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Abstract. This paper presents a Stata command, reganat, which implements
graphically the method of regression anatomy as described by Angrist and Pischke
(2009). This tool can help the analyst in the validation of linear models, since it
produces a bi-dimensional scatterplot obtained under the control of other covari-
ates.1
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1 Inside the black box

In the case of a linear bivariate model of the type

yi = α+ βxi + εi

the OLS estimator for β has the known simple expression

β =

∑n
i (xi − x) (yi − y)∑n

i (xi − x)
2 =

cov(yi, xi)

var(xi)
.

In the context of such a simple regression framework, a scatterplot can be a useful
graphical device during the process of model building to detect, for instance, the presence
of nonlinearities or anomalous data.

When the model includes more than a single independent variable, the simple for-
mula for the estimation of β breaks up and a bivariate scatterplot between the dependent
variable and a variable of interest is not informative anymore since the regressors need
not to be orthogonal among them. Consequently, most econometrics textbooks limit
themselves to providing the formula for the β vector of the type

β = (X ′X)
−1

X ′y.

Although compact and easy to remember, this formulation is a sort black box, since it
hardly reveals anything about what really happens during the estimation of a multi-
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variate OLS model. Furthermore, the link between the β and the moments of the data
distribution disappear buried in the intricacies of matrix algebra.

Luckily, an enlightening interpretation of the β’s in the multivariate case exists and
has relevant interpreting power. It was originally formulated more than seventy years
ago by Frisch and Waugh (1933), revived by Lovell (1963), and recently brought to a
new life by Angrist and Pischke (2009) under the catchy phrase regression anatomy.
According to this result, given a model with K independent variables, the coefficient β
for the k-th variable can be written as

βk =
cov(yi, x̃

k
i )

var(x̃k
i )

where x̃k
i is the residual obtained by regressing xk

i on all remaining K − 1 independent
variables.

The results is striking since it establishes the possibility of breaking a multivariate
model with K independent variables into K bivariate models and also sheds light into
the machinery of multivariate OLS. This property of OLS does not depend on the
underlying Data Generating Process or on its causal interpretation: it is a mechanical
property of the estimator which holds because of the algebra behind it.

For example, the regression anatomy theorem makes transparent the case of the so
called problem of multicollinearity. In a multivariate model with two variables which are
highly linearly related, our theorem states that for a variable to have a significant β it
must retain explicative power after the other independent variables have been partialled
out. Obviously, this is not likely to happen in a multicollinear model as the most part
of variability is between the regressors and not between the residual variable x̃k

i and the
dependent variable y.

While this theorem is widely known as a standard result of the matrix algebra of
the OLS model, its practical relevance in the modeling process has been overlooked,
Davidson and MacKinnon (1993) say, most probably because the original articles had
a limited scope, but they nonetheless tackled a very general problem. Hopefully, the
introduction of a Stata command which implements it will help spreading its use in
econometric practice.

2 The theorem

The regression anatomy is an application of the Frisch-Waugh-Lovell theorem about
the relationship between the OLS estimator and any vertical partitioning of the data
matrix X. The theorem applies to any regression model with two or more independent
variables which can be partitioned in two groups

y = X ′
1β1 +X ′

2β2 + r. (1)

Consider the general OLS model y = X ′β + e, with XN,K . Next, partition the X
matrix in the following way: let X1 be a N ×K1 matrix and X2 be a N ×K2 matrix,
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with K = K1 +K2. It follows that X = [X1X2]. Let us now consider the model

M1y = M1X2β2 + e (2)

where M1 is the matrix projecting off the subspace spanned by the columns of X1. In
this formulation, y and the K2 columns of X2 are regressed on X1; then, the vector of
residuals M1y is regressed on the matrix of residuals M1X2. The Frisch-Waugh-Lovell
theorem states that the β’s calculated for the model (2) are identical to those calculated
for the model (1). A complete proof can be found in advanced econometrics textbooks
like Davidson and MacKinnon (1993, p. 19–24) or Ruud (2000, p. 54–60), but for the
sake of simplicity and relevance to our Stata command reganat, here we limit ourself
to a simple expansion of the proof provided in Angrist and Pischke (2009) restricted to
the case in which XN,K , K1 = 1 and K2 = K − 1.

Theorem 1 (Regression anatomy) Given the regression model

yi = β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei (3)

and an auxiliary regression in which the variable xki is regressed on all the remaining
independent variables

xki = γ0 + γ1x1i + . . .+ γk−1xk−1i + γk+1xk+1i + . . .+ γKxKi + fi (4)

with x̃ki = xki− x̂ki being the residual for the auxiliary regression, the parameter βk can
be written as

βk =
cov(yi, x̃ki)

var(x̃ki)
(5)

Proof. To prove the theorem, plug (3) and the residual x̃ki from (4) into the covariance
cov(yi, x̃ki) from (5) and obtain

βk =
cov(β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei, x̃ki)

var(x̃ki)

=
cov(β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei, fi)

var(fi)

(6)

1. Since by construction E[fi] = 0, it follows that the term β0E[fi] = 0.

2. Since fi is a linear combination of all the independent variables with the exception
of xki, it must be that

β1E[fix1i] = . . . = βk−1E[fixk−1i] = βk+1E[fixk+1i] = . . . = βKE[fixKi] = 0

3. Consider now the term E[eifi]. This can be written as

E[eifi] = E[eifi]

= E[eix̃ki]

= E[ei(xki − x̂ki)]

= E[eixki]− E[eix̂ki]

(7)
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Since ei is uncorrelated with any independent variable, it is also uncorrelated with
xki: accordingly, we have E[eixki] = 0. With regard to the second term of the
subtraction, substituting the predicted value from (4) we get

E[ei(γ0 + γ1x1i + . . .+ γk−1xk−1i + γk+1xk+1i + . . .+ γKxKi)].

Once again, since ei is uncorrelated with any independent variable, the expected
value of the terms is equal to zero. Then, it follows that E[eifi] = 0.

4. The only remaining term is E [βkxkix̃ki]. The term xki can be substituted using
a rewriting of the model (4) such that

xki = E [xki|X−k] + x̃ki.

This gives

E [βkxkix̃ki] = βkE [x̃ki (E [xki|X−k] + x̃ki)]

= βk

{
E
[
x̃2
ki

]
+ E [(E [xki|X−k] x̃ki)]

}
= βkvar(x̃ki)

(8)

which follows directly from the orthogonality between E [xki|X−k] and x̃ki.

From previous derivations we finally get

cov(yi, x̃ki) = βkvar(x̃ki)

which completes the proof.

3 The command reganat

The estimation command reganat is written for Stata 10.1. It has not been tested on
previous versions of the program.

The files reganat.ado and reganat.sthlp can be freely downloaded from the web
address http://wpage.unina.it/filoso/Stata/ and are also accessible through the
SSC system.

3.1 Syntax

The command has the following syntax:

reganat depvar varlist
[
if
] [

in
] [

, disp(vars) l(varname) biscat biline reg

nolegend nocovlist scheme(graphical scheme)
]

Just like any other standard OLS model, a single dependent variable and an array
of independent variables are required.
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By default, when user specifies K covariates, the commands builds a multi-graph
made of K bi-dimensional subgraphs. In each of them, the x-axis displays the value of
each independent variable net of any correlation with the other variables, while the y-
axis displays the value of the dependent variable. Within each subgraph, the command
displays the scatterplot and the corresponding regression line.

The option disp(vars) restricts the output to the variables in vars and excludes
the rest. Only the specified vars will be graphed; nonetheless, the other regressors will
be used in the background calculations.

The option label(varname) uses varname to label the observations in the scatter-
plot.

The option biscat adds on each subgraph the scatterplot between the dependent
variable and the original regressor under study. The observations are displayed using
a small triangle. Since E(x̃ki) = 0 by construction, while E(xki) is in general different
from zero, the plotting of xki and x̃ki along the same axis requires the variable E(xki)
to be shifted by subtracting its mean.

The option biline adds on each subgraph a regression line calculated over the
univariate model in which the dependent variable is regressed only on the regressor
under study. To distinguish the two regression lines which appear on the same graph,
the one for the univariate model uses a dashed pattern.

The option reg displays the output of the regression command for the complete
model.

The option nolegend prevents the legend to be displayed.

The option nocovlist prevents the list of covariates to be displayed.

The option scheme(graphical scheme) can be used to specify the graphical scheme
to be applied to the composite graph. By default, the command uses the sj scheme.

4 An example

Consider the following illustrative example of the command, without any pretense of
genuine causality. Suppose that we are interested in the estimation of a simple hedonic
model for the price of cars as depending on their technical characteristics. In particular,
we want to estimate the effect, if any, of a car’s length on its price.

First, we load the classic auto dataset and regress price on length, obtaining

(Continued on next page)
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. sysuse auto, clear
(1978 Automobile Data)

. regress price length

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 1, 72) = 16.50

Model | 118425867 1 118425867 Prob > F = 0.0001
Residual | 516639529 72 7175549.01 R-squared = 0.1865

-------------+------------------------------ Adj R-squared = 0.1752
Total | 635065396 73 8699525.97 Root MSE = 2678.7

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
length | 57.20224 14.08047 4.06 0.000 29.13332 85.27115
_cons | -4584.899 2664.437 -1.72 0.090 -9896.357 726.559

------------------------------------------------------------------------------

The estimated β is positive. Then, since other technical characteristics could influence
the selling price, we include mpg (mileage) and weight as additional controls and we get

. regress price length mpg weight

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 3, 70) = 12.98

Model | 226957412 3 75652470.6 Prob > F = 0.0000
Residual | 408107984 70 5830114.06 R-squared = 0.3574

-------------+------------------------------ Adj R-squared = 0.3298
Total | 635065396 73 8699525.97 Root MSE = 2414.6

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
length | -104.8682 39.72154 -2.64 0.010 -184.0903 -25.64607

mpg | -86.78928 83.94335 -1.03 0.305 -254.209 80.63046
weight | 4.364798 1.167455 3.74 0.000 2.036383 6.693213
_cons | 14542.43 5890.632 2.47 0.016 2793.94 26290.93

------------------------------------------------------------------------------

With this new estimation, the sign of length has become negative. The regression
anatomy theorem states that this last estimate of β for length could be also obtained
in two stages and this is exactly the method deployed by the command.

In the first stage, we regress length on mpg and weight

(Continued on next page)
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. regress length mpg weight

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 2, 71) = 312.22

Model | 32497.5726 2 16248.7863 Prob > F = 0.0000
Residual | 3695.08956 71 52.0435149 R-squared = 0.8979

-------------+------------------------------ Adj R-squared = 0.8950
Total | 36192.6622 73 495.789893 Root MSE = 7.2141

------------------------------------------------------------------------------
length | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | -.3554659 .2472287 -1.44 0.155 -.8484259 .137494

weight | .024967 .0018404 13.57 0.000 .0212973 .0286366
_cons | 120.1162 10.3219 11.64 0.000 99.53492 140.6975

------------------------------------------------------------------------------

from which it becomes clear that length and weight are remarkably correlated. In the
second stage, we get the residual value of length conditional on mpg and weight using
the model just estimated and then regress price on this residual reslength.

. predict reslengthr, r

. regress price reslength

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 1, 72) = 4.92

Model | 40636131.6 1 40636131.6 Prob > F = 0.0297
Residual | 594429265 72 8255962.01 R-squared = 0.0640

-------------+------------------------------ Adj R-squared = 0.0510
Total | 635065396 73 8699525.97 Root MSE = 2873.3

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
reslengthr | -104.8682 47.26845 -2.22 0.030 -199.0961 -10.64024

_cons | 6165.257 334.0165 18.46 0.000 5499.407 6831.107
------------------------------------------------------------------------------

The value of the β from this bivariate regression coincides with that obtained from the
multivariate model, although the standard errors slightly differ.

The command reganat uses the decomposability of the regression anatomy theorem
to plot the relation between price and length on a bi-dimensional cartesian graph,
even though the model we are actually using is multivariate. Actually, the command
plots price and reslength using the command

. reganat price length mpg weight, dis(length)
Dependent variable: price
Independent variables: length mpg weight
Plotting: length

which produces the graph of fig. (1). The graph displays the variable length after
partialling out the influence of mpg and weight. Remarkably, this variable now assumes
also negative values, which it did not happen in the original data. This happens because
residuals have zero expected value by construction; accordingly, the original data have
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been scaled to have zero mean in order to be displayed on the x-axis together with
residuals.

It is instructive to compare graphically the model obtained using the bivariate model
and the multivariate model adding the options biscat and biline.

. reganat price length mpg weight, dis(length) biscat biline
Dependent variable: price
Independent variables: length mpg weight
Plotting: length

This command produces the graph of fig. (2). The graph also displays, for both models,
the numerical value of β and its standard error at 95% in parentheses.

The other variables of the model can also be plotted on the graph to check whether
the inclusion of additional controls does influence their effect on the dependent variable.

. reganat price length mpg weight, dis(length weight) biscat biline
Dependent variable: price
Independent variables: length mpg weight
Plotting: length weight

This produces the composite graph of fig. (3). The inclusion of additional controls
also affects the β for weight: in the bivariate model its value is less than half as much
as in the multivariate model, as it is clear from the observation of the different slopes
in the right panel.

The command is also useful when searching for outliers. Using the option label
adds labels to the points in the scatterplot.

. reganat price length mpg weight, dis(length) label(make)
Dependent variable: price
Independent variables: length mpg weight
Plotting: length
Label variable: make

This particular option produces fig. (4) from which it is evident that the observation
for Cadillac Seville is a candidate for deletion. Dropping that observation and plotting
the resulting scatterplot and regression line

. drop if make == "Cad. Seville"
(1 observation deleted)

. reganat price length mpg weight, dis(length) label(make)
Dependent variable: price
Independent variables: length mpg weight
Plotting: length
Label variable: make

produces the graph of fig. (5) that shows a significant drop in the estimated value of β.
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Figure 1: Regression anatomy.
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Figure 2: Regression anatomy: original and transformed data.
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Figure 3: Regression anatomy. Composite graph.
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Figure 4: Regression anatomy. A search for outliers.
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Figure 5: Regression anatomy. The model without an outlier.


