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Abstract

We present a new family of Stata functions devoted to small area estimation, sae. Small area methods
attempt to solve low representativeness of surveys within areas, or the lack of data for specific areas/sub-
populations. This is accomplished by incorporating information from outside sources. Such target
datasets are becoming increasingly available, and can take the form of traditional population census,
but also large scale administrative records from tax administrations, or geospatial information produced
using remote sensing. The strength of these target datasets is their granularity on the subpopulations of
interest, however, in many cases they lack the ability to collect the analytically relevant variables such
as welfare or caloric intake. The family of functions are introduced in a modular design in order to
have the flexibility with which these can be expanded in the future. This can be accomplished by the
authors and/or other collaborators from the Stata community. Thus far, a major limitation towards such
analysis in Stata has been the large size of target datasets. The package introduces new mata functions
and a plugin used to circumvent memory limitations that inevitably arise when working with big data.
From an estimation perspective we start by implementing the methodology from Elbers, Lanjouw, and

Lanjouw (2003) which has been widely used for the production of several poverty maps.
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1 Introduction

Household surveys that are designed for national or sub-national (i.e. regions or states) level parameter
estimates often lack a sufficiently large sample size to generate accurate direct estimates for smaller domains

1 Any area for which the sample is not sufficiently large to produce an estimate of

or sub-populations.
adequate precision is referred to as a small area. Consequently small area methods attempt to address low
representativeness of surveys within areas, or the lack of data for specific areas/sub-populations. This is
accomplished by incorporating information from supplementary sources. In the methodology presented by
Elbers, Lanjouw, and Lanjouw (2003) the desired estimate is produced by a model done using survey data
which is then linked to outside information such as a population census, administrative records, and/or
geospatial information obtained through remote sensing. As Rao and Molina (2015) state, the availability

of these auxiliary data as well as a valid model are essential for obtaining successful small area estimates.

In the case of poverty measures, which are nonlinear parameters, small area estimation methods coupled
with Monte Carlo simulations are a useful statistical technique for monitoring poverty along with its spatial
distribution and evolution.? Poverty estimates are often produced by statistical agencies, and commonly are
the product of a household survey. Household surveys usually are the main source of welfare (expenditure
or income) used to produce poverty estimates, yet most are only reliable up to a certain geographical level.
Therefore, a commonly adopted solution has been to borrow strength from a national census, administrative
records, and/or geospatial information which allows for representativeness for small areas. Nevertheless,
these outside data sources often lack detailed expenditure or income information required for producing
estimates of poverty. Small area methods attempt to exploit each data’s attributes to obtain estimators that

can be used at dis-aggregated levels.

Poverty at lower geographical levels can be used to identify areas that are in need of attention, or that may
be lagging behind the rest of the country. For example, the government of Ecuador after an earthquake that
occurred on April 16, 2016 relied on small area estimates of poverty to decide where help was needed most.
The small area estimates of poverty for Ecuador, which were released not long before the earthquake, proved

to be an invaluable resource for the rebuilding effort in the country.

One of the most common small area methods used for poverty estimates is the one proposed by Elbers,
Lanjouw, and Lanjouw (2003, henceforth ELL).? This methodology has been widely adopted by the World
Bank and has been applied in numerous poverty maps* conducted by the institution. In its efforts to make
the implementation of the ELL methodology as straight forward as possible, the World Bank created a
software package that could be easily used by anyone. The software, PovMap (Zhao, 2006),% has proven to
be an invaluable resource for the World Bank as well as for many statistical agencies, line ministries, and
other international organizations seeking to create their own small area estimates of poverty. The software
is freely available and has a graphical user interface which simplifies its use. Nevertheless, more advanced

practitioners who may wish for more functionality and options may have to program it themselves. In an

1For example districts, municipalities, migrant populations, or populations with disabilities.

2Poverty is a nonlinear function of welfare, consequently small area estimation methods of linear characteristics are invalid
(Molina and Rao, 2010). A proposed solution to this problem is to use Monte Carlo simulation to obtain multiple vectors of
the measure of interest (Elbers, Lanjouw, and Lanjouw, 2003).

3For a detailed discussion of different applications of small area poverty estimates by the World Bank, readers should refer
to Bedi et al. (2007), for other applications readers should refer to Rao and Moline (2015).

4Poverty map is the common name within the World Bank for the methodology where the obtained estimates are mapped
for illustrative purposes.

5downloadable from: http://iresearch.worldbank.org/PovMap/PovMap2/setup.zip



effort to simplify the process we have created a family of Stata commands which implement small area
estimation methods, and provides users with a valid, modular, and flexible alternative to PovMap. All of
the results produced with sae have been bench-marked with the well established PovMap software, and are

an exact match.b

In the following section we discuss the linking model and focus on the first stage of the estimation. How the
variance of the location effect present in the linking model is accounted for is discussed afterwards. This is
initiated by presenting the ELL methodology for decomposing the first stage residuals’s variance parameters.
Afterwards, this is followed by Henderson’s Method III decomposition of the residual’s variance parameters
and the adaptation of Huang and Hidiroglou’s (2003) GLS and implemented by Van der Weide (2014) in
an update to the PovMap software. Then we present Empirical Bayes prediction of the location effects. We

finally present the command’s syntax along with examples of its use.

2 First Stage: Model

When survey data is not sufficiently precise for reliable estimates at low geographical levels, small area
estimation can be implemented. This commonly relies on borrowing strength from outside sources to generate
indirect estimates (Rao and Molina, 2015). For example, when attempting to obtain welfare estimates at low
geographical levels, it is possible to borrow strength from census data. Censuses in most cases do not collect
sufficient information on incomes and/or expenditures. On the other hand household surveys tend to collect
detailed information on incomes and/or expenditures which allow the generation of welfare statistics such
as poverty and inequality measures. Although welfare statistics can be obtained using household surveys,
these are rarely sufficiently large to allow for statistics corrsponding to small areas (Tarozzi and Deaton,
2009). Small area estimation methods attempt to exploit the large sample size of census data and combine

this with the information from household surveys in an attempt to obtain reliable statistics for small areas.

In its essence the small area estimation presented here relies on using household survey data to estimate
a joint distribution of the variable of interest and observed correlates, and use the parameters to simulate
welfare using census data (Demombynes et al., 2008). Through out the text we focus on welfare imputation,
since this is what the Elbers, Lanjouw, and Lanjouw (2003) methodology focused on, nevertheless it can be

applied for other continuous measures aside from welfare.

The first step towards small area welfare imputation is a per-capita’ welfare model, estimated via ordinary
least squares (OLS), or weighted least squares (W LS):

InY = XBys +u (1)

where InY is a N x 1 matrix indicating the household’s welfare measure (usually in logarithms, but not
necessarily),® X is a N x K matrix of household characteristics, and u which is a N x 1 matrix of disturbances.

To achieve valid small area estimates it is necessary that the set of explanatory variables, X, used in the

6For the 1st stage of the analysis. The second stage relies on Monte-Carlo simulations, and thus differences are likely to
arise.

7Other household equivalization methods are also feasible, for example adult equivalent household welfare.

8Logarithmic transformation is usually preferred since it makes the data more symmetrical (Haslett et al., 2010).



first stage model can also be found in the census data. It is important that the variables are compared

beforehand to verify that not only their definitions are in agreement, but also their distributions.”

In the design of household surveys, clusters are commonly the primary sampling unit. Households within a
cluster are usually not independent from one another, to allow for the clustering of households and their in-
terrelatedness, the random disturbances (u.p,), — where the indexes ¢ and h stand for cluster and observation,

respectively — are assumed to have the following specification (Haslett et al., 2010):

Uech = Te + ech (2)

where 7. and e, are assumed to be independent from each other with different data generating processes
(Haslett et al., 2010).1° Therefore the resulting model we wish to estimate is a linear mixed model (Van der
Weide, 2014).1!

The literature has suggested different methods for estimating the unconditional variances of these param-
eters;'? for the purposes of this paper focus is given to the methods presented by Elbers, Lanjouw, and
Lanjouw (2003), and the adaptation of Henderson’s Method III by Huang and Hidiroglou (2003) detailed
and expanded upon by Van der Weide (2014). The next section describes in detail these two approaches.

3 Estimating the unconditional variance of the residual parameters

3.1 The ELL Methodology

The methodology for estimating the location’s unconditional variance detailed by ELL (2002 and 2003) is
presented in the discussion below. The method consists of two steps. The initial step relies on estimating
a welfare model (Eq:1) using household survey data, and then obtaining generalized least square (GLS)
estimates for the model. Given the interrelatedness between households in a cluster, ordinary least squares
is not the most efficient estimator. The second stage consists in utilizing the parameter estimates from the

first stage and applying these to census data to obtain small area poverty and inequality measures.

Because the motivation is to implement the methodology into a Stata command, where possible, we also
follow the methods implemented by PovMap (Zhao, 2006). It must be noted, however, that the methodology
utilized by ELL is not necessarily the one followed by the PovMap software. Places where methodologies

differ will be indicated in footnotes.

From the estimation of equation 1 we obtain the residuals 4.p, and by defining 4. as the weighted average

of fiep, for a specific cluster we can obtain é.p:

ﬁch - ac. + (ﬁch - ﬁc) = 7/7\12 + éch (3)

9This point is crucial, and the quality of a good poverty map is highly dependent on these two criteria being met. For further
discussion and motivation refer to: Tarozzi and Deaton (2009).

10Note that the interrelatedness of 7. across observations is already a violation of OLS assumptions.

M Molina and Rao (2010) follow the naming convention of nested error linear regression model. Regardless of its name,
standard OLS is invalid under this structure.

12Rao and Molina (2015)

13¢.;, denotes the household specific error component.



where .. is equal to 7.

The unconditional variance of the location effect 1. given by ELL (2002) is:

. S we(te, —u.)? = we(1 — we)72
U%:max( < Zw(lffu) ;0 (4)
where u.. = ZC wete, (Where w, represents the cluster’s weight, i.e. w. = Zh W) and
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3.1.1 Estimating the Alpha Model (heteroskedasticity)'®

The variance of the idiosyncratic error (e.p) is specified by ELL (2003) through a parametric form of het-

eroskedasticity:'7

A epol/zhrO‘ +B

1+ epo;ha

E [efh] = o2 (6)

€ch

In ELL (2003) this is simplified by setting B = 0 and A = 1.05max (éfh)7 and thus the simpler form is
estimated via OLS:'®

2

[ ’
In |:14—he§h:| = Zch(l + Tch (7)

This approach resembles that of Harvey (1976), nevertheless the prediction is bounded.

’
e

By defining exp( ) = D and using the delta method,'® the household specific conditional variance

estimator for e, is equal to (Elbers, Lanjouw, and Lanjouw, 2002):

AD 1— |AD(1 - D)
A2
~ || 4+ SV it S—ts
Tt L+D] 2 T Dy

where \//;(r) is the estimated variance from the residuals of the model in equation (7).

14 Although, ELL (2003) notes that weigths are to be used, the PovMap software does not utilize weights when obtaining .

151, is the number of observations in cluster c.

16The heteroskadistic model is relevant for the variance estimation under ELL’s method, as well as the one under Henderson’s
method III. In its current form, the methodology is from ELL (2003).

17Users have the option to allow for homoskedasticity, in which case 6e = 64 — 64, where 64 is the estimated variance of the
residuals from the consumption model (equation 1). If the user chooses homoskedasticity, equations 6 through 8 are omitted.

18This is the actual model used by PovMap, which we also implement.

9The result is the outcome from a second order Taylor expansion for the E [agch} .



3.1.2 Estimating the distribution of &,2,

ELL (2002) proposes two methods to obtain the variance of & :
1. By simulation (ELL, 2002):

(a) Estimate o7 from equation (4) which yields &7
(b) Estimate o7, from equation (8) which yields &7 ,

(¢) Assuming 7. and e, are independent and normally distributed with mean 0, new values for wu,y,

are generated using equation (2)
(d) Compute a new estimate o; from equation (4)

(e) Repeat 1-4 and keep all simulated values of 67
From the simulated values of 0,2,, the sampling variance of 6727 (Var (&%))can be obtained directly.

2. The sampling variance of 6727 can also be obtained by the following formula (ELL, 2002):2°

2\ 2
Var (&727) —ZQ{QE {(6727>2+ (%62)2+267277A—C2} +b375:0—)1} )

where a. = we/ [}, we (1 —we)], and b, = we(1 —we)/ 3, we (1 —we)].

(a) This is noted by ELL to be an approximation of the sampling variance of 6727. It assumes within
cluster homoskedasticity of the household error component. For a more comprehensive discussion
on this matter refer to ELL (2002).

The command, in its present form only allows for estimation using the second method,?' when estimating

the unconditional variance of 072] using the ELL methodology.

3.1.3 ELL’s GLS Estimator

The GLS estimator offered in ELL’s paper is presented in this section. Although not implemented,?? the
estimator is presented for completeness of the original methodology presented by ELL.

2

Zen (8) and 67 (4) are estimated these are used to construct a matrix (Q) of dimension N x N.

Once &

The matrix for f)c is a square block matrix corresponding to cluster ¢, where the rows and columns are the

2

number of observations in the cluster. Within cluster covariance is given by (’}%. On the diagonal O cp 18
added to obtain the observation specific disturbance varaince. The resulting cluster block of this N x N

matrix is equal to:

A2 | A2 A2 ~2
oyt 0ccn Iy Iy
~2 A2 | A2 ~2
A Un Un +Ue,ch U77
Qc = . . .
A2 A2 A2 | A2
oy oy o —‘rO‘e’Ch

20This is the only option available in PovMap software.

21This is also true for the PovMap software.

22This is due to the lack of symmetry of the resulting variance covariance matrix when weights differ across observations in
a cluster.



where 0 is a block of zeroes; the number of columns equals the Q. from above, and the number of rows to
the Qc next to it.

2 is the variance-covariance matrix of the error vector necessary to estimate equation (1) via GLS and obtain
BGLS and Var (BGLS) The estimates for the GLS detailed by ELL (2003) are:

Bars = (X'WQ'X) ' X'WQly (10)

and

Var (Bas ) = (X'WQTIX) 7 (XWQTIWX) (X'WQTIX) ! (11)

where W is a N x N diagonal matrix of sampling weights. Because WQ~! is usually not symmetric,?
as noted by Haslett et al. (2010), the variance covariance matrix must be adjusted to obtain a symmetric
matrix. This is done by obtaining the average of the variance covariance matrix and its transpose (Haslett
et al., 2010).

Newer versions of the PovMap software no longer obtain GLS estimates using this approach. Adjustments
have been made in order to better incorporate the survey weights into 2. The newest version of PovMap

uses the GLS estimator presented by Huang and Hidiroglou (2003), which is discussed below.

3.2 Henderson’s Method III decomposition

After a decade of use of PovMap, and numerous poverty maps completed by the World Bank using the original
ELL small area methodology; the software was updated with Henderson’s Method IIT (H3) decomposition of
the variance components and an update of the GLS with a modification of Huang and Hidiroglou (2003).24
Obtaining the GLS estimates once again requires the estimation of the variance components, which are
estimated using a variation of Henderson’s Method IIT (Henderson, 1953). The variation takes into account
the use of survey weights and was presented by Huang and Hidiroglou (2003). We follow the presentation
offered by Van der Weide (2014) which builds on Huang and Hidiroglou (2003).

In order to obtain the variance components of the Bgrg it is necessary to first estimate a model which
subtracts each of the cluster’s means from the variables. To achieve this we first need to define the left hand
side of the model. For each cluster in our estimation the left hand side is (omitting the natural logarithm

only for display purposes):

g = Ye—(Ye®1r)

23The lack of symmetry is due to the difference in sampling weights between observations.
24This is detailed in Van der Weide (2014).



where Y. is a T x 1 vector (where T is the number of surveyed observations in the cluster) , corresponding
to cluster ¢, of our welfare variable used in equation. 1 Y, is a scalar which is the weighted mean value of Y,
for cluster ¢. 17 is a T x 1 vector of 1s, and ® is the Kroenecker product. Finally, we define § as a NV x 1

matrix which is a vector of all the cluster ¢.s.

For the right hand side we follow the same de-meaning procedure and obtain a matrix &. Additionally,
define & of dimensions C' x K where C' is the number of areas in the survey, with each row representing the

demeaned 7. for a specific cluster. With these in hand it is possible to define the following:

’ ’ ’ -1 ’
SSE = gWﬂ—gW&:(:‘ﬁWﬁc) Wi
’ 1 ’ -
ty = tr[(ﬁ: W:E) (5: (WoW)a:) }
ts = tr|(X'WX)'X' (WoW)X
ty = tr|(XWX)'z (W.oW,)z

where W, is a C' x C' diagonal matrix of cluster weights, and o represents the Hadamard product. Using this

it is possible to estimate the variances o and 0727:

s SSE 12)

2och Weh — 2e (%:Zgh) — 19

ah

YWY - Y'WX (X’WX)il X'WY — (Zch Wep, — t3) (33
Zch Weh, — t4

(13)

A2
0','7—

To obtain the estimates of ), Van der Weide (2014) provides the following for each cluster c:

consequently the 7. for a particular cluster is:

ﬁc = Ye,w Z Wenlen, — % Zvc,w (Z wchﬁch> (14)
h c h

With the updated estimate of 7). it is possible to update the estimate of é.p:

éch = r&ch - ﬁc - Z (ﬁch - 770) (15)
ch

Additionally the distribution of é.,is adjusted such that its variance is equal to &2.



3.3 The GLS Estimator

With the idiosyncratic error terms in hand the heteroskedasticity of the observation specific residual may
be specified.?? In this instance we follow the same steps detailed above for equation 7, from which we can

obtain observation specific 7 ., by using equation 8.

The estimated variances are then used to construct a pair of matrices used to obtain the GLS estimates.
The GLS estimator for [ is:

~ ~ -1 ~
Bars = (X’Q*X) X0~y (16)
and the variance-covariance matrix of the GLS estimator is:

Var {Bam} - (X’Q—lx)_l (X'Q—lvﬂ—lx) (X'Q—lx)_l (17)

where ) as opposed to the one detailed in the ELL method above, incorporates the survey weights into the

matrix. € for each cluster is equal to:

)
Zh Weh A9 Je,ch Zh Weh ~2 7Zh Weh 52
&b — 077 —+ " 5 O',,7 e 5 0'77
Zh Wep ch Zh Wep h Wen
A2
Zh Weh A9 Zh Weh A2 Ue,ch Zh Weh A2
A 5 | 0y Stz ot S 2 | Oy
QC — Zh wch h wch Weh Eh wch
~2
Zhwch A2 Zhwch ~2 Zthh 52 | Fech
5 O-,r] 5 0'77 .« .. 5 O'n —|— w
h Wen Zh Wep Zh Wep ch
Q0 0
. 0o O 0
= 0=
0 O Qo

where 0 is a block of zeroes; the number of columns equals the Qc from above, and the number of rows to

the €, next to it. The V for a particular cluster is equal to:

A2 | A2 ~2 ~2
Jn+0'e7ch oy oy
A2 ~2 | A2 ~2
N Uy] Un+oe,ch 0.77
Ve = ) . .
~2 ~92 A2 | A2
o o Un+oe,ch

25The user may also choose to forego the modeling of household level heteroskedasticity, in which case 2 is constant for all

observations.



where 0 is a block of zeroes; the number of columns equals the V. from above, and the number of rows to
the Vc next to it.

The V matrix is similar to the €} matrix from the ELL methodology. In the most current version of PovMap
users no longer have the option to use the GLS estimator originally offered by ELL (2003), and independently
of how users choose to model the location effect, the manner in which the GLS estimators are obtained is

using the estimators from equations 16 and 17.

4 The Second Stage: Simulation

The final goal of the process described up to this point is to simulate values for the variable of interest. In
the Elbers, Lanjouw, and Lanjouw (2003) context, this entailed log welfare and poverty rates for specific
locations using the census data. Monte Carlo simulation is used to obtain the expected welfare measures
given the first stage model (ELL, 2003). This is done by applying the parameter and error estimates from
the survey to the census data. The goal is to obtain a sufficient number of simulations in order to obtain
reliable levels of welfare. The section begins by introducing Empirical Bayes prediction as is done by Van der
Weide (2014).

4.1 Empirical Bayes Prediction Assuming Normality

Along with the GLS and Henderson’s Method IIT additions to the ELL approach mentioned before, Empirical
Bayes (EB) prediction was also added. EB prediction makes use of the survey data in order to improve
predictions on the location effect. Since EB makes explicit use of data from the survey its use only improves

predictions for areas that are included in the survey.

If we assume that 7. and e, (from equation 1) are normally distributed, then the distribution of 7. conditional
on e, will also be normally distributed (Van der Weide, 2014). The distribution of the random location effect,
7, is obtained conditional on the observation specific residuals of the observations sampled in the location.
Van der Weide (2014) indicates that the assumption of normality for both components of the residual is
necessary to derive the distribution of the random location effects. In order to proceed Van der Weide (2014)
defines the following;:

2

&

Ye,w =

)

o2+, w?, (Zh Wen Dy, gug}:}

With this defined the expected value of the location effect conditional on the residuals of the households

within the location can be obtained:
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Wen
Zh <U2C ) €ch

— 5 — h

E [Uc|€c] =TNc = 70,w 'lCUc,h
2

h Ucch

as well as the variance:
We, h 2
N 2 2 2 Z Ten 2
J— “C
Var [nC] =0y~ Yew | Oy + We, K Oc.p,
h TCen

EB prediction is expected to perform well in the presence of large 7, if many of the locations are covered by
the survey, and if the distributions of the error terms approximate a normal distribution (Van der Weide,
2014).

4.2 Monte Carlo Simulations

ELL(2003) use various specifications in their paper. The options and methods differ depending on how the
variance for the decomposed error terms is obtained. The simulation may be done via parametric drawing of
the parameters, and via bootstrap. The PovMap manual (Zhao, 2006) only details the parametric approach.
Nevertheless, the newest version of the software has incorporated a bootstrap approach to obtaining the

parameters. The steps for the simulation are:

1. Obtain GLS coefficients by drawing from Bgrs ~ N (BGLS, Var (BGLS)). For reasons that will
become apparent in the following steps, this approach is only possible when the user chooses ELL

variance estimation.

(a) A different approach relies in obtaining bootstrapped samples of the survey data used in the first
stage, this is repeated for every single simulation. The latter method yields a set of 3 for every

single simulation.

2. Under the ELL variance estimation approach the cluster component of the error term, 7j. is obtained

by drawing from 7. ~ N (0,62) where we:

(a) Draw 6727 ~ Gamma (6727, Var (6727)) 20

i. With eaché? in hand it is possible to draw the location effects from 7. ~ N (0,67).

ii. Additionally, 7. could be drawn from those estimated in the first stage (semi-parametric),

this is possible to do in the parametric and bootstrapped simulation.

Under Henderson’s method IIT (H3) there is no defined distribution for the 63, parameter. Consequently,

2
n

simulation. This approach is also available under ELL methods. The bootstrap is also necessary for

bootstrapped samples of the survey data are used to obtain 62 and all other parameters for every single
the instances when EB is chosen. When EB is chosen, the bootstrap produces a vector of ns and of 6,27C
for each of the clusters included in the survey and thus for every simulation we draw 7jc ~ N (e, 672,).

For clusters not included in the survey the drawing is: 7, ~ N (0, 63,).

26 As described in Demombynes et al. (2008), Var (&%) may be estimated by simulation as detailed above, or from equation
9. In its present form the only available option is that from equation 9.

11



3. écn, can be drawn from a normal distribution with variance such as the one specified in equation 8.
This is done by:

(a) Drawing a ~ N (&, Var(&)) (it may also be the product of the bootstrap process) and using it on

the census data we obtain a new D = eXp(ZC’La), and using the new D we obtain in conjunction
with the first stage A = 1.05max (¢2,) and \//'z;r(r) we get:

ch

AD

1—,  |AB(1-D)
1+D

~2 + iVar(r) <1 N ﬁ)B

Ue,ch

~
~

From this it is possible to draw é., ~ N (O7 &g’ch).

(b) As an alternative it is also possible to draw from the estimated é., from the first phase (semi-
parametric). In the case of the ELL variance estimation with a parametric drawing of s then
this will be done from one N x 1 vector, when performing bootstrap the drawing is done from the

N x 1 vector corresponding to each simulation.

(¢) Under the assumption of homoskedasticity, the error terms are drawn from é.;, ~ N (O7 53).

4. Once all simulated parameters have been obtained it is possible to obtain the simulated vector of target

values:
Ych = XBGLS + 7770 + éch (18)

(a) This is repeated multiple times (usually a hundred) in order to obtain a full set of simulated

household welfare vectors.

If the interest is small area estimates of income and poverty, once all simulations are finalized a set of incomes
for all observations in the target data may be used to obtain R simulated poverty, or inequality rates for
each domain of interest. Making use of the R indicators produced it is possible to obtain the mean indicator
for each domain of interest (i.e. municipality in the context of a poverty map), as well as the associated

standard errors for the indicator.

5 Computational Considerations

The first stage of the analysis is standard procedure among the typical Stata commands, since the analysis
is done on survey data. There are no considerable computational requirements, and may likely be performed
using the majority of computers available to users. On the other hand, the Monte Carlo simulation requires
the use of the census data. Census data, depending on the country, can range from anywhere between roughly
30 thousand observations to almost half a billion. Depending on a user’s computer set up, a couple million
observations can really slow down the computer to a crawl. Assuming variables in double type precision, a 5
million observation dataset with 30 variables will require roughly 1.1 GB of memory. Therefore, in order to
speed up the second stage operation and to be able to operate with larger datasets a couple of modifications

are implemented.

The first modification concerns importing the census data and formatting it in a more memory friendly way.

Along with the main command we supply a sub-command that allows user to import the census data for

12



the second stage, sae data import. The data is imported one vector at a time and saved into a Mata
format file which is used for the processing of each regressor at a time for each simulation to obtain the
predicted welfare. Proceeding in this manner, the maximum number of observations that can be used in the
simulation stage is increased. As shown in the examples section, this set-up requires preparing the target
dataset beforehand. Due to this set-up, the Monte Carlo simulations are executed one vector at a time. For
smaller datasets it is likely that performing all simulations in one go results in quicker execution times,2”
once we move on to larger census data this method provides faster execution times and allows for more

efficient memory management.

The second modification, is a plugin for processing the simulations and producing the required indicators.
This is only used/necessary for processing indicators. The processing is also done one simulation at a time,
just like the Monte Carlo simulations. The plugin speeds up the process considerably, especially when

requesting Gini coefficients.??

6 The sae Command and Sub-Commands

The sae command and sub-commands for modeling, simulating, and data manipulation are introduced

below. The common syntax for the command is:
sae [routine] [sub routine]

Currently available routines and subroutines are:

sae data import||export : This is used to import the target dataset to a more manageable
format for the simulations. It is also used to export the resulting simulations to a dataset of the

user’s preference.

e sae model lmm/povmap : This routine is for obtaining the GLS estimates of the first stage. The

sub-routines, Imm (linear mixed model) and povmap are used interchangeably.?’

e sae simulate lmm/povmap : This routine and sub-routine obtains the GLS estimates of the first

stage, and goes on to perform the Monte Carlo simulations.

e sae proc stats||inds : The stats and inds sub-routines are useful for processing Mata formatted

simulation output and producing indicators with new thresholds or weights, as well as profiling.

The routines and sub-routines are described in the sections below.

6.1 Preparing the Target Dataset

Due to the potential large size of the target data set, the sae command comes with an ancillary sub-
command (sae data import) useful for preparing the target dataset and convert it into a Mata format

dataset to minimize the overall burden put on the system. The command’s syntax is as follows:

27This is particularly true for MP versions of Stata, which makes use of more than one core for its operations.

28Gini coefficients requires sorting at every level, this is much faster done using a C plugin. Stata’s sorting speed (up this
writing), including Mata’s, is much slower than that of many other software.

29Future work aims to incorporate additional methodologies, such as models for discrete left hand side variables .
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sae data import, datain(string) varlist(string) area(string) uniqid(string)

dataout (string)
The options of the command are all required.

e The datain() option indicates the path and file name of the Stata format dataset to be converted

into a Mata format dataset.

e The varlist() option specifies all the variables to be imported into the Mata format dataset. The
variables specified will be available for the simulation stage of the analysis. Variables must have similar
names between datasets. Additionally, users should include here any additional variables they wish to

include, as well as expansion factors for the target data.

e The uniqid() option specifies the numeric variable that indicates the unique identifiers in the target
dataset. This is necessary to ensure replicability of the analysis, and the name should match the one

of the unique identifier from the source dataset.

e The area() option is necessary and specifies at which level the clustering is done, it indicates at which
level the 7. is obtained at. The only constraint is that the variable must be numeric and should
match across datasets, although it is recommended it follows a hierarchical structure similar to the one
proposed by Zhao (2006).

— The hierarchical id should be of the same length for all observations. For example: AAMMEEE.3°
This structure facilitiates getting final estimates at different aggregation levels.

e The dataout () option indicates the path and filename of the Mata format dataset that will be used

when running the Monte Carlo simulations.

6.1.1 Example: Preparing the Target Data

The sae command requires users to import the target data into a Mata data format file. This is done to

facilitate the process of simulations in the second stage due to the potential large size of the target data.

. sae data import, varlist( xvar  p_hhsize_hh “zvar® pline pline2 rdef rdef2 rentdef rdef_rentroom2 rdef_ren
> tall2) area(localityid_n) uniqid(hhid) datain( censo”) dataout( matadata”)
Saving data variables into mata matrix file (38)

R

6.2 Model

In this section the command for the modeling stage of the analysis is presented. The syntax of this is as

follows:

30In the case this were done for a specific country, AA stands for the highest aggregation level, MM stands for the second
highest aggregation level, and EEE, stands for the lowest aggregation level.
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sae model lmm/povmap depvar indepvar [if] [in] [aw pw fw] , area(varname numeric)

varest(string) [zvar(varlist) yhat(varlist) yhat2(varlist) alfatest(string) vce(string)]

e area(): The area option is necessary and specifies at which level the clustering is done, it indicates
at which level the 7. is obtained at. The only constraint is that the variable must be numeric and
should match across datasets, although it is recommended it follows a hierarchical structure similar to
the one proposed by Zhao (2006).

— The hierarchical id should be of the same length for all observations for example: AAMMEEE.3!

e varest(): Thevarest option allows the user to select between H3 or FLL methods for obtaining the
variance of the decomposed first stage residuals. The selection has repercussions on the options available

afterwards. For example, if the the user selects H3, parameters must be obtained via bootstrapping.

The following are optional. In the case of homoskedasticity, the zvar, yhat, and yhat options should not

be specified.

e zvar(): The zvar option is necessary for specifying the alpha model, the user must place the inde-

pendent variables under the option

e yhat(): The yhat option is also a part of the alpha model. Variables listed here will be interacted
with the predicted § = X from the OLS model.

e yhat2(): The yhat2 option is also a part of the alpha model. Variables listed here will be interacted
with the predicted 3% = (XB)2 from the OLS model.

e alfatest(): The alfatest option may be run in any stage, but is useful for selecting a proper first
stage. It requests the command to output the the dependent variable of the alpha model for users to

model for heteroskedasticity.

e vce(): The vce option allows users to replicate the variance covariance matrix from the OLS in the
PovMap 2.5 software. The default option is the variance covariance matrix from the PovMap software,
vce(ell), the user may specify robust or clustered variance covariance matrix to replicate the results

from the regress command.??

6.2.1 Running the First Stage (welfare model)

The entire process of small area estimation may be run in two stages. It is possible to test the first stage
of the analysis before moving on to the simulation which makes use of the target data. To obtain the first
stage of the analysis the user must have the data ready, and it is recommended that the user has predefined

as macros the variables to be used.

31In the case this were done for a specific country, AA stands for the highest aggregation level, MM stands for the second
highest aggregation level, and EEE, stands for the lowest aggregation level.

32The variance covariance matrix presented by the PovMap software is not standard in the literature. The variance covariance
matrix presented by the PovMap software is equal to o? [(X’WX)71 (X’WQX) (X’WX)fl] where o2 is an estimate of
Var(wepucn). It is easy to see that the weights are included twice in the variance covariance estimator, which makes it
non-standard.
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. sae model povmap 'y~ “xvar® [aw=hhw], area(localityid_n) zvar(“zvar~) ///
> varest(h3) vce(ell) alfatest(pp)
note: p_age omitted because of collinearity
WARNING: 76 observations removed due to less than 3 observations in the cluster.
OLS model:
lny Coef. Std. Err. z P>|z| [95% Conf. Intervall
dw_bath .1397767 .0200267 6.98 0.000 .100525 .1790283
dw_btype_d3 .0496587 .0211568 2.35 0.019 .0081921 .0911253
edu_postsec .0816588 .0883387 0.92 0.355 -.0914818 .2547994
edu_prim -.8848284 .1744707 -5.07 0.000 -1.226785  -.5428722
j_firm_accessl .0382874 .0129973 2.95 0.003 .0128132 .0637616
jud_erate .8928555 .2215139 4.03 0.000 .4586962 1.327015
jud_occup_el_sh -1.333666 .2481222 -5.38 0.000 -1.819977  -.8473555
p_activity_1_sh -.204576 .0306396 -6.68 0.000 -.2646285  -.1445235
p_age .0134131 .0023387 5.74 0.000 .0088293 .0179968
p_age2 -.0000788 .0000238 -3.31 0.001 -.0001255 -.0000321
p_ecstat_2_sh -.2178931 .0840416 -2.59 0.010 -.3826117 -.0531745
p_ecstat_4_sh .4529504 .0297431 15.23  0.000 .394655 .5112458
p_ecstat_hh_2 -.1803367 .0690036 -2.61 0.009 -.3155813  -.0450921
p_elder_sh .4871691 .0363326 13.41  0.000 .4159585 .5583797
p_hhsize_1 -.1331209 .0253237 -5.26  0.000 -.1827544  -.0834874
p_isced_max_0 -.5169389 .0540608 -9.56 0.000 -.6228961  -.4109817
p_isced_max_1 -.3758244 .0257263 -14.61  0.000 -.426245  -.3254037
p_isced_max_2 -.221132 .0191942 -11.52  0.000 -.2587519  -.1835122
p_isced_max_4 .138612 .0286283 4.84 0.000 .0825016 .1947225
p_isced_max_5 .2343928 .024233 9.67 0.000 .1868969 .2818887
p_isced_max_6 .237176 .0802218 2.96 0.003 .0799442 .3944078
p_male .1836228 .0218718 8.40 0.000 .140755 .2264906
p_marital_hh_1 -.052893 .030501 -1.73 0.083 -.1126738 .0068878
p_marital_hh_3 -.0809455 .0206275 -3.92  0.000 -.1213747  -.0405163
p_occup_pr_sh .3670144 .0363299 10.10  0.000 .2958092 .4382196
p_workstat_1_sh .5260943 .0270113 19.48 0.000 .4731532 .5790354
rooms_pc .0470549 .0109036 4.32  0.000 .0256843 .0684255
_cons 7.132082 .1597874 44.63  0.000 6.818904 7.445259
Alpha model:
Residual Coef.  Std. Err. z P>|z| [95% Conf. Intervall
p_activity_1_sh -.3447938 .1425119 -2.42 0.016 -.624112  -.0654756
p_ecstat_4_sh -.8035096 .1585224 -5.07 0.000 -1.114208 -.4928114
p_ecstat_hh_4 -.3006224 .118973 -2.53 0.012 -.5338051  -.0674397
p_elder_sh -.88772156 .1511032 -5.87 0.000 -1.183878 -.5915647
p_isced_max_1 -.1701583 .10368 -1.64 0.101 -.3733673 .0330507
p_isced_max_5 .2211589 .1155722 1.91 0.056 -.0053584 .4476762
p_male .156548 .1078049 1.45 0.146 -.0547458 .3678417
p_marital_hh_1 .1685545 .1322579 1.27 0.203 -.0906662 4277752
p_occup_pr_sh .5477886 .1793579 3.05 0.002 .1962536 .8993236
p_workstat_1_sh -1.289935 .1263831  -10.21  0.000 -1.537641  -1.042228
rooms_pc .124589 .0411818 3.03 0.002 .0438741 .2053038
_cons -6.317578 .131562  -48.04 0.000 -6.5753563  -6.059804
GLS model:
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lny Coef. Std. Err. z P>|z| [95% Conf. Intervall

dw_bath .1397681 .018897 7.40 0.000 .1027307 .1768054
dw_btype_d3 .043487 .0194832 2.23 0.026 .0053006 .0816734
edu_postsec .2515946 .1255387 2.00 0.045 .0055434 .4976459
edu_prim -.4613187 .2236142 -2.06 0.039 -.8995944 -.023043
j_firm_accessl .077631 .0206401 3.76 0.000 .0371772 .1180849
jud_erate .8129607 .3335183 2.44 0.015 .15692769 1.466644
jud_occup_el_sh -1.238829 .352069 -3.52 0.000 -1.928872 -.5487866
p_activity_1_sh -.1952054 .0310771 -6.28 0.000 -.2561153 -.1342954
p_age .0146863 .0021284 6.90 0.000 .0105146 .0188579

p_age2 -.0000884 .0000208 -4.25 0.000 -.0001292 -.0000477
p_ecstat_2_sh -.1790066 .090007 -1.99 0.047 -.3554171 -.0025961
p_ecstat_4_sh .3970182 .0272502 14.57 0.000 .3436088 .4504275
p_ecstat_hh_2 -.1760779 .0761019 -2.31 0.021 -.3252349 -.0269209
p_elder_sh .408984 .0333136 12.28 0.000 . 3436906 .4742775
p_hhsize_1 -.1450279 .0228201 -6.36 0.000 -.1897545 -.1003014
p_isced_max_0 -.4641431 .0497277 -9.33 0.000 -.5616076 -.3666786
p_isced_max_1 -.3250672 .022455 -14.48 0.000 -.3690782 -.2810562
p_isced_max_2 -.1953666 .0172695 -11.31 0.000 -.2292142 -.1615191
p_isced_max_4 .1499224 .0233206 6.43 0.000 .1042149 .1956299
p_isced_max_5 .2418694 .0224473 10.77 0.000 .1978734 .2858654
p_isced_max_6 .2282902 .0750887 3.04 0.002 .0811191 .3754613
p_male .1945154 .0199999 9.73 0.000 .1553163 .2337145
p_marital_hh_1 -.046479 .0299398 -1.55 0.121 -.1051599 .0122019
p_marital_hh_3 -.0799847 .0177162 -4.51 0.000 -.1147078 -.0452616
p_occup_pr_sh .3263021 .0359602 9.07 0.000 .25658214 .3967828
p_workstat_1_sh .4861585 .0257385 18.89 0.000 .4357121 .536605
rooms_pc .0572602 .0106962 5.35 0.000 .036296 .0782244

_cons 6.668453 .2825154 23.60 0.000 6.114733 7.222173

Comparison between

OLS and GLS models:

Variable bOLS bGLS
dw_bath .13977666 .13976806
dw_btype_d3 . 04965872 .04348699
edu_postsec .0816588 .25159463
edu_prim | -.88482838 -.46131871
j_firm_acc_1 .03828739 .07763102
jud_erate .89285555 .81296068
jud_occup__h -1.333666 -1.2388292
p_acti__1_sh | -.20457601 -.19520536
p_age .01341306 .01468626
p_age2 -.00007879 -.00008844
p_ecstat_2_h | -.21789309 -.17900661
p_ecstat_4_h .45295039 .39701819
p_ecstat_h_2 -.18033673 -.17607789
p_elder_sh .48716911 .40898405
p_hhsize_1 -.13312094 -.14502795
p_isced_ma_0 -.51693886 -.4641431
p_isced_ma_1 -.37582438 -.32506718
p_isced_ma_2 -.22113204 -.19536665
p_isced_ma_4 .13861204 .14992238
p_isced_ma_ b5 .23439281 .24186941
p_isced_ma_6 .23717604 .22829018
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p_male .1836228 .19451539
p_marital__1 -.05289303 -.04647901
p_marital__3 -.0809455 -.0799847
p_occup_pr_h .36701439 .32630214
p_works_1_sh .52609429 .48615854

rooms_pc .04705493 .0572602
_cons 7.1320819 6.6684532

Model settings

Error decomposition H3

Beta model diagnostics

Number of observations = 7564

Adjusted R-squared = .55294896
R-squared = .55454493
Root MSE = .45080868
F-stat = 347.46412

Alpha model diagnostics

Number of observations = 7564

Adjusted R-squared = .03563669
R-squared = .03703931
Root MSE = 2.2858123
F-stat = 26.407274

Model parameters

Sigma ETA sq. = .02312296
Ratio of sigma eta sq over MSE = .11377818
Variance of epsilon = .18255558

<End of first stage>

6.3 Monte Carlo Simulation

The simulation part of the analysis requires more inputs from the user. Depending on the details given and
the purpose of the analysis, the user may obtain poverty rates by the different locations specified or just

output the simulated vectors to a dataset of her choosing. The syntax for the simulation stage is:

sae simulate lmm/povmap depvar indepvar [if] [in] [aw pw fw], area(varname numeric)
varest(string) eta(string) epsilon(string) uniqid(varname numeric) [vce(string)
zvar(varlist numeric) yhat(varlist numeric) yhat2(varlist numeric) psu(varname numeric)

matin(string) pwcensus(string) rep(integer 1) seed(integer 123456789) bootstrap ebest

colprocess(integer 1) lny addvars(string) ydump(string) plinevar(varname numeric)

plines(numlist sort) aggids(numlist sort) indicators(string) results(string) allmata]
The possible options are:

e area(): The area option is necessary and specifies at which level the clustering is done, it indicates

at which level the 7. is obtained at. The only constraint is that the variable must be numeric and
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should match across datasets, although it is recommended it follows a hierarchical structure similar to
the one proposed by Zhao (2006).

— The hierarchical id should be of the same length for all observations for example: AAMMEEE.?3

varest(): Thevarest option allows the user to select between H3 or ELL methods for obtaining the
variance of the decomposed first stage residuals. The selection has repercussions on the options available

afterwards. For example, if the the user selects H3, parameters must be obtained via bootstrapping.

eta(): The eta option allows users to specify how they would like to draw 7). for the different clusters
in the second stage of the analysis. The available options are normal and non-normal. If non-normal

is chosen empirical Bayes is not available to users.

epsilon(): The epsilon option allows users to specify how they would like to draw e, for the
different observations in the second stage of the analysis. The available options are normal and non-

normal. If non-normal is chosen empirical Bayes is not available to users.

uniqid(): The uniqid option specifies the numeric variable that indicates the unique identifiers in

the source and target dataset. This is necessary to ensure replicability of the analysis.

vce(): The vce option allows users to replicate the variance covariance matrix from the OLS in the
PovMap 2.5 software. The default option is the variance covariance matrix from the PovMap software
(ell), the user may specify robust or clustered variance covariance matrix to replicate the results from

the regress command.?*

zvar(): The zvar option is necessary for specifying the alpha model, the user must place the inde-

pendent variables under the option

yhat(): The yhat option is also a part of the alpha model. Variables listed here will be interacted
with the predicted § = X from the OLS model.

yhat2(): The yhat2 option is also a part of the alpha model. Variables listed here will be interacted
with the predicted §? = (XB)2 from the OLS model.

psu(Q): The psu option indicates the numeric variable in the source data for the level at which boot-
strapped samples are to be obtained. This option is required for the cases when obtaining bootstrapped
parameters is necessary. If not specified, the level defaults to the cluster level, that is the level specified

in the area option.

matin(): The matin option indicates the path and filename of the Mata format target dataset. The

dataset is created from the sae data import command; it is necessary for the second stage.

pwcensus(): The pwcensus option indicates the variable which corresponds to the expansion factors
to be used in the target dataset, it must always be specified for the second stage. The user must have

added the variable to the imported data (sae data import) i.e. the target data.

33In the case this were done for a specific country, AA stands for the highest aggregation level, MM stands for the second
highest aggregation level, and EEE, stands for the lowest aggregation level.

34The variance covariance matrix presented by the PovMap software is not standard in the literature. The variance covariance
matrix presented by the PovMap software is equal to o2 [(X’WX)71 (X’WQX) (X’WX)fl] where 02 is an estimate of
Var(wepucen). It is easy to see that the weights are included twice in the variance covariance estimator, which makes it
non-standard.
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rep(): The rep option is necessary for the second stage, and indicates the number of Monte-Carlo

simulations to be done in the second stage of the procedure.

seed(): The seed option is necessary for the second stage of the analysis and ensures replicability.
Users should be aware that Stata’s default pseudo-random number generator in Stata 14 is different

than that of previous versions.

bootstrap: The bootstrap option indicates that the parameters used for the second stage of the
analysis are to be obtained via bootstrap methods. If this option is not specified the default method

is parametric drawing of the parameters.

e cbest: The ebest option indicates that empirical Bayes methods are to be used for the second
stage. If this option is used, it is necessary that eta(normal), epsilon(normal), and bootsrap

options be used.

e colprocess(): The colprocess option is related to the processing of the second stage. Because of
the potential large size of the target data set the default is one column at a time, this however may be

increased with potential gains in speed.

e Iny: The lny option indicates that the dependent variable in the welfare model is in log form. This

is relevant for the second stage of the analysis in order to get appropriate simulated values.

addvars(): The addvars option allows users to add variables to the dataset created from the sim-
ulations. These variables must have been included into the target dataset created with the sae data

import command.

ydump(): The ydump option is necessary for the second stage of the analysis. The user must provide

path and filename for a Mata format dataset to be created with the simulated dependent variables.

plinevar(): The plinevar option allows users to indicate a variable in the target data set which is
to be used as the threshold for the Foster Greer Thorbeck indexes (Foster, Greer, and Thorbeck 1984)
to be predicted from the second stage simulations. The user must have added the variable in the sae

data import command when preparing the target dataset. Only one variable may be specified.

plines(): The plines option allows users to explicitly indicate the threshold to be used, this option
is preferred when the threshold is constant across all observations. Additionally, it is possible to specify

multiple lines, separated by a space.

e indicators(): The indicators option is used to request the indicators to be estimated from the

simulated vectors of welfare. The list of possible indicators is:
— The set of Foster Greer Thorbeck indexes (Foster, Greer, and Thorbeck 1984) FGTy, FGT;, and
FGT, ; also known as poverty head count, poverty gap, and poverty severity respectively.
— The set of inequality indexes: Gini, and Generalized Entropy Index with o =0, 1,2
— Set of Atkinson indexes
e aggids(): The aggids option indicates the different aggregation levels for which the indicators are

to be obtained, values placed here tell the command how many digits to the left to move to get the

indicators at that level. Using the same hierarchical id specified in the area option, AAMMEEE, if

20



the user specifies 0, 3, 5, and 7 would lead to aggregates at the each of the levels E, M, A and the

national level.

e results():

The results option specifies the path and filename for users to save as a txt file the

results the analysis specified in the indicators option.

e allmata:

The allmata option skips use of the plugin and does all poverty calculations in Mata.

6.3.1 Running the Second Stage (Simulation)

The second stage of the command takes considerably longer to run, depending on the target data’s size and

the number of simulations requested. The command with the second stage would look like the following;:

vV V. V VvV V

sae sim povmap 'y~ “xvar® [aw=hhw], area(localityid_n) uniqid(hhid) psu(thepsu)

eta(normal) epsilon(normal) varest(h3) lny pwcensus(p_hhsize_hh) ///

vce(ell)

rep(100) seed(89546) ydump( sfiles”) res( result”)

pline2 rdef rdef2 rentdef rdef_rentroom2 rdef_rentall2) ///
col(10) boot ebest stage(second) aggids(0) indicators(fgt0) ///

matin( matadata”)
plines(5291.52)

note: p_age omitted because of collinearity

Note: Dependent variable in logarithmic form

addvars(pline ///

WARNING: 76 observations removed due to less than 3 observations in the cluster.
OLS model:

lny Coef. Std. Err. z P>|z| [95% Conf. Intervall
dw_bath .1397767 .0200267 6.98 0.000 .100525 .1790283
dw_btype_d3 .0496587 .0211568 2.35 0.019 .0081921 .0911253
edu_postsec .0816588 .0883387 0.92 0.355 -.0914818 .2547994
edu_prim -.8848284 . 1744707 -5.07 0.000 -1.226785 -.5428722
j_firm_accessl .0382874 .0129973 2.95 0.003 .0128132 .0637616
jud_erate .8928555 .2215139 4.03 0.000 .4586962 1.327015
jud_occup_el_sh -1.333666 .2481222 -5.38 0.000 -1.819977 -.8473555
p_activity_1_sh -.204576 .0306396 -6.68 0.000 -.2646285 -.1445235
p_age .0134131 .0023387 5.74 0.000 .0088293 .0179968
p_age2 -.0000788 .0000238 -3.31 0.001 -.0001255 -.0000321
p_ecstat_2_sh -.2178931 .0840416 -2.59 0.010 -.3826117 -.0531745
p_ecstat_4_sh .4529504 .0297431 15.23 0.000 .394655 .5112458
p_ecstat_hh_2 -.1803367 .0690036 -2.61 0.009 -.3155813 -.0450921
p_elder_sh .4871691 .0363326 13.41 0.000 .4159585 .5583797
p_hhsize_1 -.1331209 .0253237 -5.26 0.000 -.1827544 -.0834874
p_isced_max_0 -.5169389 .0540608 -9.56 0.000 -.6228961 -.4109817
p_isced_max_1 -.3758244 .0257253 -14.61 0.000 -.426245 -.3254037
p_isced_max_2 -.221132 .0191942 -11.52 0.000 -.2587519 -.1835122
p_isced_max_4 .138612 .0286283 4.84 0.000 .0825016 .1947225
p_isced_max_5 .2343928 .024233 9.67 0.000 .1868969 .2818887
p_isced_max_6 .237176 .0802218 2.96 0.003 .0799442 .3944078
p_male .1836228 .0218718 8.40 0.000 .140755 .2264906
p_marital_hh_1 -.052893 .030501 -1.73 0.083 -.1126738 .0068878
p_marital_hh_3 -.0809455 .0206275 -3.92 0.000 -.1213747 -.0405163
p_occup_pr_sh .3670144 .0363299 10.10 0.000 .2958092 .4382196
p_workstat_1_sh .5260943 .0270113 19.48 0.000 .4731532 .5790354
rooms_pc .0470549 .0109036 4.32 0.000 .0256843 .0684255
_cons 7.132082 .1597874 44.63 0.000 6.818904 7.445259
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Alpha model:

Residual Coef. Std. Err. z P>|z| [95% Conf. Intervall
p_activity_1_sh -.3447938 .1425119 -2.42 0.016 -.624112 -.0654756
p_ecstat_4_sh -.8035096 .1585224 -5.07 0.000 -1.114208 -.4928114
p_ecstat_hh_4 -.3006224 .118973 -2.53 0.012 -.5338051 -.0674397
p_elder_sh -.8877215 .1511032 -5.87 0.000 -1.183878 -.5915647
p_isced_max_1 -.1701583 .10368 -1.64 0.101 -.3733673 .0330507
p_isced_max_5 .2211589 .1155722 1.91 0.056 -.0053584 4476762
p_male .156548 .1078049 1.45 0.146 -.0547458 .3678417
p_marital_hh_1 .1685545 . 1322579 1.27 0.203 -.0906662 4277752
p_occup_pr_sh .5477886 .1793579 3.05 0.002 .1962536 .8993236
p_workstat_1_sh -1.289935 .1263831 -10.21 0.000 -1.537641 -1.042228
rooms_pc .124589 .0411818 3.03 0.002 .0438741 .2053038
_cons -6.317578 .13152 -48.04 0.000 -6.575353 -6.059804

GLS model:
1lny Coef.  Std. Err. z P>|z| [95% Conf. Intervall
dw_bath .1397681 .018897 7.40 0.000 .1027307 .1768054
dw_btype_d3 .043487 .0194832 2.23 0.026 .0053006 .0816734
edu_postsec .2515946 .1255387 2.00 0.045 .0055434 .4976459
edu_prim -.4613187 .2236142 -2.06 0.039 -.8995944 -.023043
j_firm_accessl .077631 .0206401 3.76 0.000 .0371772 .1180849
jud_erate .8129607 .3335183 2.44 0.015 .1592769 1.466644
jud_occup_el_sh -1.238829 .352069 -3.52 0.000 -1.928872 -.5487866
p_activity_1_sh -.1952054 .0310771 -6.28 0.000 -.2561153 -.1342954
p_age .0146863 .0021284 6.90 0.000 .0105146 .0188579
p_age?2 -.0000884 .0000208 -4.25 0.000 -.0001292 -.0000477
p_ecstat_2_sh -.1790066 .090007 -1.99 0.047 -.3554171 -.0025961
p_ecstat_4_sh .3970182 .0272502 14.57 0.000 .3436088 .4504275
p_ecstat_hh_2 -.1760779 .0761019 -2.31 0.021 -.3252349 -.0269209
p_elder_sh .408984 .0333136 12.28 0.000 . 3436906 4742775
p_hhsize_1 -.1450279 .0228201 -6.36 0.000 -.1897545 -.1003014
p_isced_max_0O -.4641431 .0497277 -9.33 0.000 -.5616076 -.3666786
p_isced_max_1 -.3250672 .022455 -14.48 0.000 -.3690782 -.2810562
p_isced_max_2 -.1953666 .0172695 -11.31 0.000 -.2292142 -.1615191
p_isced_max_4 .1499224 .0233206 6.43 0.000 .1042149 .1956299
p_isced_max_5 .2418694 .0224473 10.77 0.000 .1978734 .2858654
p_isced_max_6 .2282902 .0750887 3.04 0.002 .0811191 .3754613
p_male .1945154 .0199999 9.73 0.000 .1553163 .2337145
p_marital_hh_1 -.046479 .0299398 -1.55 0.121 -.1051599 .0122019
p_marital_hh_3 -.0799847 .0177162 -4.51 0.000 -.1147078 -.0452616
p_occup_pr_sh .3263021 .0359602 9.07 0.000 .25568214 .3967828
p_workstat_1_sh .4861585 .0257385 18.89 0.000 .4357121 .536605
rooms_pc .05672602 .0106962 5.35 0.000 .036296 .0782244
_cons 6.668453 .2825154 23.60 0.000 6.114733 7.222173

Comparison between

OLS and GLS models:

Variable

bOLS

bGLS
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dw_bath .13977666 .13976806
dw_btype_d3 . 04965872 .04348699
edu_postsec .0816588 .25159463

edu_prim | -.88482838 -.46131871
j_firm_acc_1 .03828739 .07763102
jud_erate .89285555 .81296068
jud_occup__h -1.333666 -1.2388292
p_acti__1_sh | -.20457601 -.19520536
p_age .01341306 .01468626

p_age2 -.00007879 -.00008844
p_ecstat_2_h | -.21789309 -.17900661
p_ecstat_4_h .45295039 .39701819
p_ecstat_h_2 -.18033673 -.17607789
p_elder_sh .48716911 .40898405
p_hhsize_1 -.13312094 -.14502795
p_isced_ma_0 -.51693886 -.4641431
p_isced_ma_1 -.37582438 -.32506718
p_isced_ma_2 -.22113204 -.19536665
p_isced_ma_4 .13861204 .14992238
p_isced_ma_ 5 .23439281 .24186941
p_isced_ma_6 .23717604 .22829018
p_male .1836228 .19451539
p_marital__1 -.05289303 -.04647901
p_marital__3 -.0809455 -.0799847
p_occup_pr_h .36701439 .32630214
p_works_1_sh .52609429 .48615854
rooms_pc .04705493 .0572602
_cons 7.1320819 6.6684532

Model settings

Error decomposition H3

Beta drawing Bootstrapped
Eta drawing method normal
Epsilon drawing method normal
Empirical best methods Yes

Beta model diagnostics

Number of observations = 7564
Adjusted R-squared = .55294896
R-squared = .55454493
Root MSE = .45080868
F-stat = 347.46412
Alpha model diagnostics

Number of observations = 7564
Adjusted R-squared = .03563669
R-squared = .03703931
Root MSE = 2.2858123
F-stat = 26.407274
Model parameters

Sigma ETA sq. = .02312296
Ratio of sigma eta sq over MSE = .11377818
Variance of epsilon = .182555568
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<End of first stage>

Initializing the Second Stage, this may take a while...

Bootstrapped drawing of betas and parameters

Number of simulations: 100. Each dot (.) represents 10 simulation(s).
L

Finished running the Second Stage

6.4 Exporting the Simulated Vectors into Stata

This subroutine is useful for bringing in the simulated vectors into Stata. It provides the user the ability
to further manipulate these vectors. Due to the unique structure of the Mata data, this command will only

work with data created in the simulation stage.

The command’s structure is:

sae data export, matasource(string) [numfiles(integer 1) prefix(string) saveold

datasave(string)]

e matasource(): The matasource option allows users to specify the source ydump file created by the
sae simulate routine . Because the size of the file can be quite large, it is advisable to use this with

the numfiles option.

e numfiles(): The numfiles option is to be used in conjunction with the ydumpdta option; it spec-

ifies the number of datasets to be created from the simulations.
e prefix(): The prefix option may be used to give a prefix to the simulated vectors.

e saveold: The saveold option can be specified in conjunction with the ydumpdta option, and makes

the files readable by older versions of Stata.

e datasave(): The datasave option allows users to specify a path where to save the exported data,

this is recommended when using the numfiles option.

6.5 Processing the Simulated Vectors

A set of commands that facilitate the processing of the outputs from the simulation are provided. This
subroutine is useful for post-estimation calculations based on the output of Mata data created in the sim-
ulation stage (6.3). It provides the user the ability to further calculate poverty and inequality indicators.
Those indicators may be based on new aggregated levels, new poverty lines, or different weights that were
not implemented in the simulation stage. In the case of new weights, it is necessary for the user to have

included these new weights in the addvars option.
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6.5.1 Process Indicators

This sub-routine allows for processing the simulated vectors to obtain poverty and inequality indicators.
The command’s structure is:

sae proc indicator, matasource(string) aggids(numlist sort) [INDicators(string) plinevar(string)

plines(numlist sort) area(string) weight(string)]

e matasource(): The matasource option allows users to specify the source ydump file created by the
sae simulate routine . Because the size of the file can be quite large, it is advisable to use this with

the numfiles option.

e aggids(): The aggids option indicates the different aggregation levels for which the indicators are
to be obtained, values placed here tell the command how many digits to the left to move to get the
indicators at that level. Using the same hierarchical id specified in the area option, AAMMEEE, if
the user specifies 0, 3, 5, and 7 would lead to aggregates at the each of the levels E, M, A and the

national level.

e indicators(): The indicators option is used to request the indicators to be estimated from the

simulated vectors of welfare. The list of possible indicators is:

— The set of Foster Greer Thorbeck indexes (Foster, Greer, and Thorbeck 1984) FGTy, FGT1, and
FGT; ; also known as poverty head count, poverty gap, and poverty severity respectively.

— The set of inequality indexes: Gini, and Generalized Entropy Index with o =0, 1,2

— Set of Atkinson indexes

e plinevar(): The plinevar option allows users to indicate a variable in the target data set which is
to be used as the threshold for the Foster Greer Thorbeck indexes (Foster, Greer, and Thorbeck 1984)
to be predicted from the second stage simulations. The user must have added the variable in the sae

data import command when preparing the target dataset. Only one variable may be specified.

e plines(): The plines option allows users to explicitly indicate the threshold to be used, this option
is preferred when the threshold is constant across all observations. Additionally, it is possible to specify

multiple lines, separated by a space.

e area(): The area option is necessary and specifies at which level the clustering is done, it indicates
at which level the 7. is obtained at. The only constraint is that the variable must be numeric and
should match across datasets, although it is recommended it follows a hierarchical structure similar to
the one proposed by Zhao (2006). Note that in this step, the default is to use the defined areas from

the simulation step. In this option the user is given the opportunity to change this grouping.
— The hierarchical id should be of the same length for all observations for example: AAMMEEE.

e weight(): The weight option indicates the new variable which corresponds to the expansion factors
to be used in the target/ydump dataset. The default option is to use the weight variable saved in the
ydump file, if a variable is specified here all results will be obtained with this new weighing. The user

must have added the variable to the target data imported (sae data import).
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6.5.2 Profiling

This sub-routine aids researchers in creating a profile from group classifications that are the outcome from
the simulated census vectors. For example in the context of poverty it allows researchers to break down
characteristics of the poor and non poor. In the context of anthropometric Z-scores it would allow researchers
to obtain characteristics for the individuals who fall below the indicator’s threshold. The command syntax

is as follows:

sae process stats, matasource(string) aggids(numlist sort) [contvar(string) catvar(string)

plinevar(string) plines(numlist sort) area(string) weight(string)]

e contvar(): The contvar option indicates the continuous variables that the user wants to estimate
the mean/distribution based on poor and non-poor groups defined from the defined poverty lines in
either plines or plinevar. Those statistics will be aggregated at the aggregation levels indicated in
the aggids option. The user must have added the variable in the sae data import command when

preparing the target dataset.

e catvar(): The catvar option indicates the categorical variables that the user wants to estimate
the two-way frequencies/distributions based on poor and non-poor groups defined from the defined
poverty lines in either plines or plinevar. Those statistics will be aggregated at the aggregation
levels indicated in the aggids option. The user must have added the variable in the sae data import

command when preparing the target dataset.

All other options resemble those detailed for other subroutines.

7 Conclusions

As we approach the 2020 round of the population census, governments and their respective national systems
of statistics have renewed their international commitments towards the Sustainable Development Goals
(SDG). The SDG will need to be operationalized at a sub-national level or reported for specific subgroups
of the population. Moreover, the expansion of the availability and use of administrative, geospatial and Big
Data sources for evidence based policy making is on the rise, creating a number of important opportunities
for potentially better and more up-to-date measures of social well-being. Against this backdrop, to ensure
the much needed quality and rigor of the analysis produced, the advancement and availability of statistically

valid methods with proper inference such as SAE are required.

Direct estimates of poverty and inequality from household surveys are only reliable up to a certain regional
level. When estimates are needed at lower, more disaggregated levels, the reliability of these is questionable.
Under a set of specific assumptions, data from outside sources along with household survey data may be
combined in order to provide policy makers with a more complete picture on poverty and inequality along

with the spatial heterogeneity of this.

In this paper we introduce a new family of Stata functions, sae, which were designed in a modular and flexible
way to manage the data, estimate models, conduct simulations, and compute indicators of interest. The

estimation functions have been bench-marked against the World Bank’s PovMap software for full validation.
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We hope that the flexibility of this new family of functions will encourage producers of SAE to document
and report in a more systematic manner the robustness of their results to alternative methodological choices
made, improving replicability and increasing transparency on this estimation process. Its modular nature
creates a platform for the introduction of new estimation techniques, such as count and binary models.

Additionally, the modular nature encourages collaboration from the broader Stata community.
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