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Abstract

A common heuristic for evaluating the problem of omitted variable bias in economics is to look at
coefficient movements after inclusion of controls. The theory under which this is informative is one in
which the selection on observables is proportional to selection on unobservables. However, this connection
is rarely made explicit and the underlying assumption is rarely tested. In this paper I first show how, under
proportional selection, coefficient movements, along with movements in r-squared values, can be used to
calculate a measure of omitted variable bias. I discuss practical details of implementation. I then
undertake two empirical exercises to explore the performance of this adjustment in the data. First, I relate
maternal behavior on child birth weight and IQ. Simple controlled regressions give misleading estimates;
estimates adjusted with a proportional selection adjustment do significantly better. Second, I match
observational and randomized trial data for 23 relationships in public health. I show that on average
bias-adjusted coefficients perform much better than simple controlled coefficients and I suggest that a
simple form of this adjustment could dramatically improve inference in many public health contexts.
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1 Introduction

Concerns about omitted variable bias are common to most or all non-experimental empirical work in

economics, other social sciences and the natural sciences. And although randomized experiments are common

in natural sciences and becoming increasingly common within economics, the majority of empirical work in

both settings is still not randomized.1 Within economics, a common heuristic for evaluating the robustness of

a result to omitted variable bias concerns is to look at the sensitivity of the treatment effect to added controls.

The heuristic suggests that if a coefficient is stable as controls are added, this is a good sign that there is little

remaining bias. In a review of non-structural, non-experimental empirical work published in three general

interest economics journals2 in 2012, 75% of papers explored the sensitivity of the results to varying control

sets, and a number of these papers were quite explicit about the relationship between coefficient stability and

omitted variable bias.3

Although it is rarely made explicit, this coefficient stability heuristic relies on the idea that the selection

on observable covariates is informative about the selection on unobservable covariates, an idea which is

formalized in Altonji, Elder and Taber (2005) and Murphy and Topel (1990). I will refer to this as the

proportional selection assumption. In the context of a linear model, these papers show how this assumption can

be used to calculate a causal treatment effect. Neither paper formalizes the link with coefficient movements.

The fact that the link between the proportional selection assumption and coefficient movements is not

explicit creates two problems. First, the use of this as a robustness test is rarely done in the most informative

way. Second, there has been little or no effort to test whether the proportional selection assumption is better

than alternatives (for example, than the alternative that the unobservables are related to the treatment but

there is no information provided about that relationship by the link between treatment and observables). The

informativeness of robustness tests which rely on this proportional selection assumption rest crucially on

whether it is empirically valid.

In this paper I take up both of these issues. I begin by expanding on the theory laid out in Altonji,

Elder and Taber (2005) (hence, AET) and connecting the omitted variable bias directly to coefficient

movements. I provide some explicit guidance for performing a bias adjustment based on this theory. I then

present two validation exercises, both of which take advantage of settings in which I observe a “true” treatment

effect matched to possibly biased estimates.

I begin in Section 2 with the formal theory. I consider the following model : Y = βX +W1 +W2 + ε,

1For example: in 2012 JAMA published 133 major research papers, only 53 of which were randomized. The American Journal of
Public Health published 128, only 14 of which were randomized. The combination of the American Economic Review, the Quarterly
Journal of Economics and the Journal of Political Economy published 69 empirical, non-structural papers, only 11 of which were
randomized.

2American Economic Review, Journal of Political Economy and Quarterly Journal of Economics.
3For example, Chiappori et al (2012) state: “It is reassuring that the estimates are very similar in the standard and the augmented

specifications, indicating that our results are unlikely to be driven by omitted variables bias.” Similarly, Lacetera et al (2012) state:
“These controls do not change the coefficient estimates meaningfully, and the stability of the estimates from columns 4 through 7
suggests that controlling for the model and age of the car accounts for most of the relevant selection.”
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where W1 is observed and W2 is unobserved and the coefficient of interest is β. Note that β cannot be

recovered from regression because of the unobserved elements in the model (this is the standard omitted

variable bias issue). I introduce the proportional selection assumption, which formally links the relationship

between X and the observed variables to the relationship between X and and the unobserved variables. This

link invokes a degree of proportionality, which I denote δ. A value of δ = 1 implies that the observed and

unobserved variables are equally important in explaining X; δ < 1 implies that observables are more

important and δ > 1 that the unobservables are more important.

Under this assumption I show that β can be recovered from: (1) the coefficients on X with and without

controls for observed variables; (2) the r-squared values from controlled and uncontrolled regressions; (3) an

assumption about the r-squared of a (hypothetical) regression which controlled for X, and both observed and

unobserved variables; and (4) a value for the degree of proportionality, δ. The result shows that coefficient

movements do relate to omitted variable bias, but they must be scaled by movements in the r-squared values.

Section 3 discusses implementation. I show how one can perform the baseline adjustment. I suggest

that it would be simple for researchers to calculate a bounding value for δ – namely, the degree of

proportionality which would be necessary to produce a treatment effect of zero – and this would be a natural

replacement for heuristic statements that coefficient movements are “small”.4 I highlight two extensions. First,

I discuss the case where there are additional controls which are unrelated to W1. Second, I discuss the related

heuristic of looking for stability in coefficients as additional controls are added. I then briefly address several

estimation choices, including what controls should be included in W1 and how to evaluate the appropriate

r-squared of the hypothetical full regression.

Following the theory, I turn to two applications which explore how this procedure performs empirically.

It is not possible to directly test the proportional selection assumption, but I argue I can test the assumption

indirectly – and the methodology more generally – by asking whether the proportional selection adjustment

improves inference.5 I do this in two ways. First, by asking whether the more robust relationships (i.e.

confirmed in better or randomized data) are those for which a higher value of δ would be required to produce

a treatment effect of zero. Second, by asking whether a particular value of δ can match the magnitude of the

observational result to true estimates.

In Section 4 I perform the primary validation exercise in the paper. This also provides a model of how

this might be used empirically. I consider links between maternal behavior (prenatal and early life), child birth

weight and child IQ. Many studies – in economics and elsewhere – have suggested links between maternal

behaviors and child outcomes, but most studies are subject to significant concerns about omitted variable bias,

notably associated with socioeconomic status. I use data from the National Longitudinal Survey of Youth

4A Stata command to perform this calculation (psacalc) is available.
5Altonji et al (2008) also compare results from their adjustment to randomized results in a single case (catheterization), although

they consider only the test of the null hypothesis rather than comparing magnitudes. This general procedure is reminiscent of
LaLonde (1986).
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(NLSY) and US Natality Detail Files to estimate (1) the impact of breastfeeding, drinking in pregnancy and

low birth weight/prematurity on child IQ and (2) the impact of maternal drinking and smoking on child birth

weight.

I estimate regressions with and without controls for maternal socioeconomic status, and use the

coefficients and r-squared values to perform the proportional selection adjustment. I draw estimates of the full

model r-squared from published sibling correlations in IQ and birth weight; this is appropriate under the

theory that the omitted variables are measures of family background and, therefore, the maximum variation

that family background could hope to explain is captured by within family correlations.

Using this analysis for validation also requires an estimate of the true causal effect – at a minimum a

conclusion about the null hypothesis and, for actual estimation of δ, a value for β. I draw on two sources.

First, I use external evidence, some of it from randomized trials and others from comprehensive meta-analyses

to draw conclusions about the null. Second, I run sibling fixed effects regressions in the NLSY to provide both

null estimates and values for β. The assumption is that these are closer to the true causal effects, although I

note they are subject to their own concerns. Perhaps comforting, the null conclusions are identical from either

source.

In simple observational regressions with controls there are many “false positive” results. The

proportional selection adjustment performs well. The relationships which require higher values of δ to produce

a treatment effect of zero are more likely to be validated by external evidence and sibling fixed effects

regressions. In all seven relationships estimated, there is a positive value of δ for which the adjusted coefficient

matches the sibling fixed effects estimate. Further, all of the estimated δ values hover around 1 and I show

that performing the proportional selection adjustment using a value of δ = 1, with bootstrapped standard

errors, would have led to much improved inference.

A broader application is to ask whether this procedure could be used to organize a set of results within

an area of research and, ideally, provide guidance for improving inference when new results appear in that

area. I consider this type of application in Section 5 using data on a number of settings in public health which

link positive health behaviors to health outcomes. I argue this may be a fruitful area for this type of

adjustment given that much of the existing literature relies on simple controlled regressions, and these results

often turn out to be biased when better data becomes available. It is also an area of much policy interest.

I argue that a version of this procedure would be especially useful here if one could improve inference

using only information from the feasible regressions. This would allow external researchers to evaluate results

without having to make a detailed analysis of the full model r-squared in each setting. I therefore consider how

this procedure performs when I assume that the amount of variation in Y explained by the unobservables is

the same as the amount explained by the observables. This is a strong assumption; the goal here is to ask

whether even with such a strong assumption we might draw better conclusions with the proportional selection
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adjustment.

With this additional assumption in place, I then undertake a validation exercise similar to the one in

Section 4. I combine NHANES data (for observational correlations) with randomized evidence in two settings:

the relationship between exercise and a number of health measures and the relationship between vitamin

D/calcium (CaD) supplementation and a similar set of measures. I generate a total of 23 treatment-outcome

pairs where I can estimate a relationship in the NHANES and match the point estimate to a treatment effect

from a randomized trial.

As in Section 4, standard controlled regressions produce some false positives. I show that, on average,

relationships in which a higher value of δ would be necessary to produce an adjusted effect of zero are more

likely to be validated in randomized trials. I find that a single value of δ (δ = 0.971) would decrease the overall

error rate by around 27%. Many of the estimates which benefit most from this adjustment are ones in which

the controlled coefficients overstate the benefit of the intervention and the adjusted coefficients match the

truth. I perform several out-of-sample tests and show this performs well. I argue this adjustment may be

applicable to a wide swath of the public health literature where the outcome is a health outcome, treatment is

a good health behavior and we see only imperfect socioeconomic status controls. This adjustment would be

easy for researchers (or research consumers) to perform, and could be helpful in evaluating the plausibility of

results.

2 Theory

Consider the regression model

Y = βX +W1 +W2 + ε (1)

X represents the treatment and the coefficient of interest is β. W1 and W2 represent confounders. Specifically,

W1 is a vector which is a linear combination of observed control variables woj multiplied by their true

coefficients: W1 =
∑Jo
j=1 w

o
jγ
o
j . W2 is a vector which is a linear combination of unobserved control variables

wuj , again multiplied by their true coefficients: W2 =
∑Ju
j=1 w

u
j γ

u
j . I assume that Cov(W1,W2) = 0 and,

without loss of generality, that V ar(X) = 1. The covariance matrix associated with the vector [X,W1,W2]′ is

positive definite.

Assume that Cov(W1, ε) = 0, Cov(W2, ε) = 0 and Cov(X, ε) = 0. Denote the model (1) r-squared as

Rmax. Note that Rmax may be less than 1 if Y is measured with error or there are components of the

variation in Y that are orthogonal to X, W1 and W2.

Define the proportional selection relationship as δ σ1X

σ11
= σ2X

σ22
, where σiX = Cov(Wi, X), σii = V ar(Wi)

and δ is the coefficient of proportionality. I assume that δ > 0 and refer to this as the proportional selection

assumption. This implies that the relationship between X and the vector containing the observables is
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informative about the relationship between X and the vector containing the unobservables.

Define the coefficient resulting from the short regression of Y on X as β̊ and the r-squared from that

regression as R̊. Define the coefficient from the intermediate regression of Y on X and W1 as β̃ and the

r-squared as R̃. Note these are in-sample values.

The omitted variable bias on β̊ and β̃ is controlled by the auxiliary regressions of (1) W1 on X; (2) W2

on X; and (3) W2 on X and W1. Denote the in-sample coefficient on X from regressions of W1 and W2 on X

as λ̂w1|X and λ̂W2|X , respectively and the coefficient on X from a regression of W2 on X and W1as λ̂W2|X,W1
.

Denote the population analogs of these values λW1|X , λW2|X and λW2|X,W1.

All estimates are implicitly indexed by n. Probability limits are taken as n approaches infinity. All

observations are independent and identically distributed according to model (1). By standard omitted variable

bias formulas, I can express the probability limits of the short and intermediate regression coefficients in terms

of these values:

β̊
p→ β + λw1|X + λW2|X

β̃
p→ β + λW2|X,W1

Lemma 1 defines the probability limit of the coefficient difference.

Lemma 1. (β̊ − β̃)
p→ σ1X

σ2
11−σ

2
1X(δσ22+σ11)

σ11(σ11−σ2
1X)

Proof. This follows directly from the probability limits of the auxiliary regression coefficients under the

proportional selection assumption. Proof details are in Appendix A.

Denote the sample variance of Y as σ̂yy and note that σ̂yy
p→ σyy. Lemma 2 defines probability limits

for functions of the r-squared values.

Lemma 2. (R̃− R̊)σ̂yy
p→ [σ2

11−σ
2
1X(σ11+δσ22)]

2

σ2
11(σ11−σ2

1X)
and (Rmax − R̃)σ̂yy

p→ σ22[σ2
11−σ

2
1X(σ11+δ2σ22)]

σ11(σ11−σ2
1X)

.

Proof. This follows directly from the auxiliary regression coefficients and Lemma 1. Proof details are in

Appendix A.

Define the following:

β∗ =



β̃ − δ
[
β̊ − β̃

]
Rmax−R̃
R̃−R̊ if δ=1

β̃ −

[√
[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]

2(1−δ)[β̊−β̃]
2
[R̃−R̊]

]
if δ 6= 1, σ1X ≥ 0

β̃ −

[
−
√

[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]
2(1−δ)[β̊−β̃]

2
[R̃−R̊]

]
if δ 6= 1, σ1X < 0

where Θ =
([
R̃− R̊

]
2σ̂yy +

[
β̊ − β̃

]
2
[
R̃− R̊

])
.
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Proposition 1. β∗
p→ β.

Proof. I outline the proof here, with details in Appendix A. Recall that the bias of interest to calculate is

λ̂W2|X,W1
which, under the proportional selection assumption and by Lemma 1, converges in probability to

δσ22σ1X

σ11−σ2
1X
. δ is assumed to be known so the unknown variables are σ11, σ22 and σ1X .

By Lemmas 1 and 2 we have:

β̊ − β̃ p→ σ1X
σ2

11 − σ2
1X(δσ22 + σ11)

σ11(σ11 − σ2
1X)[

R̃− R̊
]
σ̂yy

p→
[
σ2

11 − σ2
1X(σ11 + δσ22)

]2
σ2

11(σ11 − σ2
1X)[

Rmax − R̃
]
σ̂yy

p→
σ22

[
σ2

11 − σ2
1X(σ11 + δ2σ22)

]
σ11(σ11 − σ2

1X)

This defines a system of three equations in the three unknowns of interest. This system is identified and

solving it completes the proof.

For values of δ close to 1, the simple expression β̃ − δ
[
β̊ − β̃

]
Rmax−R̃
R̃−R̊ will be an approximation for β.

The exact value diverges from this as δ gets significantly larger than 1.

I argue in the next section on implementation that a valuable statistic to report as robustness is the

value of δ such that β = 0. This value can be obtained by rearranging the equations above and the formula

appears in Appendix A.

It is worth briefly noting how the calculation suggested here differs from that suggested in AET. The

proof that the bias is proportional to
σ22σ1,X

σ11−σ2
1,X

is echoed in their work. A primary innovation here is to connect

this bias to objects which are observable from regressions. AET suggest a methodology for calculating bounds

on δ which relies on using the data directly (effectively, using the auxiliary regression coefficients). Their

method recovers δ under the assumption that β∗ →p β. This will be exact if δ = 1, although only approximate

in other cases, as they note. Further discussion is in Appendix B.1.

3 Implementation

The previous section formally establishes the link between coefficient movements with controls and omitted

variable bias under the proportional selection assumption. This section discusses implementation. The first

subsection details the implementation of the baseline result, and discusses two corollaries. The second

discusses the details of several choices about parameters which are necessary for implementation.
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3.1 Bias Adjustment Implementation

I am concerned here with the case where the true model is:

Y = α+ βX +W1 +W2 + ε

andW2 is unobserved to the researcher. Both W1 and W2 are indicies of variables multiplied by their true

coefficients. W1 contains any variables we observe and W2 includes any variables unobserved to the researcher

which are correlated with both Y and X.6

Since the elements of W2 are unobserved one cannot estimate the true model. There are two regressions

the researcher can observe in this case, shown in equations 2 and 3 below. The first controls only for X, the

variable of interest. The second adds controls for the observed confounders. Each of these produces a

coefficient on X.

Y = α̂+ β̊X + ε̂ (2)

Y = α̃+ β̃X + ΨW1 + ε̃ (3)

The commonly used coefficient movement heuristic would simply comment on the difference between β̊ and β̃.

In fact, these two coefficients are inputs to the bias calculation. The calculation also requires the

r-squared values from these regressions. Referring back to proposition (1) above, equation (2) here recovers β̊,

which is simply the OLS coefficient from a regression of Y on X alone, and R̊, which is the r-squared from that

regression. Similarly, equation (3) recovers β̃ and R̃. Completing the bias calculation in proposition 1

additionally requires (a) a value of Rmax and (b) a value of δ. Neither of these is recoverable directly from

regressions, and in Section 3.2 below I will discuss the choice of these values.

To give some intuition for why the r-squared values matter, consider a setup with δ = 1 and Rmax = 1.

This implies that (a) the treatment X is equally related to the observed and unobserved variables and (b)

were we able to control of the unobservables, all variation in Y would be accounted for. Assume that when Y

is regressed on X alone, the coefficient is 0.5 with an r-squared of 0.1 and, when controls are added, the

coefficient moves to 0.4. Now consider two polar cases for the controlled r-squared. In Case 1, the r-squared

value barely moves when controls are included – say, from 0.1 to 0.15. In this case, the remaining omitted

variable bias is huge, because the omitted and included variables are equally related to X, but we expect the

omitted variables to move the r-squared all the way from 0.15 to 1, even though the included variables moved

6Note that we denote W1 as a vector here. In practice there may be multiple controls which are observed (and multiple
unobserved). The assumption stated at the start of Section 2 is that W1 is a linear combination of these controls multiplied by
their true coefficients. Under this assumption one can operationalize this by including multiple variables as controls.
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it only from 0.1 to 0.15.

The opposite case is when the controlled r-squared is 1.0. In this case, there is no bias, since the omitted

controls do not explain any of Y. The same coefficient movement can imply wildly different values for the

causal effect, depending on the movements in r-squared. Figure 1 shows how the resulting β estimate will vary

in this example with the movement in controlled r-squared, even holding constant the coefficient differences.

Putting this intuition and equation into practice, I argue there are two calculations which may be of

interest: a direct calculation of the bias, and a bounding argument on δ.

Direct Bias Calculation: Given both a value for Rmax and δ, one can calculate the coefficient β which

would result if one were able to control for the elements of W2. The full equation for this calculation is given in

Proposition 1. If δ is close to 1, then the simple calculation β∗ = β̃ − δ (β̃−β̊)(Rmax−R̃)

(R̃−R̊)
will be a close

approximation to β.

Bounding Argument on δ : A second way to use this adjustment – perhaps more akin to the use of the

coefficient movement heuristic as robustness – is to adopt a value for Rmax and calculate the value of δ which

would produce β = 0. This is akin to asking how important the unobservables would need to be relative to the

observables to eliminate the estimated effect. The bounding value for δ is calculated by simply setting β = 0

and solving for δ. The general formula for this is given in Appendix A; for δ close to 1 it is approximated by

δ̂ = β̃(R̃−R̊)

(β̃−β̊)(Rmax−R̃)
.

Stata code accompanying this paper7 preform this calculation.

These calculations are appropriate only under the proportional selection assumption – that is, only if

the relationship between the observed controls and X is informative about the relationship between the

unobserved controls and X. In regression form, the condition states that if an OLS regression of X on the

index observed controls W1 yields a coefficient of 1, then a regression of X on the index of unobserved controls

W2 would yield a coefficient of δ. There may be no a priori reason to think this is appropriate and testing it,

at least in a limited set of contexts, is the focus on Sections 4 and 5 of the paper.

Section 3.2 below discusses the various choices necessary in doing this estimation – in particular, choices

of W1, Rmax and, if necessary, δ. Before doing that, however, I briefly discuss two important extensions.

3.1.1 Additional Controls

This procedure recovers the coefficient which the researcher would estimate if the elements of W2 could be

observed. This need not be the causal impact of X on Y , however, and will not be if there are other important

controls. Consider the case in which the true model is given by equation 4 below.

Y = α+ βX +W1 +W2 + m + ε (4)

7The command is psacalc and is available through ssc.
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and assume that the vector of variables m is correlated with both X and Y, but orthogonal to W1 and W2. If

m is observed, it is possible to recover β using a variation on the procedure described above. In particular, one

can estimate equations (2) and (3) including m in both regressions. The coefficient movement between the two

regressions with and without W1 can be used to recover β.

If m is unobserved, it is still possible to use the procedure to recover the value β which would result

from estimation of equation (5) below8, but note that because m is omitted, β 6= β.

Y = α+ βX + Ψ1W1 + Ψ2W2 + ε (5)

Appendix B.2 proves this result.

This discussion has two implications. First, this procedure recovers the treatment effect that would be

estimated if we could control for the unobservables which are related to the observables. If there is another

category of unobserved variables, this will not be the causal effect (although it could be close if m is relatively

unimportant).

The second practical implication is to note that it may be that not all controls should be included as

part of W1. Controls which do not have a corresponding unobserved component should, instead, be included in

both observed and unobserved regressions. An example of this would be something like sex: adjusting for sex

is likely to matter for many applications, but since it is fully observed it may be inappropriate to assume that

resulting coefficient movements reflect what would happen with additional controls. A corollary is that

movements in the treatment effect when the components of m are introduced contain no information. Even

very large movements in the treatment effect should not lead one to worry about the robustness of the result.

The choice of what variables are in W1 versus m is discussed in more detail in Section 3.2.1.

3.1.2 Stabilizing Coefficients

In cases where some controls make a lot of difference in estimates, researchers often invoke a stabilizing

coefficient heuristic. This involves showing that although the first controls change the treatment effect a lot, as

additional controls are added, the coefficient moves less. The assumption is then that any further controls

would not move the coefficient much.

I capture this idea by assuming the true model is given by

Y = α+ βX +W ∗1 +W ∗∗1 +W2 + ε

where both W ∗1 and W ∗∗1 are observed, and W2 is not. This heuristic involves first, observing that the

8Note that the coefficients on W1 and W2 are no longer equal to 1 but are biased by the exclusion of m through the joint
correlation with X.
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estimated impact of X changes significantly when controls for the elements of W ∗1 are included. Then, second,

adding controls for the element (or elements) of W ∗∗1 and observing the coefficient changes relatively little.

Third, concluding that further controls for W2 would also move the coefficient relatively little.

It is clear, first, from the discussion above that this assumes that the proportional selection assumption

holds for the elements of W ∗∗1 and W2 only. That is, it assumes that W ∗1 does not have proportionally selected

unobservables. Effectively, W ∗1 behaves like m in Section 3.1.1. If, in fact, W ∗1 should be considered part of the

set which has related unobservables, one cannot learn much from this exercise.9

If we are willing to assume that this is appropriate – namely, that the final controls added are

representative of the unobservables – then it is still necessary to consider the full bias adjustment. In this case,

β̊ and R̊ come from the regression with X and W ∗1 only and β̃ and R̃ come from the regression with controls

for both W ∗1 and W ∗∗1 .

A key is to note that even if the coefficient difference is quite small, it may be scaled up by a vary large

number if the r-squared does not move much and is not close to Rmax. In some cases, the final control added

may be relatively unimportant in the regression – moving the r-squared only a bit – and therefore the fact that

the coefficient is relatively stable does not imply the adjustment is small.

This suggests that this particular heuristic should be taken with caution. The fact that it is possible to

identify some control which, when added, does not move the coefficient much is meaningless on its own. It is

informative only if (a) this last control is the one which is proportional to the unobservables and (b) the small

coefficient movement is accompanied by a large r-squared movement or the r-squared after this control is close

to or at Rmax.

3.2 Parameter and Variable Choice

Calculating the bias adjustment described above requires the researcher make several choices: (1) what

elements are in W1 and what, if any, are in m, (2) what is the value for Rmax and (3) if one is interested in

calculating the true β (rather than providing bounds), a value for δ. These three issues are briefly discussed

below.

3.2.1 Choice of Controls

The vector of controls used in W1 should include observed variables with related unobserved components. A

common case empirically (and the one I consider in the applications below) would be one in which the primary

omitted variables are components of socioeconomic status. In this case, the elements of W1 should be

whatever measures of socioeconomic status are observed by the researcher – education, income, etc. The

9This point relates closely to the discussion of this problem in Murphy and Topel (1990). They suggest there that researchers
should consider which observable is “most like” their unobservables, and consider the coefficient movement after that is included.
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proportional selection assumption is then that the elements of socioeconomic status the researcher doesn’t see

– for example, details about education, parental education, etc – relate to the treatment in a way proportional

to how the observed elements relate.

In contrast, m should contain variables which are potentially important controls in the sense that they

are correlated with X and Y but which do not have omitted components. One clear special case would be one

of conditional random assignment. The variables on which assignment is conditioned should be included in m.

It is likely these have large impacts on the estimate of treatment effects, but since assignment is random after

they are adjusted for, we should not expect related unobserved controls to matter.

There are also cases in which some demographic elements should be included in m. To consider a

concrete example: some of the analyses below considers child IQ as an outcome. In that case, because of the

way the tests work, older children have higher scores. It’s necessary to control for age to generate unbiased

estimates. However, once we control for age that source of bias is gone.

A key subtlety arises when variables like age are, in fact, partially markers for the omitted categories. If

there are cohort effects in economic circumstances, for example, then age may actually be best thought of as

part of W1 since it captures some element of socioeconomic status. Note that there is no requirement that

anything be in m.

3.2.2 Choice of Rmax

Recall that Rmax is the r-squared from the model:

Y = α+ βX +W1 +W2 + ε

The choice about Rmax therefore relates to the variance of ε. Assuming β is the causal effect, what is captured

in ε is one of two things: measurement error, or variables which impact Y but are uncorrelated with X.

Taking into account only the measurement error in Y will provide an upper bound on Rmax and

therefore generate a conservative estimate. Other downward adjustment for Rmax may result from variation in

Y which cannot be related to X. For example, if X is a long term medical treatment for cholesterol,

day-to-day variation in cholesterol readings could not be explained by variation in X and the Rmax should

account for that.

3.2.3 Choice of δ

The value of δ defines the proportionality of selection. Recall that a value of δ = 1 indicates equal selection,

δ < 1 implies that the unobservables are less important than the observables and visa versa for a value of

δ > 1. AET show that E(δ) = 1 is appropriate if W1 is a randomly drawn sample of the full set {W1,W2} and
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argue that probably an assumption of E(δ) ≤ 1 is appropriate for most practical settings. Having said that, it

is somewhat difficult to have an intuition about the value of δ.

A natural approach, noted above, is to use δ as part of a bounding argument – that is, report the value

of δ which would produce a treatment effect of zero. On average, larger values of δ indicate more robust results.

3.3 Summary and Limitations

I argue that a bounding statement on δ would be a reasonable replacement for less precise comments about

movements in treatment effects. It may seem that the requirements for this calculation– in particular, the

need to make an assumption about Rmax– are more onerous than simply looking at coefficient movements.

However, it should be clear that without this assumption the coefficient movements are not meaningful either.

A brief final note: in a case in which one expects heterogeneous treatment effects along some dimension

– age, for example, or sex – this method can be used to recover the treatment effect within each group. To do

so, the analysis is run for each group separately, and the adjustment performed. Running a pooled model will,

mechanically, recover the β one would get if one incorrectly ignored the heterogeneous treatment effect issue.

4 Validation: Maternal Behavior, Birth Weight and Child IQ

The results above provide a way to recover an estimate of “causal” treatment effects under the

assumption that selection on observables and unobservables is proportional. This assumption is fairly strong

and not directly testable. Indirectly, I can test the assumption – and the methodology more generally – by

asking whether estimates generated by this procedure are closer to the true causal effect. Discussing that

requires a setting in which I can match (possibly) biased estimates to some “true” estimate of a treatment

effect.

Given such a setting, validation could take several forms. First, I can perform the bounding calculations

on δ described above and ask whether relationships which require a higher value of δ to produce β = 0 are

more likely to be true. Second, I can ask what value δ (if any) would match the adjusted effect from the

observational regressions to the true treatment effect. Finally, a more constrained test is to ask whether a

single value of δ might organize a number of findings. If yes, this would suggest at a minimum that this

technique works well in comparing the robustness of multiple findings within a given setting.

In this section I undertake these validation tests in the context of the relationship between maternal

behaviors, infant birth weight and child IQ. These relationships are of some interest in economics, and of wider

interest in public health and public policy circles. A literature in economics demonstrates that health shocks

while children are in the womb can influence early outcomes and later cognitive skills (e.g. Almond and

Currie, 2011; Almond and Mazumder, 2011). A second literature, largely in epidemiology and public health,
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suggests that even much smaller variations in behavior – occasional drinking during pregnancy, not

breastfeeding – could impact child IQ and birth weight. These latter studies, however, are subject to

significant omitted variable concerns.

The key class of omitted variables relates to socioeconomic status. Women who drink or smoke during

pregnancy tend to be of lower socioeconomic status, as are those women who do not breastfeed. Measures of

socioeconomic status in standard datasets are useful but incomplete. Broadly, the idea here is to ask whether

coefficient movements after inclusion of the observed socioeconomic status controls relate to the movements we

would expect to see if we observed very precise information on socioeconomic status.

I consider five relationships in all: the relationship between child IQ and breastfeeding, drinking during

pregnancy, low birth weight/prematurity and the relationship between birth weight (as the outcome) and

maternal drinking and smoking in pregnancy. Section 4.1 below describes the data, Section 4.2 the empirical

strategy and Section 4.3 the results.

4.1 Data

I use data from the National Longitudinal Survey of Youth Children and Young Adult Survey (NLSY) and

data from the US Natality Detail Files (from 2001 and 2002).

NLSY

The NLSY is a longitudinal survey of women, and the Children and Young Adult module collects information

on the children of NLSY participants. These data contain information on both IQ and birth weight. In the

case of IQ, the outcome of interest is PIAT test scores for children aged 4 to 8. The treatments of interest are:

months of breastfeeding, any drinking of alcohol in pregnancy and an indicator for being low birth weight and

premature (<2500 grams and <37 weeks of gestation). These variables are summarized in the first rows of

Panel A of Table 1.

For birth weight, the outcome is simply birth weight in grams. Here, I use all children. The treatments

are whether the mother smokes in pregnancy and maternal drinking intensity during pregnancy. These

variables are summarized in Panel B of Table 1.

The NLSY data also contain demographic controls. These are summarized in the remainder of Panel A

and Panel B of Table 1 (I summarize these twice since the sample differs for the IQ and birth weight analyses).

They include: child age and sex, race, maternal age, maternal education, maternal income and maternal

marital status.
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Natality Detail Files

The US Natality Detail Files contain data on all births in the US. I use data from 2001 and 2002 and focus on

birth weight as the outcome. The treatments are, again, whether the mother smokes during pregnancy and

maternal drinking intensity. I recode drinking data to match the NLSY definitions. The natality detail files

also include demographics: child sex, maternal race, age, education and marital status. These data do not

report income.

Panel C of Table 1 reports summary statistics.

4.2 Empirical Strategy

The primary issues in implementation include the choices about control sets (including possible variables in

m) and an assumption on the value of Rmax. In addition, because I am concerned with validation here, it is

necessary to have a measure of the true causal effect, which I denote βtrue.

Since the primary concern here is omitted socioeconomic status, the variables included in W1 are the

standard observed socioeconomic status components: maternal education, income, race, marital status and

age. In the vector of m controls I include child sex and, in the case of IQ, child age. These variables are

important controls, but are unlikely to be related to omitted socioeconomic status.

Turning to Rmax : in theory this should reflect how much of the variation in child IQ and birth weight

could be explained if we had full controls for socioeconomic status. This is a figure for which we need to go

outside the data. Neither IQ nor birth weight seem likely to have an Rmax of 1. Even identical twins raised

together do not have the same IQ scores or identical birth weight. I suggest that the appropriate figure in

either case is the correlation between siblings raised together, which will capture the full effect of family

background. For IQ, I use a value of 0.385, based on the average correlations from two studies reported in

Scarr and Weinberg (1983).10 For birth weight, I use a value of 0.5, drawn from Mazumder (2011).

Finally, the estimation requires an estimate of the true causal effect. One natural approach, in the spirit

of Lalonde (1986), would be to match the observational analysis with evidence from randomized controlled

trials which estimate similar parameters. This is not feasible here. Even in the two cases (breastfeeding and

smoking) where I do have some randomized or quasi-random estimates on which to rely, the magnitudes are

not comparable.

As an alternative, I undertake two approaches. First, I consider outside evidence in each case on the

test of the null of treatment effect or not. Even for outcomes with no randomized trials, it is possible to get a

sense from the literature about whether these effects are causal or not. Among the relationships I consider,

randomized evidence suggests that breastfeeding is not linked with full-scale IQ (Kramer et al, 2008) and most

10This is consistent with other overview studies which suggest values in the range of 0.35 to 0.4 – see, for example, Bouchard and
McGue, 2003.
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evidence does not suggest an impact of occasional maternal drinking on child IQ (see, for example:

Falgreen-Eriksen et al, 2012; O’Callaghan et al, 2007). In contrast, low birth weight and prematurity do seem

to be consistently linked to low IQ (Salt and Redshaw, 2006), a link which also has a biological underpinning

(de Kieviet et al, 2012). On the birth weight side, occasional maternal drinking is typically not thought to

impact birth weight (Henderson, Gray and Brocklehurst, 2007), but there is better evidence that smoking does

(e.g. from trials of smoking cessation programs as in Lumley et al, 2009).

With this evidence I can then ask – using the bounding argument described above – whether effects

which would require a larger δ to generate β = 0 are those which are robust based on the outside evidence.

In a second approach, I take advantage of the family structure in the NSLY to estimate sibling fixed

effect models and use the estimates of these – which should be purged of much of the family background

variation – as the values of βtrue. This approach has the advantage that it can generate actual estimates of

βtrue rather than just a test of the null. On the other hand, sibling fixed effects estimates may also be subject

to concerns about causality, and additional concerns about the endogenaity of parental investments. It is for

this reason that I pursue both approaches.The sibling fixed effects echo the outside evidence in terms of which

impacts are robust.

An issue throughout these analyses is the very likely chance that the treatments – smoking, drinking,

breastfeeding – are measured with error. If this error is classical, it will of course not impact the coefficients.

However, in this case it may be that much of the error is through under-reporting of bad behaviors (and

over-reporting of good ones). This is likely to reinforce the omitted variable bias problem. If high

socioeconomic status women are both less likely to smoke and less likely to admit to it then when we estimate

the impact of “reported smoking” on child outcomes we will be even more biased than the estimates of actual

smoking. Although there is no way for this procedure to address the measurement issue separately, to the

extent that it operates like this example and relates to the same omitted variables, the procedure here will also

help address this.

4.3 Results

Table 2 reports the results: Panel A shows data on child IQ from the NSLY, Panel B data on birth weight

from the NLSY and Panel C data on birth weight from the Natality Detail Files.

The first two columns in each panel show estimated treatment effects and r-squared values with only sex

(or age and sex in the case of IQ) as controls. Columns 3 and 4 show similar treatment effects with the full

control set. More breastfeeding is associated with higher IQ in these regressions, and low birth weight is

associated with lower child IQ. More maternal drinking appears in these data to be associated with higher

child IQ later. There is no biological reason to think this is the case: it must be due to selection. Both

samples show smoking and drinking are associated with lower birth weight. All seven analyses reported here
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show significant effects with the full set of controls. Interpreting these results in a naive way, one would

conclude that each has a significant link with child outcomes.

Column 5 reports whether external evidence, summarized above, suggests a causal impact. As noted,

low birth weight does seem to be linked to IQ and smoking is linked to low birth weight, but the other

relationships do not have broad support. In Column 6 I then combine the regression estimates from the first

columns with the estimates of Rmax (0.385 in the case of IQ, 0.5 in the case of birth weight) and calculate the

value of δ for which β = 0. This is the value I suggested reporting as a summary of the robustness of the

results. The evidence in this column provides support for the value of this adjustment: the relationships which

appear to be causal based on outside evidence are associated with larger values of δ.

Column 7 shows the sibling fixed effects estimates; in Panel C, I report the estimates drawn from the

NLSY for these outcomes, since the natality files do not link mothers across births. The positive impacts of

breastfeeding and maternal drinking are eliminated. The impact of low birth-weight and prematurity on IQ

remains fairly large – about 0.10 standard deviations – but has a p-value of 0.11. In the case of birth weight,

the impact of smoking on child birth weight remains strongly significant in these regressions, but there is no

measured impact of maternal drinking. These results – the lack of an impact for breastfeeding and maternal

drinking, the possible impact of low birth weight on child IQ and the strong impact of smoking on birth weight

– line up well with the conclusions on null hypotheses reported in Column 5.

Column 8 calculates the value of δ which would match the βtrue estimated from sibling fixed effects

regressions. In all seven rows this δ is defined and is positive. That is, these all pass the most basic validation

test: the coefficients move toward the truth when the controls are added and there is therefore some value of δ

which would match. The values of δ range between 0.5 and 1.5.

Finally, Column 9 asks whether a single value of δ would generate better inference across all these

settings. I use a value of δ = 1. This is done for two reasons. First, it seems a natural focal point. Second,

looking at the values in Columns 6 and 8, this would appear to fit well. Standard errors in this column are

calculated with a bootstrap over individuals, although it is worth keeping in mind that these are sensitive to

sample size. The coefficient moves closer to the sibling fixed effect result in all cases. After the adjustment

only the impacts of smoking remain significant and sizable.

Coefficient Stability

The above analysis suggests that performing the proportional selection adjustment improves the conclusions.

It seems useful to consider whether a similar conclusion could have been reached from using the “coefficient

stability” heuristic. To do this, for each treatment I run regressions progressively including controls. I choose

the order of controls by ranking the demographics based on the amount of variation in child IQ or birth weight

that they explain in the data. I include these controls in the same order for each analysis within outcome (the
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order differs for IQ and birth weight). Figures 2a-2g show coefficients and r-squared values for the seven

analyses.

These figures suggest coefficient stability is not useful distinguishing among these analyses, perhaps not

surprising given the discussion in 3.1.2. All of the graphs show a very similar pattern of stabilizing coefficients.

Based on these alone it would be quite difficult to identify some of the relationships as more robust than the

others. In line with the discussion in 3.1.2, the issue is clear: the r-squared in the fully controlled regressions

here is around 0.25 for IQ and less than 0.1 for birth weight, far below the figures of 0.385 or 0.5 that were

drawn from existing data. Given this, the fact that the coefficient has stabilized is not fully informative.

Summary

The results in this section – in particular, in Table 2 – are quite supportive of this approach. It passes the

most basic validation test by showing that the bounding calculation can identify more versus less robust

results. Perhaps more surprisingly, the results show that a single value of δ (δ = 1) performs reasonably well.

Returning to the question of applications in economics, this suggests support for the coefficient movement

robustness test. However, it also makes clear the importance of taking into account the r-squared movements.

If we based our analysis only on the size (say, in percent terms) of the coefficient movements we would

conclude the link between drinking and low birth weight is much more robust than the link between low birth

weight and IQ since the former moves only 10% and the latter 30%. In fact, the low birth weight and IQ link

is more robust – the bias-adjusted coefficient is much larger and is significant at the 11% level – which is

reflective of the much larger change in r-squared and lower Rmax.

5 Application: Health Behaviors and Health Outcomes

The discussion in Section 4 provides a model for performing this adjustment in a single setting with a carefully

considered Rmax and suggests that procedure can improve inference and speak to the robustness of results. A

broader application of this is to ask whether this procedure could be used to organize a set of results within an

area of research and, ideally, provide guidance for improving inference when new results appear in that area.

In this section I use data on several settings in the area of public health.

I first show that a simplified version of this procedure (which, importantly, does not require an Rmax for

each outcome) can organize a number of results and improve inference; I do this by comparing observational

data to randomized trials for 23 outcome-treatment relationships.11 Second, I derive a best-fit magnitude

value for this adjustment which can be used in this particular area. Finally, I provide several out-of-sample

11This is in the spirit of LaLonde (1986).
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tests of this for similar types of relationships. The precise magnitude adjustment I supply could be used by

researchers and research consumers to evaluate new results in this area. It will not, of course, be portable to

very different settings (I would not suggest using this in estimates of returns to schooling, for example),

although a similar procedure could be used to derive adjustment magnitudes in those settings.

The area I consider is the relationship between positive health behaviors and health outcomes, a topic of

much interest in public health. Do individuals who exercise live longer? Does taking a vitamin supplement

lower your blood pressure? Observational studies in this literature suffer from clear omitted variable bias

problems, largely stemming from correlations between high socioeconomic status and both positive health

behaviors and good health outcomes. Likely due to this issue, when randomized studies are run to look at

similar questions the results are often at odds with what was seen in observational data. A classic example is

the exploration of the link between diet and health. For years the medical profession recommended a low-fat,

high carbohydrate diet as a key to better health. It turned out this was based on biased estimates. When

randomized data from a large study was released in 2006, this result was seriously weakened (Prentice et al,

2006; Beresford et al, 2006; Howard et al, 2006).

Given that many of the central issues facing this literature can be boiled down to omitted variable bias,

it seems a natural area for which to ask whether this procedure could improve conclusions. A significant barrier

to using this, especially as a research consumer, is the need for carefully considering Rmax in each setting. I

suggest here that a general assumption about Rmax could substitute so adjustment might be performed using

only results available from regressions. This naturally will cause some loss of information relative to a careful

consideration of Rmax in each setting; whether it still improves inference is an empirical question.

Although Rmax = 1 may seem a natural assumption, it seems unlikely to apply here since many of the

outcomes (like lipids, blood pressure, etc) vary within an individual even over the course of a day.12 Instead, I

adopt the assumption that the unobservables explain as much of the variation in the outcome as the

observables do. Formally, this means that the increase in r-squared when adding the unobservables would be

equal to the increase when the observables were added: Rmax = R̃+ (R̃− R̊).

Using this assumption, I then combine observational and randomized estimates of parallel relationships

and ask the same questions as in Section 4. First, are estimates which require a higher value of δ to produce

β = 0 more likely to have been confirmed in randomized data? Second, is there a value of δ in each case which

allows me to match the adjusted coefficient to the randomized effect. And, finally, is there a value of δ which

could be generally applied across all the settings to improve inference on average? This final magnitude

conclusion is tested in several out-of-sample relationships.

12Demacker et al (1982), for example, show an intra-individual coefficient of variation for triglycerides of 35% within a day.
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5.1 Data

This section considers two treatments: exercise and vitamin D+calcium supplementation. In each case I

consider the relationship between the treatment and a range of outcomes. This analysis requires two pieces of

data: randomized trial results and observational data.

Randomized Trials

Randomized trial results are drawn from existing work.

Exercise Evidence on the impact of exercise is drawn from several papers which are summarized in a

Cochrane Review meta-analysis (Shaw et al, 2006). I consider only studies which compared exercise to no

exercise (this excluded studies which also used diet). Outcomes considered include weight, blood pressure,

cholesterol, blood glucose and triglycerides.

Vitamin D and calcium Evidence on the impact of vitamin D and calcium supplementation comes

from the Women’s Health Initiative, a large scale study of post-menopausal women which has run a number of

important interventions. One trial within the study involved randomizing women into receiving vitamin D and

calcium supplements (treatment) or not (control). Outcomes include bone density, lipids, blood pressure,

exercise, and weight.

In Appendix Table A.1 I list the citation for each outcome-treatment pair, the treatment and any

restrictions on age or gender in the study recruitment.

Observational Data

Exercise Exercise data are drawn from the National Health and Nutrition Examination Survey

(NHANES), Wave III. Individuals are asked detailed questions about exercise. I use this to create a treatment

measure as close as possible to the treatment in each study. In most cases the study includes some kind of

jogging three times a week. Exact populations used are listed in Column 3 of Appendix Table A.1 for each

paper, but in general these tend to focus on middle-aged individuals. Exercise data and the outcomes variables

considered are summarized in Panel A of Table 3.

Vitamin D and calcium Data on vitamin D and calcium supplementation also comes from the

NHANES-III. Individuals are asked about vitamin and mineral supplements, which allows me to create an

indicator for taking vitamin D and calcium supplementation. To match the Women’s Health Initiative data I

use women aged 55 to 85 (recruitment in this study is women 50 to 80, but evaluation is several years later).

Summary statistics on share of women using supplements and outcomes variables are in Panel B of Table 3.

Magnitudes

A central issue here is how to compare magnitudes across these settings. The observational coefficients

estimate the impact of actually engaging in the behavior. This directly maps to the randomized data only if

everyone is compliant, or if we observe average treatment effects and there is no heterogeneity across
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individuals. In the case of exercise, the three studies used in the data were very intensive with extremely high

compliance (they were also fairly small). I therefore use the ITT estimates as the treatment effects. In the case

of the vitamin D+calcium supplementation, I use adherence data to generate ATE estimates under the

assumption that the control group did not use supplements. There is no way to address heterogeneity here,

other than to argue that because the group is exclusively post-menopausal women, this issue is hopefully

limited.

It is worth noting that these issues with magnitude comparisons do not spill over to comparisons with

the null, so in the case where one is uncomfortable with the use of these magnitude data, the evidence on the

null may still be informative.

5.2 Empirical Strategy

As noted, in this section I employ the assumption that Rmax = R̃+ (R̃− R̊). In this case, βtrue is drawn

from randomized trial results. As in the analysis above there is an important choice of what is in W1 and what

will be in m. I include in W1 the standard socioeconomic status measures: education, income, marital status

and race. This reflects the observation that the bulk of the omitted variable issue are likely to be

socioeconomic status. In m I include age dummies and sex and, in cases where the outcome is weight in

kilograms, measures of height.

The first step below is to calculate, for each relationship, the value of δ which produces βadj = 0 in each

case, and evaluate whether higher values of δ are associated with more robust results. The second step is to

estimate a value of δ such that βadj = βtrue. This value will be positive as long as controls move the coefficient

towards the true β.

In a third step I estimate the single value of δ which provides the best fit across all settings. For

outcome-treatment pair i, denote the adjusted coefficient βiadj(δ) and the true effect βitrue. The trial also

produces a standard error, denoted σi. I calculate the difference between the bias-adjusted and true coefficient,

scaled by the standard error. I sum these over the outcome-treatment pairs and minimize the sum over the

choice of δ. Formally, I solve:

δ̂ = argminδ
∑
i

(
βiadj(δ)− βitrue

σi

)2

Given this value it is then possible to explore the performance of this adjustment in several ways. First,

I can compare the magnitude of the error under the maximum likelihood value of δ relative to the assumption

that δ = 0 (which is the benchmark controlled regression coefficient). Second, I can compare the performance

on each outcome-treatment pair, using bootstrapped standard errors, and ask whether I would have drawn

more accurate conclusions about the null hypothesis from the adjusted analysis. Finally, I perform several
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out-of-sample tests using these outcomes and exploring whether the same adjustment would lead to more

accurate conclusion in these cases.

5.3 Results

The first five columns of Table 4 show the first step of the results. Column 1 lists the outcome and, in the case

of exercise where there are typically multiple studies per outcome, information on the citation. The second

and third columns list the uncontrolled and controlled effects, their standard errors and the r-squared values.

The effects are significant in many but certainly not all cases, and generally in the expected direction, with

exercise and vitamin supplementation linked to improved health outcomes.

Column 4 reports whether randomized evidence rejects the null of no effect; in the case of exercise, this

conclusion is drawn from the meta-analysis in Shaw et al (2006). Fewer of the effects are significant than in

the observational data. Column 5 reports the value of δ such that β = 0. On average, higher values of δ are

linked with more robust results. The average value of δ for results which have support in randomized data is

1.69, versus 1.84 for those without support. The pattern is certainly less consistent than in Section 4, likely for

two reasons. First, I have introduced the assumption on Rmax, which is at best an approximation. Second,

given the small sample sizes here, some of the results which are not significant are still quite large. If the real

goal is to match the randomized magnitudes, matching zero may go too far.

Columns 6 and 7 move to matching magnitudes. Column 6 reports the magnitude of the impact from

the randomized trial.13 Column 7 reports the value of δ such that βadj = βtrue. In 17 of 23 outcomes there is a

positive value of δ such that this holds. The cases in which there is no match – i.e. the coefficients move the

wrong way – are all ones where the observational effect is not significant and neither is the randomized effect.

These are inherently somewhat noisy, which makes it perhaps less surprising that the coefficient movements

are not informative. If I ask the broader question of whether a positive value of δ could generate estimates

inside the randomized confidence interval, the answer is yes in all cases.

Turning to the third step, the full estimation procedure described above yields a value of δ̂ = 0.971.

This suggests very close to equal selection and is surprisingly close to what I suggested as a good fit in Section

4. I can illustrate the overall impact of this bias adjustment. To do so I re-scale each outcome so the 95%

confidence interval from the randomized trial ranges from 0 to 1 (and thus the randomized point estimate is

close to 0.5); this is necessary for visualization since the scale of the effects varies widely across outcomes. I

then convert first the standard controlled coefficient and then the bias-adjusted coefficient onto this scale.

Figure 3a shows the interval for the randomized trial (open circles) and the controlled coefficient (filled in

circle). Although the controlled and true coefficient are similar in some cases, especially when they are both

close to zero, in others the controlled coefficient is wildly outside the confidence interval.

13Note that in some cases in exercise the individual effect is not significant even if we report rejection of the null. This is because
the null rejection was based on the Cochrane Review meta-analysis (Shaw et al, 2006).
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Figure 3b shows the coefficients after the bias adjustment is done with the value of δ = 0.971. The fit is

significantly better (note I have retained the large scale for ease of comparison). In a number of cases where

the controlled coefficient showed significant errors – for example, the impact of vitamin supplementation on

weight and exercise – the adjusted coefficients are within or very close to the confidence interval. The overall

error is significantly smaller in the bias adjustment case – a reduction of 27% on average.

The final column of Table 4 describes this result numerically: I perform the bias adjustment with

δ = 0.971, and generate standard errors using a bootstrap over individuals. Again, it’s worth taking the

standard errors with caution since the observational studies here are, in some cases, significantly underpowered

to pick up impacts of the size seen in randomized trials. The bias-adjusted impacts are much closer to the

estimates from the randomized data, on average.

This table makes clear much of the value in the adjustment comes in cases where the controlled

coefficients lead to false positive conclusions, or at least to an overstatement of the magnitude of the impact.

For example, the controlled coefficients suggest a large and significant impact of vitamin supplementation on

exercise14, whereas the bias-adjusted coefficient is very close to the small and insignificant impact estimated in

randomized trials. At the same time, the bias-adjustment retains significant effects in many of the cases where

there are large and significant effects estimated in randomized trials – for example, the impact of exercise on

weight, blood pressure and some measures of heart health.

Out of Sample Tests

Within sample, the adjusted coefficients above are closer to the true treatment effect than the controlled

coefficients. An important related test is to ask how these perform out of sample.

A simple way to explore this is to perform an out of sample test within sample. More specifically, I drop

each outcome-treatment pair in turn, re-estimate the best fit δ̂ and then apply the new δ to the dropped

relationship. I can then ask whether, on average, the error in that estimate would be diminished. The δ̂ values

estimated range from 0.953 to 1.059, all very close to the full sample value. Not surprisingly, then, in line with

the evidence in Table 4, the error reduction is 27% on average with the adjustment.

I consider two other out-of-sample tests. In the case of exercise and vitamin D there are several

outcomes for which randomized experiments have reached a conclusion about the null but where magnitude

comparisons are difficult. This may be due to differences in the timing of follow-up, the fact that randomized

effects are reported as odds ratios or because generating an exactly parallel analysis is difficult. However, given

the adjustment value estimated above it is possible to return to these outcomes and explore whether the

adjustment procedure used here leads to correct conclusions in these cases.

14The theory under which this might matter is that calcium and vitamin D increase bone health, which improves ability to
exercise.
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This is done in Panels A and B of Table 5. This table is structured similarly to Table 4 except that in

the third column I simply report the hypothesized direction and significance (or not) of the effect in the

randomized trial. In general, the bias-adjustment also performs well here. In the case of exercise, the

controlled coefficients show significant impacts on both diabetes and mortality (among individuals with heart

disease), and the bias-adjusted coefficients correctly identify only the mortality evidence as robust. In the case

of vitamin D the controlled coefficients incorrectly suggest supplementation matters for mortality, a result

which is corrected by the bias-adjustment.

A second out-of-sample tests relies on another study, the Physician Health Study (PHS). This work

evaluated the impact of beta-carotene, vitamin E and vitamin C on heart disease mortality among men.15

Published results from the study reject links between mortality and any of these vitamins (Hennekens et al,

1996; Sesso et al, 2008). Because the outcome is mortality and magnitudes are therefore difficult to link, I

could not use this study in the estimation, but it is possible to use as an out of sample test. The NHANES-III

provides the data, as above.

Panel C of Table 5 shows this evidence. vitamin E and vitamin C are both linked to lower mortality in

the controlled regressions but not (at least not significantly) in the bias-adjusted coefficients. This provides

further support.

Summary

The final conclusion of this discussion is that, across a range of settings in this area of public health inference

might be improved with a very simple adjustment. Since the best fit value of δ̂ is close to 1, the formula for

the bias adjustment with δ = 1 will be a very close approximation. This dramatically simplifies the formula.

Given a controlled coefficient β̃ and uncontrolled coefficient β̊, a value of βadj = β̃ − 0.971(β̊ − β̃) would be

closer, on average, to the true treatment effect.16 It would be inappropriate, of course, to port this particular

value to other areas (for example those closer to economics) but this does provide a model for how an

adjustment might be constructed in other settings.

6 Conclusion

The goal of this paper is two-fold. First, I connect the popular robustness heuristic of exploring coefficient

sensitivity to controls to the proportional selection assumption formalized in Altonji, Elder and Taber (2005)

15This study also evaluated (and supported) the importance of aspirin in preventing heart disease mortality. However, the
observational evidence on aspirin is marred by both the omitted variable issue but much more so by a problem of reverse causality.
It has long been thought that aspirin was good for heart disease so the kind of people who take it tend to be those with heart
disease. This problem crops up in most of the settings I consider but to a much, much lesser extent. When facing this problem a
bias adjustment of this type will not address the issue. I therefore do not use this as a test.

16This relies only on coefficient movements, and it is worth noting that this is the adjustment that Bellows and Miguel (2009)
suggest. It is appropriate under this assumption about Rmax and the assumption that δ is close to 1.
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and Murphy and Topel (1990). I provide some guidance to discipline the use of this coefficient movement

heuristic and give a simple form of the adjustment using information on coefficient and r-squared values. I

suggest an alternative to commenting on the magnitude of coefficient movements would be to report the

degree of proportionality between observables and unobservables which would produce a treatment effect of

zero. Second, I explore the performance of this adjustment in the data. I find that, in fact, an adjustment of

this form does get closer to causal effects.

In the final section I argue that an even simpler form of this adjustment – one which can therefore be

performed using only the coefficient estimates – could improve inference in public health. This suggests a

simple way for researchers in parallel settings (i.e. those where the outcome of interest is a health outcome and

the treatment is a positive health behavior) to evaluate the plausibility of their results, and for readers of

published work to do so, as well.
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Figure 1: Simulated Effects by Controlled R-Squared
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Notes: This graph shows simulated estimates of treatment effects for a setting with the following assumption: β̊ = .5, β̃ = .5, R̊ = .1,

Rmax = 1 and δ = 1. The X-axis gives values of R̃ and the Y-axis graphs the resulting treatment effects which would be estimated by the

proportional selection adjustment.
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Figure 2: Coefficient Stability, Maternal Behavior, Child Birth Weight and IQ

(a) Months of Breastfeeding, IQ
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(b) Maternal Drinking Pregnancy, IQ
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(c) Low Birth Weight+Preterm, IQ
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(d) Maternal Smoking, Birth Weight in NLSY
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(e) Maternal Drinking, Birth Weight in NLSY

.0
1

.0
2

.0
3

.0
4

.0
5

.0
6

R
−

S
qu

ar
ed

−
28

−
26

−
24

−
22

−
20

E
ffe

ct
 o

f D
rin

ki
ng

 o
n 

B
irt

h 
W

ei
gh

t

age, sex  + race  + mom married  + mom age  + mom income  + mom education 
Control Set

Coefficient

R−Squared

(f) Maternal Smoking, Birth Weight in Natality Files
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(g) Maternal Drinking, Birth Weight in Natality Files
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Notes: These graphs show the evolution of the estimated rela-

tionship between each treatment and child IQ or birth weight

as controls are added. Controls are added in the same order

within an outcome-cross-dataset. The order is chosen based on

ordering the controls by how much of IQ or birth weight they

explain and including the most important first.
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Table 1: Summary Statistics: Early Life and Child IQ

Panel A: NLSY Data, IQ Analysis

Mean Standard Deviation Sample Size

IQ (PIAT Score, Standardized) 0.026 0.991 6613

Breastfeeding Months 2.32 4.51 6184

LBW + Preterm 0.049 0.217 5896

Mom Drink at all in Pregnancy 0.322 0.467 6225

Age 5.57 1.37 6613

Child Female 0.494 0.500 6613

Mother Black 0.284 0.451 6613

Mother Age 25.1 5.42 6613

Mother Education (years) 12.4 3.1 6613

Mother Income $39,980 $79,069 6613

Mother Married 0.649 0.477 6613

Panel B: NLSY Data, Birth Weight Analysis

Birth Weight (grams) 3292.8 604.9 7418

Mom Smoke in Pregnancy 0.290 0.453 7418

Drinking Intensity (0-7) 0.634 1.15 7174

Child Female 0.486 0.499 7418

Mother Black 0.277 0.447 7418

Mother Age 24.2 5.42 7418

Mother Education (years) 12.1 3.1 7418

Mother Income $31,097 $62,975 7418

Mother Married 0.665 0.471 7418

Panel C: Natality Detail Files

Birth Weight (grams) 3333.8 575.1 5,886,822

Mom Smoke in Pregnancy 0.123 0.328 5,886,822

Drinking Intensity (0-7) 0.023 0.316 5,886,822

Child Female 0.488 0.499 5,886,822

Mother Black 0.167 0.373 5,886,822

Mother Age 27.2 6.13 5,886,822

Mother Education (1-5) 3.51 1.16 5,886,822

Mother Married 0.658 0.474 5,886,822

Notes: This table shows summary statistics for the data used in the analysis in Section 3. Drinking intensity is coded from 0 (never) to 7

(every day). Natality detail files are from 2001 and 2002. NLSY data is from the NLSY Children and Young Adults panel.
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Table 3: Summary Statistics: Exercise and Vitamins

Panel A: Exercise [NHANES-III]

Mean Standard Deviation Sample Size

Jogging 3+ Times/Wk .033 .179 9268

BMI 28.0 6.08 9251

Weight (kg) 78.2 18.4 9252

Diastolic Blood Pressure 76.8 10.3 9197

Systolic Blood Pressure 123.9 17.5 9198

Serum Glucose (mmol/l) 5.61 2.17 8712

Triglycerides (mmol/l) 1.71 1.44 8791

Cholesterol (mmol/l) 5.39 1.13 8811

HDL (mmol/l) 1.31 .41 8740

Panel B: Vitamin D and Calcium Supplements [NHANES-III]

Took VitD+Calcium .211 .408 3200

Weight (kg) 69.5 16.3 3180

Diastolic Blood Pressure 73.5 10.1 3003

Systolic Blood Pressure 140.2 20.9 3004

Serum Glucose (mg/dl) 111.9 50.5 2937

Triglycerides (mg/dl) 166.4 111.8 2983

Cholesterol (mg/dl) 232.3 45.6 2988

HDL (mg/dl) 55.7 16.9 2972

Exercise Intensity (METS/wk) 14.3 20.4 3196

Femur BMD .68 .13 2689

Introchanter BMD .94 .19 2689

Notes: This table shows summary statistics for the data used in Section 4. NHANES-III : National Longitudinal Health and Nutrition

Survey, Wave III. For Exercise, the sample restrictions in the analysis differ slightly depending on which paper I am comparing to. For the

summary statistics I consider the most inclusive definition.
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Table 5: Selection Adjustments, Out-of-Sample Outcomes

Panel A: Exercise

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Ever Diabetes -0.035∗∗(.009) -0.019∗∗ (.009) Negative, Not Significant -0.004 (.010)

Mortality, with heart disease, Men -0.132∗∗(.041) -0.115∗∗(.041) Negative, Significant -0.010∗∗(.05)

Overall Bone Density, Women -0.013 (.012) -0.0003 (.012) Positive, Not Significant 0.013 (.013)

Panel B: Vitamin D and Calcium Supplementation

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Ever Diabetes -0.049∗∗(.015) -0.023 (.016) Negative, Not Significant 0.001 (.018)

Mortality -0.058∗∗(.019) -0.034∗(.020) Negative, Not Significant -0.011 (.022)

Panel C: Vitamins and Mortality in Physician Health Study

Outcome Uncontrolled Effect Controlled Effect Randomized Effect Bias-Adjusted Effect

(Std. Error) (Std. Error) [Possible Direction, Sig.] (Std. Error)

Beta-Carotene Supplements -0.035∗(.019) -0.022 (.019) Negative, Not Significant -0.010 (.020)

Vitamin E Supplements -0.033∗∗∗(.012) -0.026∗∗(.012) Negative, Not Significant -0.018 (.013)

Vitamin C Supplements -0.029∗∗ (.011) -0.021∗ (.012) Negative, Not Significant -0.014 (.013)

Notes: Exercise treatment: total exercise times per month (in units of 100). All adjustments are done using a value of Rmax = R̃+ (R̃− R̊)

and δ = .971. Citation List: Exercise and (a) diabetes (Orozco et al, 2008); (b) mortality (Heran et al, 2011); (c) bone density (Howe et al,

2011). Vitamin Supplementation and: (a) diabetes (de Boer et al, 2008); (b) mortality (LaCroix et al, 2009); (c) cognitive (Rossom et al,

2012); (d) cancer (Brunner et al, 2011). Physican Health Study: (a) Beta-carotene (Hennekens et al, 1996); vitamins E and C (Sesso et al,

2008).
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Appendix A: Details of Proofs

Proof of Lemma 1: Claim: (β̊ − β̃)
p→ σ1X

σ2
11−σ

2
1X(δσ22+σ11)

σ11(σ11−σ2
1,X)

Proof: Observe that λ̂w1|X converges in probability to Cov(W1,X)
V (X) = σ1,X . By a similar logic, λ̂W2|X converges

to σ2X and, under proportional selection, to δσ1Xσ22

σ11
. λ̂W2|X,W1

converges in probability to Cov(W2,X)

V ar(X̃)
where X̃

is the residual from a regression of X on W1. Note that V ar(X̃) converges in probability to 1− σ2
1X

σ11
.

Therefore, again invoking proportional selection, λ̂W2|X,W1
converges in probability to δσ22σ1X

σ11−σ2
1X
. Subtracting

and simplifying yields the result.

Proof of Lemma 2: Claim: (R̃− R̊)σ̂yy
p→ [σ2

11−σ
2
1X(σ11+δσ22)]

2

σ2
11(σ11−σ2

1X)
and

(Rmax − R̃)σ̂yy
p→ σ22[σ2

11−σ
2
1X(σ11+δ2σ22)]

σ11(σ11−σ2
1X)

.

Proof: Observe the following definitions. From the short regression coefficient, R̊ =
(β+λ̂w1|X+λ̂W2|X)2

σ̂yy
. By

Lemma 1, this converges in probability to
(β+

σ1,X (δσ22+σ11)

σ11
)2

σyy
. In the intermediate regression the calculation

relies on the coefficient on X (β + λ̂W2|X,W1
) and the coefficient on W1, which is also biased by the exclusion of

W2 through the joint correlation with X and is equal to1− σ1X

σ11
λ̂W2|X,W1

. Thus,

R̃ =
(β+λ̂W2|X,W1

)2+σ11(1−σ1X
σ11

λ̂W2|X,W1
)2+2σ1X(β+λ̂W2|X,W1

)(1−σ1X
σ11

λ̂W2|X,W1
)

σ̂yy
. By Lemma 1,

R̃
p→

(β+
δσ22σ1X
σ11−σ2

1X

)2+(1−σ1X
σ11

δσ22σ1X
σ11−σ2

1X

)2σ11+2(β+
δσ22σ1X
σ11−σ2

1X

)(1−σ1X
σ11

δσ22σ1X
σ11−σ2

1X

)σ1X

σyy
. Finally, observe that

Rmax =
β2+σ11+σ22+2βσ1,X+2β

δσ1Xσ22
σ11

σyy
. Differencing these expressions appropriately yields the result.

Proof of Proposition 1. Claim : Define:

β∗ =



β̃ − δ
[
β̊ − β̃

]
Rmax−R̃
R̃−R̊ if δ=1

β̃ −

[√
[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]

2(1−δ)[β̊−β̃]
2
[R̃−R̊]

]
if δ 6= 1, σ1X ≥ 0

β̃ −

[
−
√

[β̊−β̃]2[Θ2+Θ(4δ(1−δ)[β̊−β̃]2[Rmax−R̃])]−Θ[β̊−β̃]
2(1−δ)[β̊−β̃]

2
[R̃−R̊]

]
if δ 6= 1, σ1X < 0

where Θ =
([
R̃− R̊

]
2σ̂yy +

[
β̊ − β̃

]
2
[
R̃− R̊

])
. β∗

p→ β.

Proof: Recall that the object of interest – the bias – is δσ22σ1X

σ11−σ2
1X
. There are three unknowns here: σ11,σ22 and

σ1X . Note that none of these can be calculated directly from the data. Lemmas 1 and 2 provide a system of
three equations in these variables. Lemmas are stated in probability limits; for the proof I will write these as
equalities to simplify notation, and return to the probability limit notation at the end. In addition, again to
simplify notation in the algebra, I will adopt single letter notation for each of the differences.

A = β̊ − β̃ = σ1X
σ2

11 − σ2
1X(δσ22 + σ11)

σ11(σ11 − σ2
1X)

B =
[
R̃− R̊

]
σyy =

[
σ2

11 − σ2
1X(σ11 + δσ22)

]2
σ2

11(σ11 − σ2
1X)

C =
[
Rmax − R̃

]
σyy =

σ22

[
σ2

11 − σ2
1X(σ11 + δ2σ22)

]
σ11(σ11 − σ2

1X)

The algebra differs slightly for the case of δ = 1 and the case of δ 6= 1 but only in a later step of the
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proof. I will note when the cases diverge below. The method of proof is simply to solve the system of
simultaneous equations. Some algebraic steps are suppressed.

Solve Equation (1) for σ22:

A = σ1X
σ2

11 − σ2
1X(δσ22 + σ11)

σ11(σ11 − σ2
1X)

σ22 =
1

δ

[
σ2

11σ1X −Aσ11(σ11 − σ2
1,X)− σ11σ

3
1X

σ3
1X

]

Solve Equation (2) for σ11 and σ22 in terms of σ1X :

B =

[
σ2

11 − σ2
1X(σ11 + δσ22)

]2
σ2

11(σ11 − σ2
1X)σy

=

[
σ2

11 − σ2
1X(σ11 +

σ2
11σ1X−Aσ11(σ11−σ2

1,X)−σ11σ
3
1X

σ3
1X

)
]2

σ2
11(σ11 − σ2

1X)

σ11 =

[
σ2

1X(A2 +B)

A2

]
σ22 =

1

δ

[
σ1X(B2 +A2B) [σ1X −A]

A4

]

Note that for the bias calculation we do not require σ11 alone but only σ11 − σ2
1X which, given values

above, equals
σ2

1XB
A2 and allows us to collapse the bias calculation to δσ22A

2

σ1XB
.

Case 1: δ = 1. Solve Equation (3) for σ1X :

C =
σ22

[
σ2

11 − σ2
1X(σ11 + σ22)

]
σ11(σ11 − σ2

1X)
=

[
σ1X(B2+A2B)[σ1X−A]

A4

] [
σ2

1X(A2+B)
A2 − σ2

1X

(
σ2

1X(A2+B)
A2 +

[
σ1X(B2+A2B)[σ1X−A]

A4

])]
σ2

1X(A2+B)

A2

[
σ2

1X(A2+B)

A2 − σ2
1X

]

σ1X =
CA3 +A(B2 +A2B)

(B2 +A2B)

σ22 =
[
CA3 +A(B2 +A2B)

] [ C

A(B2 +A2B)

]
Applying these values to the formula above, we have:

δσ22σ1X

σ11 − σ2
1X

=
AC

B
= δ

[
β̂ − β̃

] Rmax − R̃
R̃− R̂

which leads us to the δ = 1 result.

Case 2: δ 6= 1. Solve Equation (3) for σ1X :

C =
σ22

[
σ2

11 − σ2
1X(σ11 + δ2σ22)

]
σ11(σ11 − σ2

1X)

C =
1

δ

σ1X(B2+A2B)[σ1X−A]
A4

[[
σ2

1X(A2+B)
A2

]2
− σ2

1X(
σ2

1X(A2+B)
A2 + δ σ1X(B2+A2B)[σ1X−A]

A4 )

]
σ2

1X(A2+B)

A2 (
σ2

1X(A2+B)

A2 − σ2
1X)
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This does not simplify to the extent that the δ = 1 case does, and solving for σ1X requires the quadratic
formula. Applying this, we find:

σ1X =
(A(B2 +A2B)(1− 2δ))±

√
(A2(B2 +A2B)2 + 4(B2 +A2B)(1− δ)δCA4)

2(B2 +A2B)(1− δ)
Note this has two roots. The positive root corresponds to the case where σ1X ≥ 0; the negative root to the
case where σ1X < 0.

Given this and the resulting formula for σ22 we can complete the solution. If σ1X ≥ 0, we have:

δσ22A
2

σ1XB
=

[
(−A(B2 +A2B) +

√
(A2(B2 +A2B) [B2 +A2B + 4δ(1− δ)CA2]

2(1− δ)BA2

]
If σ1X < 0 we have:

δσ22A
2

σ1XB
=

[
(−A(B2 +A2B)−

√
(A2(B2 +A2B) [B2 +A2B + 4δ(1− δ)CA2]

2(1− δ)BA2

]
Substituting in the difference values for A, B and C yields the result.

Delta Value for β = 0 In implementation I argue that a valuable statistic to report is the value of δ
such that β = 0. The exact formula is:

δ̂ =

β̃2
[
(R̃− R̊)

]2 [
β̊ − β̃

]
+ β̃

[
(R̃− R̊)

] [
σ̂yy

[
(R̃− R̊)

]2
+
[
β̊ − β̃

]
2
[
(R̃− R̊)

]]
β̃2
[
(R̃− R̊)

]2 [
β̊ − β̃

]
+
[
Rmax − R̃

] [
β̊ − β̃

] [
σ̂yy

[
(R̃− R̊)

]2
+
[
β̊ − β̃

]
2
[
(R̃− R̊)

]]
Note that this is invariant to the sign of σ1X .

Appendix B: Further Theoretical Results

This appendix discusses two additional issues related to the theory. Subsection A.1 below briefly contrasts the
calculation of bias based on the coefficients to the calculation directly from the data suggested by Altonji,
Elder and Taber (2005). Subsection A.2 discusses details of the case with m.

A.1. Altonji, Elder and Taber (2005) Calculation

Recall the model:
Y = α+ βX +W1 +W2 + ε

For simplicity, assume that ε = 0; and Rmax = 1. Lemma 1 in the text demonstrates that, under the
proportional selection relationship the bias on the intermediate regression coefficient β̃ is δσ22σ1X

σ11−σ2
1X
.

Altonji, Elder and Taber (2005) suggest that this bias might be calculated directly from the data. In
particular, they propose:

1. Run the intermediate regression, which we will denote Y = β̃X + ΨW1 + ε̃.

2. Calculate ΨW1 and denote the variance of the residual Vε̃.\psi=1.01

3. Regress X on Ψ̂W1. Denote the coefficient on Ψ̂W1 as Γ, and the variance of the residual VX̃ .

4. Calculate the bias as δΓVε̃
VX̃

Recall that V ar(X) = 1. Consider each of the elements of this in turn:
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1. VX̃

VX̃
p→ 1− σ2

1X

σ11

2. Γ. Note first that Ψ̂→p 1− σ1X

σ11

δσ22σ1X

σ11(1−σ2
1X)

.

Γ =
Cov(Ψ̂W1, X)

V ar(Ψ̂W1)
=
Cov(W1, X)

Ψ̂V ar(W1)

Γ
p→ σ1X[

1− σ1X

σ11

δσ22σ1X

σ11−σ2
1X)

]
σ11

=
σ1X(σ11 − σ2

1X)

σ11(σ11 − σ2
1X)− δσ22σ2

1X

3. Vε̃.

Vε̃
p→ σ22 −

(δσ22σ1X)2

σ11(σ11 − σ2
1X)

Combining these, we find:

δΓVε̃
VX̃

p→ δσ22σ1X

σ11 − σ2
1X

[
σ11(σ11 − σ2

1X)− δ2σ22σ
2
1X

σ11(σ11 − σ2
1X)− δσ22σ2

1X

]
If δ = 1 the second term cancels, but in cases where δ 6= 1 it does not and this calculation is a close
approximation to the bias.

A.2. Additional Category Controls

Section 3 discusses extending the model to a case where there is an additional, orthogonal, category of
controls, so the true model is

Y = α+ βX +W1 +W2 + m + ε

I suggest in Section 3 that the appropriate procedure for recovering β if m is observed is to include m in both
the short and intermediate regressions and preform the same procedure. It is trivial to see why this works. I
have assumed that m is orthogonal to W1 and W2. The only correlations are between m and X and Y.
Consider regressing Y on m and taking residuals and doing the same for X. We can then run our original
procedure on the residuals of X and Y to recover β. Including the m control in both regressions is equivalent
to this exercise.

In the case were m is not observed, I suggest that it is still possible to use this procedure to recover β
from this regression:

Y = α+ βX + ΨW1 + ΨW2 + ε

Although this will not be the causal effect, since m is omitted, it will be closer to the causal effect since it
adjusts for the influence of W2.The procedure for recovering β differs from the main text only in that Ψ 6= 1. 17

To prove this, we therefore work through a modified version of the proof in Section 2.
Short and intermediate regression coefficients are given below.

β̊ = β + Ψ̂λ̂w1|X + Ψ̂λ̂W2|X

β̃ = β + Ψ̂λ̂W2|X,W1

By the same logic as Lemma 1 in the text, and the observation that Ψ̂→p Ψ we observe that

β̊ − β̃ p→ Ψσ1X
σ2

11 − σ2
1X(δσ22 + σ11)

σ11(σ11 − σ2
1X)

Turning to the r-squared values, we observe R̊
p→

(β+
Ψσ1X (δσ22+σ11)

σ11
)2

σyy
,

17As mentioned in the text this is because they are biased by the exclusion of m through the joint correlation with X.
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R̃
p→

(β+
δσ22σ1X
σ11−σ2

1X

)2+(Ψ−σ1X
σ11

δσ22σ1,X

σ11−σ2
1X

)2σ11+2(β+
δσ22σ1,X

σ11−σ2
1X

)(Ψ−σ1X
σ11

δσ22σ1X
σ11−σ2

1X

)σ1X

σyy
and

Rmax =
β

2
+Ψ2σ11+Ψ2σ22+2βΨσ1X+2βΨ

δσ1Xσ22
σ11

σyy
. Algebraic simplification then yields:

[
R̃− R̊

]
σyy

p→ Ψ2

[
σ2

11 − σ2
1X(σ11 + δσ22)

]2
σ2

11(σ11 − σ2
1X)[

Rmax − R̃
]
σyy

p→ Ψ
σ22

[
σ2

11 − σ2
1X(σ11 + δ2σ22)

]
σ11(σ11 − σ2

1X)

Combining, we replicate the results from Section 2.
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Appendix Tables

Table A1: Citation for Randomized Outcomes

Outcome Citation Sample Restrictions (if any)

Exercise, BMI, [3] Anderssen et al, 1996 Age 30-50

Exercise, Wt(Kg), [1] Wood et al, 1988 Female, 30-59

Exercise, Wt(Kg), [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, DBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, SBP, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Glucose, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Glucose, [3] Anderssen et al, 1996 Age 30-50

Exercise, Triglyc, [1] Wood et al, 1988 Female, 30-59

Exercise, Triglyc, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, Cholest, [1] Wood et al, 1988 Female, 30-59

Exercise, Cholest, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

Exercise, HDL, [1] Wood et al, 1988 Female, 30-59

Exercise, HDL, [2] Stefanick et al, 1998 Women 45-64, men 30-64, no heart disease

CaD, Wt(Kg) Caan et al, 2007 Women, 55-85

CaD, DBP Margolis et al, 2008 Women, 55-85

CaD, SBP Margolis et al, 2008 Women, 55-85

CaD, Glucose de Boer et al, 2008 Women, 55-85

CaD, Triglyc Rajpathak et al, 2010 Women, 55-85

CaD, Cholest Rajpathak et al, 2010 Women, 55-85

CaD, HDL Rajpathak et al, 2010 Women, 55-85

CaD, Exercise Brunner et al, 2008 Women, 55-85

CaD, Femur BMD Jackson et al, 2011 Women, 55-85

CaD, Intro. BMD Jackson et al, 2011 Women, 55-85

Notes: This table shows the source of the randomized estimates. The text of the outcome matches the form of citation in Figure 2.
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