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1 Background

Our objective is to obtain the OLS estimates for β in the regression y = Xβ+D1α1+D2α2+D3α3+ε,
where Di represents a set of indicator or design variables, and αi is the set of associated fixed effects.

Let M , P be the usual annihilator and projection matrices in an OLS regression. When the
regressors are dummy variables, P and M are just averages and demeaned values within each group
respectively. Also, from the normal equation we know the projection matrix is orthogonal to the
residuals: Pe = 0.

Recall the two-part FWL theorem. Its first part states that we can regress y = Xβ + D1α1 +
D2α2+D3α3+ε by first regressing y and each X against the set D1, D2, D3, and then just regressing
the residuals of y against the residuals of X. The second part states that the residuals of both
regressions are also identical.

Thus, the strategy will be to apply FWL to obtain residuals of (y,X) with respect to all the
indicator variables, and then regress the residuals to obtain estimates for β.

Notice that estimates for each α can still be recovered, but they may not be identified.

2 Fixed Point Iteration

To regress against dummies there are two usual approaches: (i) add the dummies explictly or (ii)
demean all the variables. Option (ii) is much faster but can only be done once, so if we have two
or more sets of DVs the usual approach is to apply (ii) to the fixed effect with more dimensions
(i.e. categories) and (i) to all the others. However, if there are two or more sets of high-dimensional
DVs, we would have to create a lot of dummies which is impractical (b/c of out of memory errors,
etc.).

Instead, we’ll apply a fixed-point iteration over the normal equations, as suggested by Guimaraes
& Portugal (2010) (i.e., guess a value, and iterate our estimates until the normal equations hold).
Note that instead of iterating the estimates α̂1, α̂2, α̂3, we will iterate Z2 := D2α̂2 and Z3 := D3α̂3.
Also, note that we are not employing Guimaraes et al (2013) version for three sets of FEs, but an
extension of their original work, which works significatively faster.

3 Algorithm

Wlog, start with y,

1. Compute P1y and ỹ := M1y

2. Initialize Z
(0)
2 = Z

(0)
3 = 0
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3. Until Z2 and Z3 converge, set

(a) Z
(n)
2 = P2

[
ỹ + P1

(
Z

(n−1)
2 + Z

(n−1)
3

)
− Z(n−1)

3

]
(b) Z

(n)
3 = P3

[
ỹ + P1

(
Z

(n)
2 + Z

(n−1)
3

)
− Z(n)

2

]
4. Then, compute Z1 = P1(y − Z2 − Z3) and with that compute y∗ = y − Z1 − Z2 − Z3, which

is what we desire.

After repeating this for every variable, regress the transformed variables (y∗ = X∗β̂+e)to obtain
the correct estimates β̂. Notice that the residuals of this FWL regression are the same as those of
the full regression.

If you want to obtain the fixed effects for the regression, notice that y = Xβ̂+Z1 +Z2 +Z3 + e
where both β̂ and e are the same as in the transformed regression. Thus, compute ẽ := y −Xβ̂ =
e + Z1 + Z2 + Z3 , and then apply the previous step to obtain the Z1, Z2, Z3 fixed effects for that
variable.

Notice that if we remove the third FE (i.e. set Z3 = 0), the formula collapses to the usual
two-FE version.

4 Deriving the fixed point iteration with three fixed-effects

1. Start with the identity y = D1α̂1 +D2α̂2 +D3α̂3 + e = Z1 + Z2 + Z3 + e, where Zi := Diα̂i

2. Premultiply by M1 to obtain ỹ = M1Z2 +M1Z3 +e, since M1D1 = D1−P1D1 = D1−D1 = 0
and M1e = e− P1e = 0 (from the normal equation).

3. Rearrange Z2 + Z3 = ỹ + P1 (Z2 + Z3)− e

4. Premultiply by P2 and notice that P2e = 0, and after rearranging, obtain Z2 = P2 [ỹ + P1 (Z2 + Z3)− Z3]

5. Premultiply by P3 and obtain the equivalent equation for the third fixed effect.

With these formulas, and adding a little more structure (to show that the fixed point is attractive,
etc.), we can turn the formulas above into a fixed point iteration that will converge linearly.

5 Implementation details

This fixed point iteration is very slow, but there are (at least) two venues for speeding it up.

1. We can minimize the number of P operations and speed them up. First, notice that sorting
the dataset (an O(n log(n)) operation) is not needed to obtain group means. Also, since in
this case P just demeans a variable within a group, we can store the output of Pi as a G1× 1
vector, instead of a N × 1 vector. Finally, we can try precompute intermediate steps such
as P2ỹ (which we only compute once) and P1Z2 (which we only compute once per iteration,
instead of twice).

2. We can try to extrapolate the fixed-point iteration so it converges faster. These methods
are called acceleration tecniques, and of those, we use a vector-based version of Aitken’s ∆2

method. In particular, we are employing method 3 as described by Macleod (1986), which
has a reasonable performance, and accelerating every three iterations.
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All in all, each iteration requires only 6 P operations (2 in the case of just two fixed effects),
which are implemented reasonably fast. Together with the acceleration, this method becomes both
fast and conservative in terms of memory usage.

6 Extension: Algorithm beyond three sets of fixed effects

The algorithm of part 3 can be extended to an arbitrarily large number of fixed effects. This will
lead to the following steps:

Wlog, start with y, and let there be G sets of fixed effects.

1. Compute P1y and ỹ := M1y

2. Precompute Pgỹ ∀g > 1

3. Initialize Z
(0)
g = 0 ∀g > 1

4. Initialize Σ(0) :=
∑G

g=2 Z
(0)
g = 0

5. Until all Zg converge for all g > 1 (this condition can also be replaced by a condition on Σ),
set for g = 2, 3, . . . , G:

(a) Z
(n)
g = Z

(n−1)
g + Pg

[
ỹ + (P1 − 1)Σ(n−1,g−1)

]
(b) Σ(n−1,g) = Σ(n−1,g) + Z

(n)
g − Z(n−1)

g

6. Then, compute Z1 = P1(y−Σ) and with that compute y∗[= My = M1(y−Σ)] = y−Z1−Σ.

Notice that step 5 could be expressed more compactly just in terms of Σ, but that complicates
obtaining the individual FEs.

7 Extension: Interactions between FEs and continuous variables

If we interact a variable V elementwise with each column of a design matrix D representing a set
of K fixed effects, a few adjustements would be required.

First, note that it’s equivalent to estimating a system of bivariate regressions. For instance, if
the D matrix had three fixed effects (i.e. it’s a N × 3 matrix), then PD could be written as the
partitioned matrix:  P1 0 0

0 P2 0
0 0 P3


And each Pj would be in turn be equal to (for the case of 3 obs. in the group j): v211 v1v2 v1v3

v2v1 v222 v2v3
v3v1 v3v2 v233


(subindices are relative to each group)
Then, we can show that U := PDy is such that ui = vi × qg(i), where Q is a K × 1 vector s.t.

qj =

∑
i s.t. Dij=1 viyi

v2i
.
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In terms of code, before we obtained a Q matrix where vi = 1, so we were basically computing

group means (qj =

∑
i s.t. Dij=1 yi

Nj
) and now we are i) weighting them and ii) multiplying by vi

afterwards.
Some optimizations can be done, such as precomputing the denominators of Q, and doing scalar

products of v and y so we can use the code of group means without many changes.

8 Extension: Instrumental Variables

Just demean all variables w.r.t the set of fixed effects. Then, we just run the first stage and second
stage regressions taking care of adjusting the standard errors.
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