
genotype ab/ab is the reference genotype. The parameters of the linear predictor will
therefore represent mean differences, derived from comparing a particular genotype to

the reference genotype. Let the mean trait value for people with the genotype ab/ab be

L.

2.1 Singlepoint Additive Model (SAM)

The first stage of localising the region of association is a singlepoint additive analysis;
this tests each individual marker and the strength of its association with the outcome.
Additivity, in the context of haplotype analysis, is defined by any model that does not
include between-chromosome interactions, in the statistical sense. A fuller explanation
of interaction in quantitative models is given by (Cordell et al. 2001).

The SAM for the two diallelic loci system has two additive effects: the additive
parameter «, for allele A; and the additive parameter 3, for allele B. People with
genotypes of the form ay/Ay and Ay/Ay, where y represents either the b or B allele,
have mean traits p 4+ « and p + 2« respectively. Similarly, people with genotypes of the
form xb/xB and xB/xB, where = represents either the a or A allele, have mean traits
i+ B and p + 203, respectively. In this paper, parental imprinting is ignored; In other
words the ordering of alleles in genotypes is not considered. The linear predictor can be
extended to include parental imprinting by including two additional parameters, these

represent the additional effect of inheriting the A or B allele from the mother.
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Note that the SAM is better than just analysing each locus individually. The additive
effect « is estimated adjusted for the additive effect, 5, at locus 2. This counteracts the
difficulty that if locus 1 is analysed without considering locus 2, then « may reflect the
effect at locus 2 rather than any effect at locus 1.

There are two hypotheses of interest in the 2-loci SAM: is @ = 0, or is § = 07 A
significant result indicates position but not inheritance, for example, if the alleles act in

a dominant way.

2.1.1 Multipoint Additive Model (M AM)

The multipoint additive model is one that contains all within-chromosome between-loci
interactions and the parameters have an additive dose response. In the two diallelic loci
example, there is only one additional additive effect, A. The A parameter is the additive
effect of the AB haplotype, and is added to the linear predictor of the 2-loci SAM. People
with genotypes ab/AB and AB/AB will have mean trait values, under the 2-loci MAM,
p4+a+ 6+ A and p+ 2a 4 25 + 2A, respectively.

For the 2-loci MAM, two hypotheses are tested in order to isolate the locus that has
the strongest association with the outcome of interest. The test § = A = 0 determines
whether locus 1 is associated, and similarly for locus 2, the test is « = A = 0. The
model can be extended to three diallelic loci with the inclusion of all pair-wise within-
chromosome interactions and one three-way interaction term. The model generalises to
more loci, although the addition of each locus causes the number of extra parameters to
increase exponentially.

For larger numbers of loci, the higher-order interaction terms are unlikely to be needed
to describe the data and more parsimonious models could be used. One such model is a

“Markov pattern” model (Balding et al. 2001), that includes all pairwise interactions of



Quantitative Haplotype Analysis

adjacent loci but not higher order interactions.

2.2 Deviations from Additivity

The linear predictor for non-additive models includes between-chromosome interaction
parameters. There is one between-chromosome within-loci interaction parameter, namely
dominance, for each diallelic locus.

Returning to the two diallelic loci example, the dominance parameter for locus 1 is
dq, and for locus 2, it is 6. In the 2-loci SAM, with the additional J-parameters, people
with genotypes ay/Ay and Ay /Ay (y is either allele b or B) have mean traits of g+ a4+ 04
and p+ 2, respectively. Similarly for locus 2, people with genotypes xb/xB and ©B/xB
(x is allele a or A) have mean traits ;1 + 3 + 0 and p + 23, respectively.

The dominance parameter has the following interpretations: when 6, = —a , allele
a is dominant to A; when 6, = +a, allele a is recessive to A. The ¢z has the same

interpretation in reference to the b and B alleles.

2.2.1 The full saturated model

Ignoring the effects of parental imprinting, there are 10 unique unordered genotypes, and
the saturated model allows a different mean quantitative trait value for each genotype.
Thus, the model contains 10 parameters as shown in table i.

There are four between-chromosome between-loci interactions. 6A, and dAg repre-
sent the interactions between the dominance parameter at one locus and the additive
effect at the other, d,5 gives the interaction between the two dominance parameters,
and A,p is the effect of having the haplotype of interest over both chromosomes, this
is seen clearly for the Ab/aB genotype where the AB haplotype is “split” over the two

chromosomes.
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The saturated model can be used to test the hypothesis of epistasis if two tightly
linked loci are both functional. Epistasis here is any between-loci interaction (Fisher
1918), and hence the test is of A,g = 6o = Ay = 0Ag = A = 0. The second use of the
saturated model is the general test for non-additivity: this compares the MAM to the

saturated model. In other words, it tests 6A, = 0Ag =03 = do = A = 0ap = 0.

2.3 Resolving Phase

Often phase is not known and only unordered genotypic data is available. Using the two
diallelic-loci example, the genotype for the double heterozygote may be represented as
(a,A,b, B). Henceforth, this shall be referred to as the phenotype. For this phenotype
the genotype is not uniquely defined. The linear predictor in the linear regression is
uniquely defined for the SAM but not for the MAM.

For subject i, the probability density function of its normally distributed quantitative
trait value, y;, can be specified when the genotype, g;, is known and the linear predictor,

i, is known.

fulw) = s O

In reality, when phase is unknown, the distribution of quantitative trait will follow a

mixture distribution.
> .5 (i)
G:€G;

where G is the set of possible phases and 75, is the probability of genotype g;. The
genotype probabilities are estimated from the dataset under the assumption of Hardy-

Weinberg Equilibrium (HWE) or, alternatively the probabilities can be fixed using ex-
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ternal data sources. The latter is not explored here.

2.3.1 Set of Phases, C?Z

The number of phase possibilities in the set G; depends on the linear model of interest.

The phenotype (a,b, A, B) has one phase for the 2-loci SAM and two phases for the
2-loci MAM ab/AB and aB/Ab. If the linear model included parental imprinting, there
would be four phases to consider: AB/ab, Ab/aB, ab/AB and aB/Ab. If the four phases
were taken as G; for each of the three models, the algorithm would converge to the same
parameter estimates. This would introduce computational inefficiency and change the
overall log-likelihood. It would not, however, alter the likelihood ratio test statistics
for comparing two models, as long as the two models follow the same rules of phase
resolution.

The set of phases can be enumerated when the available phenotype contains missing

“won

alleles, for example (a, 4, ., B), where represents a missing allele. Under the assump-
tion of missing completely at random (MCAR) (Little and Rubin 1987), the two alleles
b or B are equally likely to be the true allele, and so there are two possible phenotypes,
(a,A,b,B) and (a, A, B, B). The first phenotype has two phases, and the second has only
one, assuming that the 2-loci MAM is fitted. The three phases are ab/AB, aB/Ab and
aB/AB.

For real data, all the alleles that could occur at a locus may not be fully known; the
algorithm assumes that only the observed alleles are possible. If an allele is not present
in the dataset then the MCAR assumption is violated, and this is likely to occur when a
dataset is small or an allele is rare.

If the phase is known for a subset of the subjects, for example a control sample, then

the set of phases is constructed for only those subjects with unknown phase.



Quantitative Haplotype Analysis

10

2.4 The EM algorithm

The following section describes the steps of the j-th iteration of the EM algorithm.
The ‘E-step’ of the algorithm is the estimation of the posterior probability of each

phase. The j-th estimate of the posterior probability of a particular phase, g}, for subject

iis 2;1). The formula for this, where f;; (j_l)(yi) (equation 1) and ﬁé{fl) are the (j—1)-th

estimates of the normal p.d.f. and genotype probabilities, is given below,

N>

. o
_ff) = E(zglyi i ),

(G-1) o (-1
Trg= ng;“(] )(yz)
Ji i v

Gi€G;

Given these posterior probabilities, the full data likelihood, for n subjects, is given below,

. " 2(9)
L(x,moly2) = T II {mafaw)}™ .
i=lgeG;
= 30 2
= H H {Wﬁi} Ji {f§z<yl)} g,
i=lgeG;
(49) ()

- ﬁ H {Wﬁliﬂﬁzi}’%gi‘ {féi(yi)}%i .

i=lg,eG;

In this way, the likelihood can be factorised into terms involving the genotype probabilities
and the normal probability distribution function.

The ‘M-step’ of the algorithm is the estimation of the genotype probabilities and
parameters of the normal distribution. When phase is unknown, there is no information
to estimate the genotype probabilities directly and are replaced by the product of two
haplotype probabilities using the HWE assumption, 75 = Ty gy It is possible to
discard the HWE assumption by using known disequilibrium coefficients, but this is not

implemented here.
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The j-th estimate of the haplotype probabilities are estimated by a saturated log-
linear model using the iterative proportional fitting algorithm (Agresti 1992) with the
20)’s as weights. The log-linear model allows the investigation of intermediate models
(Chiano and Clayton 1998; Mander 2000), in which the j-th estimates of the parameters
in the linear predictor are estimated using linear regression with the 20)’s as weights.
This can be done in any standard statistical package, however the j-th estimate of the

~

. . ) . . .
residual variance, 02" can vary between packages. The residual variance estimator used

here is a weighted average of the residuals (Ghosh and Majumder 1999),

The first iteration of the EM algorithm involves the selection of the initial values for all
the parameters to be estimated. By default, each haplotype is equally likely, the residual
variance is 1 and the regression coefficients are 0. Then, the posterior probabilities are
calculated using the data and these parameter estimates. The EM algorithm proceeds

iteratively, until the change in the full log-likelihood is small (usually around 0.00001).

3 Results

Simulated data was used to demonstrate the power to detect association and to isolate
regions of genetic association.

Phase-known genotypes were generated for three diallelic loci, then a normally dis-
tributed quantitative trait was generated conditional on the genotype. For the empirical
power calculations, the phase information was ignored. As phase resolution is based on

the assumption of HWE, power was also investigated allowing deviation from HWE.
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3.1 Genotype Generation

The three simulated loci contained the alleles 1 or 2, and were generated with equal proba-
bility. This maximised the frequency of unknown phase and meant that the power results
were based on a worst case scenario. The first haplotype for each subject was generated
assuming that all the possible haplotypes were equally frequent. The second haplotype
was constructed by simulating in the absence of HWE. For a given disequilibrium co-
efficient D, as defined by (Hernandez and Weir 1989), the second allele was generated
with probability of heterozygosity of (1/2 — 2D), assuming equally frequent alleles. The
same disequilibrium coefficient was used for each locus and the expected number of ho-
mozygotes at each locus was the same. When D is 0, the alleles are expected to be in
HWE, whereas an excess of heterozygotes occurs if D < 0 and an excess of homozygotes
if D > 0. Power is expected to decrease with increasing levels of heterozygosity because

phase is known for homozygotes.

3.2 Quantitative Trait Generation

For each person, a quantitative trait value was sampled from a N(0, 1) distribution.
This person’s trait value was shifted by an amount, S, based on the presence of the 222
haplotype (model 1), or when either haplotypes 221 or 222 were present (model 2). An
additive model was assumed and for model 1, a person with the genotype 222/222 had
an expected trait of 25. Similarly, for model 2 a person with either genotype 221/221,

221/222 or 222/222 had an expected trait of 25.

3.3 Power

For the two models, 400 subjects were simulated. The genotypes were generated with D

chosen from the set {—0.2,—0.1,0,0.1,0.2} and the quantitative trait was generated with
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S chosen from the set {0,0.25,0.5,0.75,1}. For each combination of parameters 1000
simulated datasets were created and empirical power was calculated with the significance
level 5%.

The test of interest for model 1 was detection of an association between the 3 loci
and the quantitative trait. This test was a 7 df likelihood ratio test, comparing the 3-
loci MAM and the one parameter () constant model. The empirical power is shown in
table ii and this is the proportion of the 1000 tests that showed a significant association.

It can be seen that there is over 90% power to detect a mean shift of 0.75 or more.
This is smaller than the residual variance, which is 1. Also, there is slightly more power
when there is an excess of homozygotes (D > 0) due to less phase ambiguity. Power
decreases rapidly when there is an excess of heterozygotes.

For model 2, the association is present in the first two loci and it is clear that the
third locus is not involved in the association. To test this hypothesis the 3-loci MAM
is compared to the 2-loci MAM, a 4 df test. The 2-loci MAM has no parameters for
the third locus, although 3-loci haplotype frequencies were estimated. It is possible to
estimate 2-loci haplotype frequencies by collapsing the third locus for the 2-loci MAM.
This would increase the degrees of freedom of the test, and would provide a joint test
of LD between the third locus and the first two loci, as well as the quantitative trait
genotype relationship.

The proportion of significant likelihood ratio test statistics are given in table iii.

A non-significant result means that the 2-loci MAM and the 3-loci MAM have similar
likelihoods and so the third locus is not involved in the association. For most of the cells,
about 95% of the tests correctly fail to indicate that the third locus is involved in the
association, demonstrating the accuracy of the method in this framework.

With the same datasets, the 2-loci MAM is compared to the 1-locus SAM. Table iv
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displays the proportion of tests that gave a significant result. Here, a significant result
meant that the second locus could not be dropped from the model and when S > 0.5,
over 90% of tests indicated that the second locus was involved in the association.

The results are very similar to those shown in table ii, except that power is greater, as
there is now only 2 degrees of freedom. Again, when there is an excess of heterozygotes,

the power decreases.

4 Discussion

Clearly, the EM-algorithm is able to detect association when phase is unknown in the case
of a fairly small dataset, and small shifts in the mean quantitative trait for one particular
haplotype. The power to detect association however depends on the extent of deviation
from Hardy-Weinberg Equilibrium; this is the effect of changing phase uncertainty. When
allele are not equally frequent the amount of phase uncertainty is much less and the power
will be greater than the simulations suggest.

A by-product of having two models in the algorithm is that the same algorithm can
be used to test for linkage disequilibrium between loci, conditional on the quantitative
trait model. It is also possible to test for association in a case/control setting, conditional
on the quantitative outcome. This joint modelling should increase the power to detect
LD.

The most useful application of the methods described will be in analysing SNP geno-
types within a candidate gene that is associated with some continuous outcome. Given
the huge number of SNPs available and the number of parameters needed to model the
relationship between haplotype and quantitative trait the future use of these methods de-
pend on parsimonious SNP selection, or possibly on the generation of further hypotheses

that incorporate fewer parameters.
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The algorithm is implemented in the statistical package STATA (StataCorp. 1999)

and is available within STATA by typing the commands

net from http://www.mrc-bsu.cam.ac.uk/personal/adrian

net install ghapipf

or by downloading from the web page http://www.mrc-bsu.cam.ac.uk/personal/adrian/stata.shtml

The method can be easily programmed in any statistical package that allows weights
in regression commands. The EM algorithm can be modified, relatively easily, to handle
non-normal data and the command to estimate the parameters of the linear predictor
allows weights. The linear regression could be replaced by a full multi-level model to
handle family-based data and perform analyses described in (Cardon 2000; Burton et al.

1999).
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Table i: The expected trait values for the 10 possible genotypes for two diallelic loci under the
saturated model ignoring parental imprinting

Genotype | Additive Dominance Between-loci between-chromosome
parameters parameters interactions
ab/ab L
ab/Ab | p+ « +da
ab/aB | p+p +03
ab/AB | p+pB+a+A +0a+05  +0AL+ 005+ 043
Ab/Ab M+ 2a
Ab/aB | p+ P+« +0q + 0p +0Aq +0Ag 4+ 0ap + Aup
Ab/AB w6+ 2a+ A +5g +25A5 + Aaﬁ
aB/aB | p+ 2B
aB/AB | u+28+a+A +0q +20A0 + Agp
ABJ/AB | p+ 28+ 2a+2A +2A.5
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Table ii: The proportion of simulations with a significant association test statistic when com-

paring the 3-loci MAM to the constant model

S

D 0 0.25 0.5 0.75 1
-0.2  0.059 0.080 0.134 0.232 0.400
-0.15 0.065 0.111 0.275 0.498 0.739
-0.1 0.104 0.164 0.431 0.822 0.961
-0.05 0.074 0.181 0.549 0.900 0.998
0.0 0.068 0.175 0.604 0.949 0.999
0.05 0.062 0.193 0.682 0.976 1.000
0.1 0.059 0.215 0.682 0.976 0.999
0.15 0.083 0.212 0.717 0.977 1.000
0.2 0.055 0.180 0.679 0.981 1.000
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Table iii: The proportion of simulations with a significant test statistic when comparing the
3-loci MAM to 2-loci MAM

S

D 0 0.25 0.5 0.75 1
-0.2  0.058 0.058 0.045 0.044 0.042
-0.15 0.080 0.060 0.045 0.065 0.035
-0.1  0.098 0.084 0.109 0.098 0.094
-0.05 0.077 0.060 0.065 0.082 0.085
0.0 0.063 0.067 0.059 0.053 0.050
0.05 0.062 0.050 0.062 0.037 0.052
0.1 0.047 0.052 0.051 0.053 0.055
0.15 0.043 0.045 0.072 0.043 0.052
0.2 0.045 0.053 0.059 0.048 0.050
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Table iv: The proportion of simulations with a significant test statistic when comparing the
2-loci MAM to 1-locus SAM

S

D 0 0.25 0.5 0.75 1
-0.2  0.051 0.107 0.241 0.501 0.744
-0.15 0.063 0.139 0496 0.830 0.970
-0.1 0.066 0.261 0.747 0.978 0.999
-0.05 0.052 0415 0.928 0.997 1.000
0.0 0.0561 0.497 0.983 1.000 1.000
0.05 0.056 0.624 0.992 1.000 1.000
0.1 0.0567 0.648 0.997 1.000 1.000
0.15 0.089 0.770 1.000 1.000 1.000
0.2 0.059 0.846 1.000 1.000 1.000




