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Abstract

In a sample selection or treatment effects model, common unobservables may affect both the out-
come and the probability of selection in unknown ways. This paper shows that the distribution function
of potential outcomes and treatment effects may still be identiÞed if an observed variable V affects the
treatment or selection probability in certain ways and is conditionally independent of the unobservables.
Estimators based on this identiÞcation are provided, which take the form of simple weighted averages.
A special case is a two stage least squares estimator of the coefÞcients in a linear selection model,

which permits endogeneous or mismeasured regressors. An application to estimation of Þrm investment
decisions is provided.
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1 Introduction

Assume that for a sample of individuals we observe an indicator D that equals one if the individual is treated
or selected, and zero otherwise. If the individual is treated or selected we observe an outcome or response
Y , otherwise let Y � 0. DeÞne Y � to equal the observed outcome Y when D � 1, otherwise Y � equals
the outcome that would have been observed if D had equaled one (i.e, a counterfactual), so Y � DY ��We
may also observe a covariate vector X . Treatment or selection D may be unconditionally or conditionally
correlated with Y �, so Y � and D may depend in unknown ways on common unobservables.
This paper provides estimators for conditional and unconditional moments of Y �. Given an arbitrary

function g, estimators for E[g�Y �� X� � X � x] and E[g�Y �� X�] are provided, along with their limiting
normal distributions. In particular, letting g��� x� � I �� � y�� yields estimators for F�y� � X � x� and
F�y��, the conditional and unconditional distribution functions of Y �. This paper shows how to construct a
variable W such that E[g�Y �� X�] � E[Wg�Y� X�]�E�W �.
This last result is of special interest because it implies that if the unobserved Y � is given by Y � �

XT1 � � � and if E�Z�� � 0, then the coefÞcients � (including the intercept) can be estimated by an
ordinary linear two stage least squares regression of WY on WX1, using instruments Z . The instruments Z
would only need to possess the usual properties of linear regression model instruments. This then permits
estimation of � in a selection model in the presence of endogeneous or mismeasured regressors, and general
forms of heteroscedasticity.
Consider the usual treatment model where Y � is an observed outcome and T is a binary treatment

indicator. Then this paper�s estimators can be applied with Y � TY � and D � T to obtain features of the
population (unconditional or conditioned on X � x) if everyone were treated, and the estimators can be
reapplied with Y � �1 � T �Y � and D � 1 � T to obtain the corresponding features of the population if
no one were treated. This (along with readily estimated objects like the conditional distribution of Y � given
T � 1) then permits recovery of average conditional treatment effects, effects of treatment on the treated,
and general welfare calculations associated with treatment.
Many estimators exist for treatment, sample selection and censored regression models. Standard max-

imum likelihood estimation requires that the entire joint distribution of the unobservables, conditional on
covariates or instruments, be Þnitely parameterized. In particular, the selection equation (and the endoge-
neous regressors as functions of instruments) would need to be completely speciÞed. Parametric model
estimators other than ML consist of specifying enough features of this conditional distribution to permit
identiÞcation. See, e.g., Heckman (1974, 1976, 1979), Rubin (1974), Koul, Susarla, and van Ryzin (1981),
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and Lee (1982).
Semiparametric estimators of sample selection models include Powell (1987), Newey (1988), (1999),

Choi (1990), Cosslett (1991), Ichimura and Lee (1991), Lee (1992), Lee (1994), and Ahn and Powell
(1993). Donald (1995), Wooldridge (1995), Kyriazidou (1997), Andrews and Schafgans (1998), Chen and
Lee (1998), Das (1998), Vella and Verbeek (1999), and Das, Newey, and Vella (2000). Recent treatment
related estimators include Imbens and Angrist (1994), Heckman, Ichimura, and Todd (1998), Hahn (1998),
and Hirano, Imbens and Ridder. (2000) See also Heckman (1990), Manski (1994), and Chamberlain (1986).
Surveys include Heckman and MaCurdy (1986), Wainer (1986), Powell (1994), and Vella (1998).
This paper�s proposed estimators have many attractive features. Unlike other estimators, they do not

require estimation of the propensity score (i.e., the selection equation, the conditional expectation of D
given X). Very few assumptions about the unobservables are required. For example, unlike typical treat-
ment model estimators, it is not required that D and Y � be conditionally independent or have a Þnitely
parameterized joint distribution, nor is the distribution of Y � required to be either discrete or continuous.
Correlated or common unobservables can affect both D and Y � in unknown ways. Also, in the case where
Y � � XT1 � � � and one or more elements of X1 may be endogeneous, the estimator for � proposed here
is numerically simple (equivalent to a linear two stage least squares regression), imposes few assumptions
about X1 as a function of instruments Z , and does not require estimation of E�X1 � Z�.
The price paid for these advantages is that the estimators in this paper require the existence of an ob-

served variable V that satisÞes a strong set of conditions, summarized below. It also requires estimation of
the conditional (on X) probability density function of V . Essentially, the estimators in this paper work by
replacing the usual strong assumptions about all unobservables with strong assumptions about one observ-
able covariate. Another disadvantage is that, for typical one sided censoring models, many of the estimators
proposed here will possess an arbitrarily small but non-zero asymptotic bias.
The assumptions based on V differ markedly from the usual identifying assumptions regarding unob-

servables. The estimators proposed here may therefore prove useful as checks of model robustness, that is,
one would have greater conÞdence in estimates produced by more conventional estimators if the estima-
tors provided here, based on very different assumptions, yield similar results. Of course, in any particular
application, these assumptions may be either more or less plausible than the usual ones.
The difÞculty in estimating moments of Y � is that D may covary with Y �, even after conditioning on

observed covariates. Equivalently, common unobservables may affect both Y � and D (in other terminology,
the unconfoundness assumption may not hold). This paper shows that conditional moments of Y � can
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be identiÞed and estimated if a single well behaved observed covariate V exists such that D � I �a0 �
M � V � a1� where a0 and a1 are constants (one of which could be inÞnite), M is an unobserved latent
variable, and I is the indicator function that equals one if its argument is true and zero otherwise. It will
also be required that V have a large support, and be conditionally independent of M and Y �, conditioning
on X� Virtually no other restriction is placed on the joint distribution of M and Y � (which corresponds to
the joint distribution of D and Y �). In particular, M and Y � can depend in unknown ways on common
unobservables. IdentiÞcation is obtained by the presence of V .
As some motivation for this structure, it is shown that, given regularity, if the probability of D � 1 is

monotonic in V , then the above expression for D holds. This structure also generalizes the usual parametric
selection model, which is of this form with M linear in X and an additive error term.
DeÞne two sided censoring to be the case where both a0 and a1 are Þnite, while one sided censoring is

when either a0 � �� or a1 � �� One sided censoring implies D is monotonic in V � Consistent estimators
will be proposed for both one and two sided censoring, though consistency with one sided censoring will
require some unbounded support and asymptotic trimming assumptions. A convenient result will be that the
same bounded support estimators that are consistent with two sided censoring will only have an arbitrarily
small asymptotic bias when applied (without change) to one sided censoring models. This implies that, in
applications, the estimator could be used without even specifying whether the censoring is one or two sided.
The estimators proposed here can be applied, without change, when the unobservables in the outcome

and selection equations are perfectly correlated. For example, the estimators may be applied to censored
regression models. In that case we would have M � Y �, and V would be the random censoring point.
This paper�s model and associated estimators extend readily to the case of ordered selection or ordered

treatment models. Let Y �

j denote the outcome or response that would result from a treatment t j , where
�t0� ���� tJ � is the set of possible treatments. In the ordered selection or treatment model we observe covari-
ates V� X , treatment T� and outcome Y �, where Y � � �J

j�1 Y �

j I �T � t j � and T � t j I �a j � M � V 	

a j�1� for some constants a0� ���� aJ�1 and unobserved latent M . The conditional or unconditional moments
and distribution of each possible outcome Y �

j could then be obtained by applying this paper�s estimator with
D � I �T � t j � and Y � Y �D for each possible treatment t j . Similarly, if Y �

j � XT� j � � j , then this
corresponds to a switching regression model and the coefÞcient vectors � j may be estimated even in the
presence of endogeneous regressors.
The latent index M � V may be interpreted as a monotonic transformation of a desired continuous

level of treatment. Vytlacil (2000) demonstrates an equivalence between latent index treatment models and
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alternative restrictions on the selection process. If V were a cost or a price, then differing values of M could
correspond to the willingness to pay for different levels of treatment t j . Using, e.g., results from Lewbel,
Linton, and McFadden (2001) one may estimate the conditional distribution of this willingness to pay M
given X � x .
Consider the classic wage equation as an example of a selection model (Gronau 1974, Heckman 1974,

1976), where Y � is an individual�s wage and D � 1 if the individual is employed, both of which depend
on unobservables such as ability, as well as on observable covariates X such as measures of schooling
or training. Then an appropriate V would be some form of nonwage income that, conditional on X , is
independent of ability, e.g., government deÞned beneÞts.
Another class of examples are models involving a range of inaction. Here Y is some continuous decision

variable such as quantity to consume or money to spend on investment. Action is taken, that is, D � 1, only
if the amount to be spent or purchased (or some other decision variable) exceeds some threshold level. For
example, investment only takes place if the return from the investment exceeds some Þxed cost associated
with investment. Then V would be a variable that affects the Þxed cost, and hence the threshold, but doesn�t
affect the return on the investment. The selection variable D is then the indicator of whether the threshold
is exceeded. Two sided censoring models can also arise in the context of range of action models.
This paper provides an empirical application in which plant level investment decisions of Þrms are

modeled. The size of the plant V affects Þxed costs of investment, and hence affects D, and a Tobin�s Q
type model determines Y when D � 1.
Other examples of models containing a suitable V are provided by Lewbel, Linton and McFadden

(2001), Maurin (1999), and Alonso, Fernandez, and Rodriguez-Póo (1999). Each of these applications
require a V to estimate binary choice models (equivalent in the present context to estimation of just the
selection or treatment equation). Lewbel, Linton and McFadden (2001) consider applications like willing-
ness to pay studies, where V is a bid determined by experimental design. Maurin (1999) applies Lewbel�s
(2000) estimator in a model of whether students repeat a grade in elementary school, using date of birth as
V . Alonso, Fernandez, and Rodriguez-Póo (1999) use individual�s age as V in a duration model application.

1.1 How the Estimator Works

To illustrate how identiÞcation is obtained here, consider estimation of E�Y �� in a simple case without
covariates X� For this illustration, we observe draws of Y� D� V , where Y � Y �D, D � I �a0 � M � V �
a1� with a0 and a1 Þnite (two sided censoring), and V is independent of M and Y � with a large support.
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The naive estimator of E�Y �� is E�Y ��E�D�, but this is biased in general because Y � and D are corre-
lated. By the law of iterated expectations, we have E�Y � � E[Y �E�D � Y ��], so if we were lucky enough
to have E�D � Y �� be constant (which here with D binary is equivalent to D and Y � independent), then
E�Y ��E�D� would equal E�Y ��. Given our identifying assumptions,

E�D � Y �� � prob�V 	 [a0 � M� a1 � M] � Y ��

If V had an independent uniform distribution that included the interval [a0�M� a1�M], then the probability
that V lies in this interval would be proportional to a1 � a0, and hence constant. In that case co
�Y �� D�
would equal zero and the naive estimator would work.
The key here is that the propensity score (the conditional probability of treatment or selection) equals

the probability that V lies in an interval, and while this interval depends on the unknown latent M� the
length of this interval is constant, so if V were uniform, then the conditional probability of treatment would
be constant.
Now consider instead the estimator E�WY ��E�W � where W � D� f��V � and f� is the pdf of V . This

division by the density of 
 is equivalent to converting V to a uniformly distributed random variable, and
so by the above logic this estimator will yield the desired E�Y ��. Formally, we have

E�WY � � E[E�WY � M� Y ��]

� E
��
supp�V �

I �a0 � M � 
 � a1�Y �

f��
�
f��
 � M�Y ��d


�
� E

��
supp�V �

I �a0 � M � 
 � a1�Y �d

�

� E
�
Y �

� a1�M

a0�M
d


�
� �a1 � a0�E�Y ��

and similarly, E�W � � �a1 � a0�, so E�WY ��E�W � � E�Y ��. The mean of the unobserved Y � equals the
weighted mean of the observed Y , with weights given by W�E�W �.
For estimands that depend on covariates X , the above results extend using weights of the form W �

D� f��V � X�. Compare this to the more usual propensity score weight estimators (see, e.g., Koul, Susarla,
and van Ryzin 1981), which look similar but employ weights of the form W � D�E�D � X�Y �� and for
consistency require special structure on the joint distribution of Y �, D, and X . In contrast, the weights
proposed in this paper are based on the density of a covariate V that affects treatment, rather than directly
on the probability of treatment.
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The estimators in this paper extend the above idea to arbitrary moments of Y that include covariates,
and either divide by the density of V or (equivalently) directly integrate over 
 . The main virtue of this
procedure is that it avoids having to make assumptions about the joint distribution of Y � and M , other than
independence from V (given X).

2 IdentiÞcation

ASSUMPTION 1. For a sample of individuals we observe a binary treatment or selection indicator D, a
covariate vector X , a continuously distributed covariate scalar V , and an outcome Y where Y � Y �D.

The form of the distribution of outcomes is not restricted, that is, Y � could be continuous, discrete, or
contain mass points. If Y � is continuous then it is sufÞcient to only observe Y� V� and X , since in that case
D could be deÞned by D � I �Y 
� 0�. The elements of X may also be continuous or discrete, or X could
be empty.

ASSUMPTION 2. The indicator D is determined by

D � I �a0 � M � V � a1�

where a0 and a1 are (possibly inÞnite) constants and M is an unobserved latent variable.

One sided censoring is when either a0 or a1 is inÞnite. Assumption 2 is not as restrictive as it might
appear. In particular, Proposition 1 below shows that, with some regularity, a sufÞcient (but not necessary)
condition for Assumption 2 is that the probability of selection be monotonic in the covariate V �

PROPOSITION 1. Given regularity, if the probability that D � 1 is monotonic in a continuously distrib-
uted V having a large support, then Assumption 2 holds with one sided censoring.

A formal statement and proof of Proposition 1 is given in the appendix as Lemma 1. Intuitively, the
result follows because, conditioning on everything other than V that determines D, we can deÞne M to
equal the negative of whatever value of V is just large (or just small) enough to cause D to change from
zero to one.
While monotonicity in V is sufÞcient for Assumption 2, it is not necessary. In particular, monotonicity

does not hold with two sided censoring.
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Assumption 2 implies that all of the observables and unobservables that determine D, other than V� can
be subsumed into a scalar M . If M were linear in X and in an additive independent error, then Assumption
2 would be equivalent to a standard parametric choice model for selection.

ASSUMPTION 3. Conditioning on X � x� the covariate V is continuously distributed and conditionally
independent of M and Y �.

In a linear simultaneous system of two equations, a standard means of obtaining identiÞcation is by
exclusion restrictions, where coefÞcients in one equation are identiÞed by having an exogeneous variable
appear only in the other equation. Given Assumptions 1 and 2, Assumption 3 is as an exclusion restriction,
in which moments of Y � are identiÞed by having a variable V that only affects D.

ASSUMPTION 4. Let �0 and �1 be constants that satisfy �0 � a0 � sup[supp�M�] and �1 � a1 �
inf[supp�M�], and either
A. The support of V contains the interval ��0� �1� and �0 and �1 are both Þnite, or
B. The support of V contains the interval ��0� �1�� or
C. The support of V is a bounded interval, and contains the interval [�� � � ] for some large scalar � .

Assumption 4, which has three variants, deÞnes the sense in which V is required to have a large support.
Assumption 4A implies that a0 and a1 are Þnite, and so applies only to two sided censoring, while Assump-
tions 4B and 4C will be used for both one and two sided censoring results. Assumptions 4A and 4B imply
that V can take on any value in the interval �a0 � M� a1 � M�,.and therefore the conditional probability
of D � 1 can take on any value from zero to one, which is generally a requirement for full identiÞcation
of treatment effects. Assumption 4C will be used for estimators that are not consistent, but rather have
asymptotic bias of order O���1�, and hence require � large to make this bias negligible.
The above assumptions, and hence identiÞcation results based on them, do not require independent or

identically distributed observations, though the estimators provided later will assume i.i.d. observations.

2.1 Unconditional moments

First consider identiÞcation and estimation of unconditional expectations of the form E[g�Y �� X�] for a
given function g. Let f��
 � x� denote the conditional pdf of V evaluated at V � 
 and conditioning on
X � x . DeÞne W by

W � D
f��V � X�
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ASSUMPTION 5. The expectations E[g�Y �� X�] and E[g�0� X�] exist.

THEOREM 1. Given a function g��� x�, deÞne  by

 � E[Wg�Y� X�]
E�W �

(1)

If Assumptions 1, 2, 3, 4A, and 5 hold then E[g�Y �� X�] � �

By Theorem 1, the mean of the unobservable g�Y �� X� can be consistently estimated by a weighted
average of the observable g�Y� X�, using weights W , where these weights are functions of observables D,
V , X and the pdf of V . An interesting feature of Theorem 1 is that it does not require estimation of the
propensity score, that is, we do not need to construct or estimate E�D � V� X�.
In Theorem 1, deÞning g��� x� � I �� � y�� for any constant y� makes  equal the unconditional

distribution function of Y �, evaluated at y�. Theorem 1 thereby provides a direct estimator of the distribution
function of the latent Y �. Theorem 1 will later be applied with g��� x� � x� to estimate E�XY �� in a
regression speciÞcation for Y ��

If a0 or a1 is inÞnite, then the deÞnitions of �0 and �1 will require that either �0 or �1 be inÞnite. The
difÞculty with this case is then E[Wg�Y� X�] and E�W � may not exist. The following corollaries deal with
this complication.

COROLLARY 1. If Assumptions 1, 2, 3, 4C, and 5 hold then E[g�Y �� X�] �  � O���1��

Corollary 1 implies that if V has bounded support that contains the interval ��� , ��, for some large � ,
then the same estimator  can be used for either one or two sided censoring, and the resulting bias, if any,
will be of order ��1. This asymptotic bias, which (for sufÞciently large �� is only present with one sided
censoring, can be made arbitrarily small by having the support of V be arbitrarily large. This result implies
that, in applications, the estimator could be used without even specifying whether the censoring is one or
two sided.
It is possible to estimate E[g�Y �� X�] without this one sided censoring induced bias term, but a some-

what more complicated estimator is required. DeÞne

��� � E[I ��V � � ��Wg�Y� X�]
E[I ��V � � � �W ]
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COROLLARY 2. If Assumptions 1, 2, 3, 4B and 5 hold then E[g�Y �� X�] � ��� � O���1� and
E[g�Y �� X�] � lim��� ���.

The exact expression for the bias term E[g�Y �� X�] � ��� is given in the proof of Corollary 2. For
example, if g�0� X� � 0 and a1 � � then the bias term is given by

E[g�Y �� X�]�  � co
[M� g�Y �� X�]
� � a0 � E�M�

This expression is also an upper bound for the bias term in Corollary 1. Similar expressions are obtained if
g�0� X� 
� 0 or a0 � ��.
Corollary 2 implies that, given either one sided or two sided censoring, E[g�Y �� X�] can be consistently

estimated by a sample weighted average of g�Y� X�, with weights given by I ��V � � ��W divided by the
sample average of I ��V � � ��W� and letting � � � as the sample size grows to inÞnity. For one sided
censoring, consistency of this estimator requires V to have inÞnite support, which will later be shown to
imply a slower than root n rate of convergence.
An interesting question for future research would be determination of an optimal trimming rule, i.e. a

data dependent procedure for choosing � that minimizes some root mean squared error criterion, balancing
the contribution to variance of observations having very large values of I ��V � � ��W against the O���1�
bias term.
For the present, although Corollary 2 provides consistency in the case of unbounded supports, to avoid

technical problems associated with vanishing densities and to obtain root n limiting distributions, most of
the estimators provided later will assume that the support of V is bounded, corresponding to either Theorem
1 for consistent estimation with two sided censoring, or Corollary 1 for estimation with an arbitrarily small
but nonzero bias when censoring is one sided. Consideration of limiting distributions with inÞnite support
is deferred to the extensions section of the paper.

2.2 Linear Outcome and Possibly Endogeneous Regressors

Now consider a linear selection model, so the unobserved Y � is given by Y � � XT1 ���. Given instruments
Z , Corollary 3 below shows that � can be estimated by an ordinary two stage least squares linear regression
of WY on WX1, using instruments Z �

10



ASSUMPTION 6. Assume Y � � XT1 � � �, where � is an unobserved error. The vector X contains the
regressors X1 and instruments Z � where E��Z� � 0� E�Z ZT � exists and is nonsingular, and the rank of
E�X1ZT � is J� the dimension of X1�

DeÞne ��xz� �zz , and � by ��xz � E�WX1ZT �� �zz � E�Z ZT �� and

� � ���xz�
�1
zz �

T
�xz�

�1��xz�
�1
zz

Similarly, let��xz�� � � E[I ��V � � ��WX1ZT ] and deÞne ���� � [��xz�� ��
�1
zz �

T
�xz�� �]�1��xz�� ��

�1
zz E[I ��V � �

��WZY ]�

COROLLARY 3. If Assumptions 1, 2, 3, 4A and 6 hold then

� � �E�WZY �

If Assumptions 1, 2, 3, 4B and 6 hold then ���� � � � O���1� so � � lim��� ����, and if Assumptions
1, 2, 3, 4C and 6 hold then � � �E�WZY �� O���1��

In short, Corollary 3 says that � can be estimated by an ordinary two stage least squares linear regression
of WY on WX1, using instruments Z � In the special case where Z � X1, this reduces to an ordinary
(weighted) least squares regression.
For two sided censoring, this two stage least squares estimator is consistent. With one sided censoring,

this estimator will have an arbitrarily small asymptotic bias if V has a large but not inÞnite support, or
alternatively, consistency may be obtained in the one sided censoring case if V has inÞnite support by
replacing W with I ��V � � ��W , and letting � grow with the sample size.
Corollary 3 permits estimation under weak assumptions regarding the errors �. No restriction is placed

on the relationship between � and M , other than both being conditionally independent of V given X� so the
same unobservables are permitted to effect outcomes and selection or treatment, and to do so in unknown
ways.
If � and X1 are uncorrelated, then we may take Z � X1� and Corollary 3 permits general forms of

heteroscedasticity of �, so higher moments of � may depend on X1 in arbitrary ways. For example, As-
sumption 6 is satisiÞed with Z � X1 given classical random coefÞcients in Y �� since if Y � � XT1 �� � ���

with mean zero �� independent of X1, then then � � XT1 �
� and E�X1�� � 0.

More interesting is the case where � and X1 may be correlated, as would occur if the regressors X1 are
endogeneous or mismeasured. Assumption 6 is identical to the minimal assumptions that would be made
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about covariates X1 and instruments Z if Y � were observed and � was to be estimated by ordinary linear
two stage least squares. The errors � do not need to be continously distributed, and can have moments that
depend in arbitrary ways on X1 and Z � as long as E��Z� � 0�
We do not need to construct E�X1 � Z�, nor do we require any assumptions regarding the �instrument

equation� errors X1 � E�X1 � Z�, other than the conditional independence from V implied by Assumption
3. For example, if X1 is an arbitrary function of Y �� Z� and a vector of unobservables �1 (as would be the
case for classical measurement errors or for a simultaneous system of equations for X1 and Y �), and M is an
arbitrary function of X and unobservables e, then the required conditional independence from V will hold if
the set of unobservables �� �1� e is conditionally independent of V , conditioning on Z . Alternatively, if X1
is an arbitrary function of V� Z � and �1, then having �� e be conditionally independent of �1� V conditioning
on Z would sufÞce.
It is notable that the estimator does not require speciÞcation or estimation of either the instrument Þts

E�X1 � Z� or the propensity score E�D � V � X�, nor does it require any consideration or speciÞcation of
the joint distribution of errors or unobservables in the selection, outcome and instrument equations, other
than the conditional independence and support assumptions regarding V .
The vectors of regressors X1 and instruments Z may each include a constant term (so location is esti-

mated along with other coefÞcients), and they may contain discretely distributed variables such as dummy
variables. Squares and interaction terms are also permitted, e.g., the third element of X1 could equal the
square of the second element, or equal the product of the Þrst two elements. In addition, X1 and Z can be
correlated with V , though Assumption 3 rules out having elements of X1 or Z be deterministic functions of
V .

2.3 Conditional moments

Now consider conditional expectations of the form E[g�Y �� X� � X � x] for a given function g. The natural
extension of Theorem 1 would be based on E[Wg�Y� X� � X � x]�E�W �� A consistent estimator of this
form can be constructed, but its limiting distribution will be needlessly complicated because the density
f��V � X� must Þrst be estimated to construct W , followed by a nonparametric regression of Wg�Y� X� on
X . Theorem 2 below provides an alternative that has a simpler limiting distribution.
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THEOREM 2. Let Assumptions 1, 2, 3 and 4B hold. Given a function g��� x�, deÞne ��x� by

��x� � g�0� x��
� �1
�0
E �[g�Y� X�� g�0� X�]D � V � 
� X � x� d


E
�� �1

�0
E �D � V � 
� X� d


� � (2)

Then ��x� � E[g�Y �� X� � X � x] if the expectations and integrals in equation (2) exist.

Let F�y� � X � x� denote the conditional distribution function of Y �. An immediate implication
of Theorem 2 is that F is identiÞed, since deÞning g��� x� � I �� � y�� for any constant y� makes
��x� � F�y� � X � x�.
A consistent estimator based on Theorem 2 can be constructed by replacing the conditional expectations

in equation (2) with nonparametric regressions, and replacing the unconditional outer expectation in the
denominator of equation (2) with a sample average.
In addition to providing an estimator for the conditional distribution of Y � given X , Theorem 2 more

generally provides an estimator for conditional means, which is useful because many objects of interest
can thereby be directly estimated. For example, in the treatment model discussed in the introduction, take
g��� x� � �� deÞne �1�x� to equal ��x� in Theorem 2 with D � T and Y � Y �T� and deÞne �0�x�
to equal ��x� in Theorem 2 with D � �1 � T � and Y � Y ��1 � T �. Then �1�x� � �0�x� will equal the
conditional average treatment effect, conditioning on X � x .
Care must be taken when applying Theorem 2 with one sided censoring (as in the above treatment

example), since Assumption 4B may then require �0 or �1 to be inÞnite, and so the integrals in equation
(2) may not exist. In that case, deÞne the left side of equation (2) to be ��x� �0� �1�� Then, as long as
��x� exists, ��x� will equal lim�����x��� � �1� or lim�����x� �0� � �, exactly analogous to Corollary
2. Although this extension provides consistency in the case of unbounded support, to avoid technical
problems associated with vanishing densities, the limiting distribution for estimation based on Theorem
2 provided later will assume that the support of V is bounded. Lemma 2 in the appendix shows that,
regardless of whether �0 and �1 are Þnite or inÞnite (i.e., for one or two sided censoring), with � Þnite we
have ��x��� � � � � E[g�Y �� X� � X � x] � O���1� provided that [�� � � ] is in the support of V , so any
asymptotic bias induced by one sided censoring can be made arbitrarily small by having the support of V
be arbitrarily large.

13



3 Limiting Distributions

Assume that a random sample Di � Yi � Vi � Xi for i � 1� � � � � n is observed, where Di is a realization of D,
and similarly for Yi , Vi � and Xi . Let Assumptions 1,2, and 3 hold.

3.1 Unconditional Moment Estimation

Assume a function g has been chosen, and consider estimation of E[g�Y �� X�]� based on Theorem 1 or
Corollary 1. The simplest case is when  deÞned by equation (1) is estimated assuming f� is known and V
has bounded support. DeÞne this estimator,�1� by

Wi �
Di

f��Vi � Xi �

�1 � �n
i�1Wig�Yi � Xi ��n

i�1Wi

THEOREM 3. Assume that f��
 � x� is bounded away from zero and E[W 2g�Y� X�2] exists. Then

n��1 � �	

E[W 2�g�Y� X�� �2]�E�W �

d�� N �0� 1��

This estimator converges to  at rate root n. By Theorem 1 and Corollary 1,  will either exactly
equal E[g�Y �� X�]� or under one sided censoring will differ from it by an arbitrarily small bias term. Later
in an extensions section, an estimator based on Corollary 2 will be provided that consistently estimates
E[g�Y �� X�] for either one or two sided censoring, but converges at slower than rate root n.

3.1.1 Estimation With Unknown Density

Now consider estimation of  when f� is not known and must be estimated.
Given an arbitrary Si and a sufÞciently regular nonparametric estimator �f��
 � x��1, Lewbel (2000a)

and Honoré and Lewbel (2001) provide the following root n limiting distribution.

n
�

n�1

�n
i�1 Si �f��Vi � Xi ��1

�
� E[ f��V � X��1S]

�

ar

�
f��V � X��1S � E[ f��V � X��1S � X]� E[ f��V � X��1S � V� X] d�� N �0� 1� (3)
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This is a two step estimator with a nonparametric Þrst step. Examples of root n convergence of similar es-
timators involving a kernel estimated Þrst step include Robinson (1988), Powell, Stock, and Stoker (1989),
Hardle and Stoker (1989), Newey and McFadden (1994), Newey (1994), Newey and Ruud (1994), Sherman
(1994), Lewbel (1995), Andrews (1995), and Hardle and Horowitz (1996). The root n limiting distribution
theory for such estimators is well known. See, e.g., Theorems 8.2 and 8.12 of Newey and McFadden (1994)
for a set of high level assumptions, and a corresponding set of kernel estimator assumptions, yielding root
n normality for this type of two step estimator.
The difÞculty in applying generic results like these to estimands of the form E[ f��V � X��1S] is

that remainder terms in the expansions generally cannot be bounded sufÞciently unless f��V � X� itself
is bounded away from zero, but bounding f��V � X� away from zero introduces boundary effects in the
density estimation, which also interferes with sufÞciently fast shrinkage of remainder terms, unless S equals
zero in the neighborhood of the boundary (i.e., Þxed trimming).
Lewbel (2000a) deals with this difÞculty by bounding f��V � X� away from zero and introducing an

asymptotic trimming function that sets to zero all terms in the average having data within a distance t of the
boundary. The estimator sends t to zero more slowly than the bandwidth to eliminate boundary effects from
kernel estimation, but also has t shrink to zero faster than n�1�2, which makes the volume of the trimmed
space vanish quickly enough to send the trimming induced bias to zero. A closely related alternative is
Hong and White (2000), who, based on Rice (1986), use jackknife boundary kernels in place of asymptotic
trimming.
The resulting kernel estimator for �f��V � X��1 has the form

�f��
 � x��1 �
It�
� x�b

�n
i�1 K



x�Xi
b

�
�n
i�1 k



��Vi
b

�
K


x�Xi
b

� (4)

where k is a kernel function, K �t� � �d
j�1 k�t j �� b is a bandwidth, and It �
� x� is a trimming function

deÞned to equal zero if �
� x� is within a distance t of the boundary of the support of V� X , and one
otherwise. Theorem 1 in Lewbel (2000a) then provides sufÞcient regularity conditions to obtain equation
(3), assuming i.i.d. draws of V� X� S� These conditions consist of existence of moments, densities bounded
away from zero, local Lipschitz conditions, kernels of order p, and rates nbJ � �� nb2p � 0� b�t � 0,
and nt2 � 0.
To keep the estimation simple, in the later empirical application no trimming is employed, so It�
� x� is

set equal to one. Hardle and Stoker (1989) also report insensitivity to trimming in applications. Similarly,
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root n convergence calls for higher order kernels, but ordinary kernels typically perform better in practice.
The empirical results are also relatively insensitive to bandwidth choice.
DeÞne �Wi � Di �f��Vi � Xi ��1 (5)

� �
�n
i�1

�Wig�Yi � Xi ��n
i�1

�Wi
Q� � �g�Y� X�� �W � E[�g�Y� X�� �W � X ]� E[�g�Y� X�� �W � V� X] (6)

THEOREM 4. Assume f��
 � x� is bounded away from zero, E�Q2�� exists, and equation (3) holds for
S � D and for S � g�Y� X�. Then


n�� � �	

E�Q2���E�W �

d�� N �0� 1�� (7)

The variance in equation (7) can be estimated by replacing  andW in equation (6) with� and �W � then
replacing the expectations in that equation with nonparametric regressions evaluated at Vi and Xi to deÞne�Q�i , and Þnally replacing the expectations in E�Q2��1�2�E�W � with sample averages of �Q2�i and �Wi .
In place of a kernel estimator, consistent (though perhaps not root n) estimates could be obtained using

a series expansion based density estimator of f� , as in Gallant and Nychka (1987).

3.1.2 Very Simple Estimators

This section describes a computationally trivial �ordered data� estimator for the density f� which does not
require kernels or bandwidths.

ASSUMPTION 7. Assume there exists a vector �� such that V � XT�� � e� � where e� is continuously
distributed, has bounded support, and is independent of X .

A special case of Assumption 7 would be if V were independent of X , which would then make e� equal
V � Let fe� denote the unconditional density function of e� . If Assumption 7 holds then fe��e�� � f��V �
X�. DeÞne�e�i as the residuals from linearly regressing V on X , so

�e�i � Vi � Xi ��ni�1Xi XTi ��1�ni�1XiVi
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Let �e��i denote the smallest element of ��e�1� ����e�n� that is greater than �e�i , and let �e��i denote the largest
element of element of ��e�1� ����e�n� that is less than �e�i . In other words, if the data �e�1� ����e�n are sorted
in ascending order, the number immediately preceeding �e�i would be �e��i , and the number immediately
following�e�i would be�e��i . Endpoints may be dealt with by letting�e��i equal�e�i if there is no element of
��e�1� ����e�n� that is smaller than�e�i , and similarly for the largest element.
DeÞne the estimator �f��Vi � Xi ��1 � ��e��i ��e��i �n�2 (8)

Now i�n is an estimate of the distribution of e� evaluated at�e�i , so �f��Vi � Xi ��1 � fe��e�i ��1 � f��Vi �
Xi ��1� Although �f��
 � x��1 is not a consistent estimator of f��
 � x��1, it is the case given Assumption 7
that for arbitrary S, with iid data, n�1

�n
i�1

�f��Vi � Xi ��1Si is a consistent estimator of E[ f��V � X��1S]
(see section 4.1 of Lewbel 2000).
Therefore, using equation (8) instead of �f� in the deÞnition of �W yields a numerically very simple

estimator. In particular,� then simpliÞes to
� �

�n
i�1 g�Yi � Xi ���e��i ��e��i �Di�n

i�1��e��i ��e��i �Di
which will be a consistent estimator of .
This estimator is convenient for its numerical simplicity, but it requires the extra Assumption 7 for

consistency. This assumption limits the permitted dependence of V on X . An application in which this
additional assumption may be satisÞed by construction is Lewbel, Linton, and McFadden (2001), where a
special regressor is determined by experimental design. Another application is Maurin�s (1999) example
where V is a child�s exact date of birth and X is a vector of socioeconomic attributes of the child�s family.

3.1.3 Estimation with a Parametric Density

Suppose f��V � X� is not known but is Þnitely parameterized. For example, the income distribution is
known to be well approximated by a lognormal distribution with a Pareto tail, so this speciÞcation might be
used when 
 is income. Let f��V � X� �� be a parameterization of f� in terms of a parameter vector � , with
estimator�� where 

n��� � �� � N [0� 
ar�Q	 �] (9)

for some inßuence function Q	 . For example, � might consist of means or other moments of V� X and��
would be the corresponding sample moments. The standard limiting distribution theory for parametric two
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step estimation can now be applied (see, e.g., section 6 of Newey and McFadden 1994). The result is again
equation (7) but this time with Q� deÞned by

Q� � [g�Y� X�� ]W
�
1� QT	

� f��V � X� �����
f��V � X� ��

�
�

In the case where f� is known this further simpliÞes to Q� � [g�Y� X�� ], equivalent to Theorem 3.
Alternatively, instead of Þrst estimating � , one could simply stack the moment conditions deÞning ��

with the moment condition E[�g�Y� X�� �D� f��V � X� ��] � 0, and apply an ordinary GMM estimator
to the stack.

3.2 Estimation With Possibly Endogeneous Regressors

Now consider root n estimation of � , which for this section will be deÞned as � � �E�WZY �� By Corol-
lary 3, this deÞnition of � equals the coefÞcients in the linear outcomemodel Y � � XT1 ��� under two sided
censoring, and under one sided censoring differs from these coefÞcients by an arbitrarily small amount.
Let �f��V � X��1 be nonparametrically estimated as in Theorem 4, deÞne �W by equation (5), and deÞne

�� �
����ni�1

�Wi X1i Z Ti
n

��
�ni�1Zi Z

T
i

n

��1�
�ni�1

�Wi Zi XT1i
n

����1 �
�ni�1

�Wi X1i Z Ti
n

��
�ni�1Zi Z

T
i

n

��1

�� � ��
�
�ni�1

�Wi ZiYi
n

�
(10)

Q
 � WZY � E�WZY � X�� E�WZY � V� X�

THEOREM 5. DeÞne � � �E�WZY �. Assume f��
 � x� is bounded away from zero and equation (3)
holds. Then 

n��� � ��
d�� N [0� �
ar

�
Q
 � WZXT1 �

�
�T ]� (11)

This �� is numerically identical to a linear two stage least squares regression of �WY on �WX1 using
instruments Z . If Q
 equaled WZY� then the variance in equation (11) would also be the same as the
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variance of two stage least squares (with heteroscedastic errors). The additional terms in Q
 are due to the
estimation error from using �W instead of W .
If X1 � Z (which by Corollary 3 permits arbitrary heteroscedasticity in � but not endogeneity of X1),

then �� simpliÞes to ��ni�1�Wi X1i XT1i�n��1 and�� becomes numerically identical to a linear weighted least
squares regression of Y on X1 using weights �W �

The variance in equation (11) can be estimated as follows. In the deÞnition of Q
 replace W with �W
and replace expectations with nonparametric regressions to obtain �Q
 . Then the variance of


n��� � ��

may be estimated as ���
ar ��Q
 � �WZXT1��� ��T , where�
ar denotes the sample variance.
The limiting distribution in Theorem 5 assumes X is continuously distributed. Discrete elements of X

(having a Þnite number of mass points) can be readily handled in the estimation of f� using cell means, or
as in, e.g., Racine and Li (2000).
As before, if instead of being nonparametrically estimated we have f� parameterized as f��V � X� ��

with equation (9), then equation (11) will still hold, but now with

Q
 � ZYW
�
1� QT	

� f��V � X� �����
f��V � X� ��

�
�

and, in particular, if f� and hence W is known, then this simpliÞes to Q
 � ZYW�

3.2.1 A Very Simple Estimator of Beta

It follows from the earlier section on very simple estimators that, if Assumption 7 holds then we can con-
sistently estimate � � �E�WZY � using the density estimator in equation (8) in the deÞnition of �W . This
results in the following extremely simple consistent estimator for �: 1. deÞne �e� as the residuals from
regressing V on X using ordinary least squares, 2. sort the�e� data from smallest to largest to obtain�e��i and�e��i for each observation i , and 3. Let �� be the estimated coefÞcients from linearly regressing ��e��i ��e��i �Yi
on ��e��i ��e��i �Di X1i using two stage least squares with instruments Zi .
3.3 Nonparametric Conditional Moment Estimation

Assume a function g has been chosen, and consider estimation of��x� deÞned by equation (2). By Theorem
2 and Lemma 2, either ��x� � E[g�Y �� X� � X � x] or ��x� differs from this expectation by an arbitrarily
small bias term.
DeÞne �Y by �Y � [g�Y� X�� g�0� X�]D
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DeÞne the functions m�
� x� and m��
� x� by

m�
� x� � E[�Y � V � 
� X � x]
m��
� x� � E[D � V � 
� X � x]

Let �m�
� x� be a consistent estimator of m, that is, a nonparametric regression of �Y on X� V , evaluated at
x� 
 . Similarly let �m��
� x� be a consistent estimator of m�. DeÞne�
0 and�
1 by

�
0 � min�V1� ���� Vn��
1 � max�V1� ���� Vn�

DeÞne ���� and���x� by
� � E

�� �1

�0

m��
� X�d

�

�� �
�

��1

��0

n�1
n�
i�1

�m��
� Xi �d


���x� � g�0� x�����1 � ��1

��0

�m�
� x�d

The integrals involved in the deÞnition of ���x� are one dimensional, and so can be readily evaluated nu-
merically.
Given an iid sample of ��Yi � Vi � Xi �� the limiting distribution theory for estimators of the form � �1

�0
�m�
� x�d


is known. This linear functional of a nonparametric regression is in the class of marginal integration/partial
mean estimators sometimes used for estimating additive nonparametric regression models. See, e.g., Lin-
ton and Nielsen (1995), Newey (1994), and Tjøstheim and Auestad (1994). Based on this work, and using
results in Masry (1996a), (1996b), and Gozalo and Linton (2000), Lewbel, Linton, and McFadden (2001)
provide the limiting normal distribution for

� �1
�0

�m�
� x�d
 � � �1
�0
m�
� x�d
� both under high level assump-

tions regarding the nonparametric regression estimator �m�
� x�, and for the particular case of a kernel
regression. The latter results are applied here in Theorem 6 below.
DeÞne the kernel regression estimator

�m�
� x� � �n
i�1

�Yik 
 ��Vi
b

�
K


x�Xi
b

�
�n
i�1 k



��Vi
b

�
K


x�Xi
b

� (12)

where k is a kernel function and K �t� � �d
j�1 k�t j �� and deÞne �m��
� x� analogously.
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ASSUMPTION K. k is a symmetric probability density with bounded support, and is Lipschitz continu-
ous on its support, i.e.,

�k�t�� k�s�� ��c�t � s�
for some constant�c. The variables �V� X� are continuously distributed with Lebesgue density fV�X �
� x�
that satisÞes inf�0����1 fV�X �
� x� � 0� The functions m� m�, and fV�X are twice continuously differen-
tiable for all 
 with �0 � 
 � �1. The set [�0 � 
 � �1] � �x� is strictly contained in the support of
�V� X��

Let ���2 denote the Þrst and second derivative operators, and deÞne

��x� �
�
t2k�t�dt
2�

� �1

�0

tr
�
�2m�
� x���m�
� x�� log fV�X �
� x�

�
d


�x� � �K�2
� �1

�0


ar [�Y �m�V� X� � V � 
� X � x]
�2 fV�X �
� x�

d


THEOREM 6. Let Assumptions 1, 2, 3, 4A, and K hold. Assume that the bandwidth sequence b � b�n�
satisÞes b� 0 and nbd�2� log n � �� Then,

���x�� ��x�� b2��x��	
n�1b�d�x�

d�� N �0� 1�� (13)

Estimation error in�
0 and�
1 does not contibute to the limiting distribution, because they converge to
values outside the range [�0� �1], and m�
� x� equals zero outside that range. Similarly, boundary effects of
kernel estimators are not relevant here.
Theorem 6 requires Assumption 4A, and so only applies to the case of two sided censoring, making

��x� � E[g�Y �� X� � X � x]. However, it can be readily veriÞed that Theorem 6 will also hold if, instead
of Assumption 4A, it is assumed that the support of V contains the interval [�� � � ] and if �0 and �1 (and�
0 and�
1) are replaced by �� and � in assumption K and in the deÞnitions of ���� ��x�, and ���x�. In that
case, by Lemma 2 ��x� will equal E[g�Y �� X� � X � x]� O���1� even if the censoring is one sided.
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4 Extensions

A few brief extensions will be listed here Þrst, followed by some sections describing lengthier results. The
intent is primarily to indicate possible further potential of the estimators and to suggest areas for future
research.
Theorems 1 and 2 can be used to recover information about the distribution of the outcome error �.

Given an estimate of � based on Corollary 3, E[h��� X�] or E[h��� X� � X � x] can be estimated for a
given function h by letting g��� x� � h�� � xT1 �� x� in Theorem 1 or Theorem 2.
The parameters � in a nonlinear outcome equation Y � � g��X� ���� could be estimated if E�� � x� � 0

by Þrst estimating ��x� using Theorem 2, and then minimizing a quadratic form in ��x� � g��X� ��.
Alternatively, analogous to Corollary 3, if E�Z�� � 0 then Theorem 1 provides moment conditions
E[WZ�Y � g��X� ���] � 0, and GMM could be applied to sample versions of these moments to esti-
mate �. Equation (6) provides the appropriate inßuence functions to account for estimation error in W
when constructing corresponding sample moments.
Many of the estimators provided here could be generalized to permit nonindependent and nonidentically

distributed observations, essentially by adding i subscripts to supports, densities, and the expectation op-
erator. For the estimators based on W , the conditional density function f� should be assumed constant (or
its variation Þnitely parameterized) across observations. Many results exist providing limiting distribution
theory for semiparametric estimators when observations are not independently or identically distributed.
See, e.g., Andrews (1995).

4.1 Bias Elimination With Unbounded Support

Most of the estimators provided here assume bounded support for V , resulting in an arbitrarily small but
nonzero asymptotic bias under one sided censoring. To assess the cost of eliminating this bias, this section
provides an estimator for E[g�Y �� X�] based on the limit as � � � of ���, and so by Corollary 2 is
consistent for two or one sided censoring, provided in the one sided case that V has inÞnite support. It will
be shown that this estimator has the same root n limiting distribution as�1 if the support of V is bounded,
but otherwise, the rate of convergence is slower than root n� The fastest possible rate depends on existence
of moments of g�Y �� X� and the thickness of the tails of f� , with thicker tails permitting faster convergence.
DeÞne�� by �� �

�n
i�1Wig�Yi � Xi �I ��Vi � � ���n

i�1Wi I ��Vi � � ��
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If supp�V � is bounded then for large enough � ,�� will equal�1, and so have the same limiting distribution.
To simplify the expression of the limiting distribution of �� in the inÞnite support case, assume that D �
I �0 � M � V �, and sup[supp�V �] � � and that for some constant c, f��
 � x� � f��
� for all 
 � c� A
variant of Theorem 7 below will still hold without this simplifying assumption that the tail of the density of
V not depend on X� but in that case ��� below will need to be replaced by the more complicated equation
(19) in the appendix, resulting in a rate function � � that depends upon the function g and the distribution of
Y � and X�
DeÞne ��� and � � by

��� �
� �

c
f��
�1��d


� � � ��2��2

The rate of convergence of �� will be �n�� � �
1�2. Note that with f� known, the functions ��� and � � are

known. If D is decreasing in V instead of increasing, then with unbounded support ��� and � � will need
to be deÞned analogously for the lower tail of 
�

THEOREM 7. Assume that f��
 � x� is bounded away from zero except at 
 � �, and that for some
constant c, f��
 � x� � f��
� for all 
 � c. Assume that D � I �0 � M � V �� and for some � � 2�
E[�g�Y �� X���] exists. If � � � and ����2

�2 ���n1���2 � 0 then	
n�� � [�� � E[g�Y �� X�]]	


ar [g�Y �� X�2]
d�� N �0� 1��

Replacing g�Yi � Xi �with g�Yi � Xi �2 in the deÞnition of�� provides a consistent estimator of E[g�Y �� X�2],
so the variance in Theorem 7 is readily estimated.
To illustrate the rates of convergence implied by Theorem 7, suppose f��
 � x� has a polynomial tail, so

f��
 � x� � �
��1�� for all 
 � c, for some positive constants � and �� Then ��� � ��0���1�
���� for

some constants ��0 and ��1, which implies � � � O��� and ����2
�2 ��� � O



�

�
2��

�
2�1�

�
. The required

rate condition on � is therefore ��
�

��2n�1 � 0 for some � � 2 such that E[�g�Y �� X���] exists, and the
resulting rate of convergence of �� is �n���1�2� The smaller � is, and hence the thicker the tail of f� , the
faster is this rate of convergence. A necessary condition for root n convergence is � � 0 (or more generally
a tail that is thicker than �
�1) but existence of the distribution function f� requires � � 0, so the root n
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rate of convergence cannot be attained. However, having E[�g�Y �� X���] exist for arbitrarily large � and
having � arbitrarily close to zero means that a rate arbitrarily close to root n is possible. These results
are very closely related to the Andrews and Schafgans (1998) analyses of rates of convergence of location
estimators in censored models.

4.2 Bias Elimination and Selection Equation Estimation

An advantage of the estimators proposed in this paper is that they do not require estimation of the features
of the selection or treatment equation, such as the.propensity score. However, features of the selection
equation are often of interest, so this section provides estimators for the selection equation. This section
also shows that if the selection equation is parameterized and estimated, then those estimates can provide
another method to reduce or eliminate the asymptotic bias in�� from one sided censoring.
Suppose that, with one sided censoring, the selection equation is parameterized as

D � I �0 � V � XT1 � � e�

for some vector � � Note that the constant term is included in X1. Theorem 8 provides an estimator for � ,
and hence for a general semiparametric binary choice model, which can be employed even when some or
all of the regressors X1 are endogeneous.

THEOREM 8. Let Assumptions 1, 2, 3, 4B, and 6 hold (except that all mentions of Y and Y � can be
omitted) with D � I �0 � V � XT1 � � e�, and assume �0 	 0. Then

� �
�
E�X1ZT �E�Z ZT ��1E�Z XT1 �

��1
E�X1ZT �E�Z ZT ��1E

�
Z
D � I �V � 0�
f��V � X�

�

Theorem 8 is proved as Theorem 1� in Lewbel (2000). Theorem 8 shows that the parameters � can
be estimated by a linear two stage least squares regression of f��V � X��1[D � I �V � 0�] on X1 using
instruments Z . Lewbel 2000 also provides the limiting distribution for this estimator. If the regressors
are endogeneous, then given � � propensity scores could be estimated using, e.g., the Blundell and Powell
(1999) control function methodology.
More generally if M is not parameterized, then Lewbel, Linton and McFadden (2001) may be applied

to estimate moments and features of the distribution of M in the model D � I �0 � V � M�, in results
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roughly analogous to Theorems 1 and 2, just as Theorem 8 is a selection equation analog to the estimation
of � in Corollary 3.
Now consider using estimates of the selection equation to mitigate the bias from one sided censoring.

COROLLARY 4. Let Assumptions 1, 2, 3, 4B, and 6 hold with the Þrst element of X1 identically equal
to one, and D � I �0 � V � XT1 � � e�� Assume co
�Z � e�� � 0� Let � be a constant satisfying sup�M� 	

� 	 �1. DeÞne b to be the vector of all zeros except that the Þrst element of b is E�e���� . Then�
E�X1ZT �E�Z ZT ��1E�Z XT1 �

��1
E�X1ZT �E�Z ZT ��1

E[I �V � � � XT1 � �WZY ]
E[I �V � � � XT1 � �W ]

� � � b

The assumption in Corollary 4 that co
�Z � e�� � 0 limits the degree of heteroscedasticity that is per-
mitted in e and �. For example, if e � a� � �� where � and �� are (conditional on Z ) uncorrelated with
each other, then the assumption would require either that a � 0 or that �2 be uncorrelated with Z .
Corollary 4 implies that if we Þrst estimate � , we may then construct

��i � I �Vi � � � XT1i�� ��WiYi
n�1

�n
i�1 I �Vi � � � XT1i�� ��Wi

and estimate � by a linear two stage least squares regression of �� on X1 using instruments Z � The result
will consistently estimate all of the elements of � except the constant term, which will be biased by the
small quantity E�e���� .
Any bias reducing procedure like this may have the unwanted side effect of increasing variance, due

to the extra estimation errors that are involved. As an alternative to eliminating bias, it may be preferable
to choose a value for the trimming parameter � that minimizes some mean squared error criterion. For
example, it should be possible to estimate the asymptotic bias from trimming based on equation (18) (which
is itself a function of M), and choose a � to minimize a function of the estimated bias and estimated variance
of �.

4.3 Panel Models with Fixed Effects

Consider the panel sample selection or treatment model

Yit � �XT1t� � �i ���i t �Dit
Dit � I �a0t � Mit � Vit � a1t �
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It is assumed that the number of individuals N is large relative to the number of time periods T , so the
asymptotic theory assumes T is Þxed and N goes to inÞnity. Related models include Heckman and Honore
(1990), Kyriazidou (1997), and Hansen (1999).
The structural model has an explicit individual speciÞc effect �i , while the selection equation may have

individual speciÞc effects implicitly incorporated into Mit . These individual speciÞc effects will be treated
as Þxed effects, in that their distribution will not be speciÞed or parameterized.
The covariate Vit is assumed to be strongly exogeneous. This Vit need not vary by time. The regressors

X1i t may be endogeneous or weakly exogeneous.
Given two time periods r and s, let Zi be instruments that are uncorrelated with both ��ir and ��is .

In particular, if some of the regressors X1i t are weakly exogeneous, then Zi could include those weakly
exogeneous regressors from time periods t that preceed times r and s.
For t � r and t � s� deÞne weights Wit by

Wit �
Dit

f� t�Vit � Xi �
where Xi contains all of the distinct elements in X1is� X1ir , and Zi and f�t denotes the conditional density
of Vit .
Let �i t � �i ���i t . Applying Theorem 1 for t � r or t � s yields

E[ZWt �Yt � XT1t��]�E�Wt � � E�Z��

and it follows that, similar to Corollary 3,

E
�
Z
�
WrYr
E�Wr�

� WsYs
E�Ws�

��
� E

�
Z
�
Wr X1r
E�Wr�

� WsX1s
E�Ws�

��T
�

so � can be estimated by a linear two stage least squares regression of WirYir�Wr � WisYis�Ws on
Wir X1ir�Wr � Wis X1is�Ws , using instruments Zi , where Wt �

�n
i�1Wit�n. A similar method is used

by Honoré and Lewbel (2001) to estimate a binary choice panel model based on Theorem 8. They provide
some economic examples of possible choices for Vit .
This estimator of � is consistent with two sided censoring, and under one sided censoring (applying

Corollary 1) has a bias that is O���1�� which can be made arbitrarily small by having the support of Vit be
arbitrarily large. In addition, with one sided censoring if the bias deÞned by E[ZWt�Yt � XT1t��]�E�Wt��
E�Z�� is constant over time (as would be the case, e.g., if a trimmedW is used as in Corollary 4 and E�et�t �
is constant over time) then the estimator of � remains consistent under one sided censoring, because the
differencing that eliminates E�Z�� will also eliminate this bias.
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5 An Investment Model

This section describes an empirical application of Abel and Eberly�s (1994) investment model, using the
present paper�s weighted two least squares estimator to control for possible endogeneity and for sample
selection of unknown functional form. The application entails one sided censoring, and hence in theory
provides a more challenging testbed for the estimator than would a two sided censoring application.

5.1 Investment Theory

Let Yi be the rate of investment in manufacturing plant i� deÞned as the level of investment in a year divided
by the beginning of the year value of the plant�s capital, and let Qi be Tobin�s Q for the plant. Classical
models of Þrm behavior (e.g., Eisner and Strotz 1963) imply Yi proportional to Qi , where the constant of
proportionality is inversely related to the magnitude of adjustment costs. However, simple estimates of this
relationship at varying levels of aggregation typically Þnd a very low constant of proportionality (see, e.g.,
Summers 1981 or Hayashi 1982), implying implausibly large adjustment costs.
Another empirical Þnding inconsistent with proportionality is that plant or Þrm level data on investment

show many periods of zero or near zero investment, alternating with periods of high investment. See,
e.g., Doms and Dunne (1998) and Nilsen and Schiantarelli (2000). These empirical Þndings are generally
attributed to discontinuous costs of adjustment, due to factors such as irreversibility or indivisibility of
investments. See Blundell, Bond, and Meghir (1996) for a survey.
One difÞculty in applying Q models to disaggregate data is that accurate measures of an appropriate

Þrm or plant level marginal Q are difÞcult to construct. Typical proxies for Q are sales or proÞt rates. Let
Pi be the proÞt rate of plant i� deÞned as proÞts derived from the plant in a year divided by the beginning
of the year capital. A problem with the use of a proxy like Pi is that it may be endogeneous, since proÞts
depend on the level of investment.
Let Ci be the cost of investment in plant i in a year, divided by capital at the beginning of the year.

Based on the model of Abel and Eberly (1994), assume plant i has investment costs of the form

Ci � a1i I �Yi 
� 0�� a2iYi � a3Y 2i

The term a1i is plant i�s Þxed (per unit of capital) cost associated with any nonzero investment, a2i is
the price of investment, which can vary across plants, and a3 is a quadratic adjustment cost parameter.
Following the logic of Abel and Eberly (1994), given the above investment cost function the Þrm chooses
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investment Yi to maximize the present value of current and expected future proÞts, resulting in a model of
the form

Yi � [g��a2i �� ��

1Qi ]Di

Di � I [Qi � g�a1i � a2i �]

Where the functions g� and g and the parameter ��

1 depend on features of the Þrm�s intertemporal proÞt
function. Abel and Eberly�s model also implies disinvestment (Yi 	 0) if Qi is below some lower bound.
Very few Þrms in the data set have negative investment, so that outcome will not be explicitly modeled. The
above equations for Y and D hold as written for all Þrms if Yi is set to zero for any Þrm having negative
investment.
Note in this model that proÞt maximization results in the features that the outcome Y is linear in Q

when D � 1� and that the Þxed cost parameter a1i appears only in the expression for D.
This theoretical model implies one sided censoring, but one could imagine more elaborate versions that

would give rise to two sided censoring, e.g., if the beneÞts from investment were sufÞciently large then one
might choose to build an entirely new plant rather than invest more in the old one.
Marginal plant level Tobin�s Q is not observed, and so will be proxied by the proÞt rate Pi . SpeciÞcally,

Qi is assumed to be linear in Pi � X2i , and an additive error, where X2i is a vector of observable attributes of
the Þrm or plant. The function g��a2i � is also assumed to be linear in X2i and an additive error. This yields
the outcome model

Yi � �Pi�1 � XT2i�2 � �i �Di (14)

The error term �i will be independent of proÞts, or nearly so, if a collection of restrictive assumptions
hold (including constant returns to scale, competitive product markets, and a Þrst order autoregressive
model for Pi � See Abel and Eberly for details). Because these assumptions are unlikely to hold in practice,
the estimator here will not require �i to be independent of Pi � i.e., the estimator will allow for possible
endogeneity of proÞts.
Let Zi be a vector of instruments, comprised of Z1i deÞned as the lagged proÞt rate, and plant charac-

teristics Z2i � X2i . DeÞne the function H by H�z� � E�P � Z � z�� and deÞne �pi by

Pi � H�Zi �� � pi (15)

The function H is unknown. Because of endogeneity of proÞts, the error term �pi may be correlated with
�i , and is not assumed to be independent of Zi .
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Let Vi be a measure of the size of plant i . In standard Q models, the relationship of the investment rate
Y to Q does not depend on the size of the Þrm or plant, except to the extent that both Y and Q are expressed
in �per unit of capital� terms. However, in empirical applications it is generally found that size does matter.
The Abel and Eberly model provides an explanation, by allowing Vi to affect the Þxed cost of investments
a1i . In particular, a1i is the Þxed cost per unit of capital, so if true Þxed costs (in absolute terms) are present,
then a1i will be a decreasing function of Vi . Nilsen and Schiantarelli (2000) Þnd strong statistical evidence
of this relationship, including much greater incidences of zero investments in small versus large plants.
They attribute this relevance of plant size both to the presence of absolute as well as relative Þxed costs and
to potential indivisibilities in investment. Many other studies conÞrm the relevance of size on the decision
to invest, but most cannot separate plant level effects from other factors, because they use more aggregated
Þrm or industry level data.
Based on the above, it is assumed that a1i depends on Vi , and may also depend on X2i and on unobserved

characteristics of the plant, Þrm, or industry. Consistent with the presence of absolute Þxed costs, Nilsen
and Schiantarelli (2000) Þnd strong evidence that D is monotonically increasing in V� so (recalling Lemma
1) we may write the resulting selection equation as

Di � I [0 � Vi � M�Pi � X2i � ei �] (16)

for some function M� where ei denotes a vector of unobserved variables or errors that affect the decision
to invest. The unobservables ei will in general be correlated with the other unobservables in the system,
�i and � pi .Also, in the Abel and Eberly model the function g is nonlinear in a1i (it�s related to a root of a
quadratic equation) and a1i itself is an unknown, possibly nonlinear function of Vi . Therefore M� which is
based on g, a1i , and a2i , is an unknown function that is likely to be nonlinear.
The goal is estimation of the parameters � of the outcome equation (14), given the selection equation

(16) and the instrument equation (15). The coefÞcient of Pi , which is �1, is of particular interest as the
proxy for the relationship between investment and Q.

5.2 Data and Estimation

The outcome equation is estimated using data from Norwegian manufacturing plants in 1986, ISIC codes
(industry numbers) 300-390. The available sample consists of n � 974 plants. See Nilsen and Schiantarelli
(2000) for a full data description. The main advantage over more conventional investment data sets is
that the data here are available at the level of individual manufacturing plants, rather than Þrm level data
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that is aggregated across plants. This is important because the theory involving Þxed costs applies at the
plant level, and averaging this nonlinear model across plants or Þrms may introduce aggregation biases,
particularly in the role of variables affecting Di , such as Vi .
Yi is investment just in equipment in plant i in 1986, divided by the beginning of the year�s capital stock

in the plant. The investment rate Yi equals zero in about tweny per cent of the plants. Around two percent
of plants have negative investment. Consistent with the model, negative investment plants have Yi set to
zero. The selection function is then Di � I �Yi � 0��
The variable Pi is proÞts attributable to plant i in 1986, divided by the beginning of the year�s capital

stock. Plant characteristics X2i consist of a constant term, dummy variables for two digit ISIC code, and
dummies indicating whether the Þrm is a single plant or multiplant Þrm, and if multiplant, whether plant i
is the primary manufacturing facility or a secondary plant. The instruments Zi are comprised of Z2i � X2i ,
and Z1i deÞned as lagged Pi , so Z1i is the proÞt rate for the plant in 1985. The size variable Vi is taken to
be the log of employment at plant i in 1978 (or later for some plants for which 1978 data were unavailable).
To apply this paper�s estimator for �, we need the assumptions of Corollary 3 to hold. The structural

model is equations (14), (15), and (16). Plant size V appears only in the selection equation (16) of this
model, as required. This is consistent with previous studies (using more aggregated data) that, without
controlling for selection, Þnd Y correlated with size.
Assumption 3 requires that the unobservables in the model, e, �� and �p, be conditionally independent

of V� conditioning on Z � Some unobservables, such as those determining a2� are independent of V by
construction of the underlying theoretical model. It is likely that the error terms � and �p are also at least
close to conditionally independent of V , because they are additive errors in rate equations, while V is a
level or size variable. Also, proÞts and lagged proÞts are dated 1986 and 1985, respectively, while V
is measured in 1978. Still it certainly possible in this application that V does not completely satisfy the
required conditional independence assumptions.
The underlying supports of the variables in this model are unknown, so the required support conditions

cannot be directly veriÞed. However, in this data set V takes on a large range of values relative to the other
covariates, and hence the asymptotic bias from one sided trimming is likely to be small. For example, the
standard deviation of V is 1.16, while the proÞt rate P has a standard deviation of .17. In the applications
where, for comparison, the selection equation is parameterized, the systematic component of M�X2� e�,
modeled as XT2 � , has a standard deviation comparable to that of V , ranging from .80 to 1.40 depending on
the model and the estimator. In a Monte Carlo analysis of the related estimator given in Theorem 8, Lewbel
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(2000) found that the estimator generally performed well when the standard deviation of V was comparable
in magnitude to the standard deviation of M .
Strong alternative assumptions are required to estimate � by other means, such maximum likelihood.

The model can be rewritten in a partly reduced form as

Pi � H�Zi �� �pi

Yi � [H�Zi ��1 � XT2i�2 � �� pi�1 � �i �]Di
Di � I [0 � Vi � M�H�Zi �� � pi � X2i � ei �]

The parametric model that will be estimated for comparison is

Pi � ZTi b ��� pi
Yi � [�ZTi b��1 � XT2i�2 ���i �Di
Di � I [0 � Vi � �ZTi b�� 1 � XT2i� 2 ��ei ]

where the errors ��epi ���i ��ei � are assumed to be trivariate normal and independent of Zi and Vi . Unlike the
general semiparametric speciÞcation, this parametric model assumes that the functions H and M are linear,
that the errors and unobservables �pi and ei can be subsumed into a single additive error�ei , and that the
errors are jointly normal and independent of Z � Assumptions like these are required for estimation of the
model by standard methods such as maximum likelihood, although they are not well motivated in terms of
the economics of the problem. For example, linearity of the function M with a scalar error is inconsistent
with the theoretical derivation of the model. This illustrates the value of the proposed semiparametric
estimator, which does not require such assumptions.

5.3 Empirical Results

Let X1i denote the vector consisting of Pi and the elements of X2i , and correspondingly � is the vector of
�1 and �2�
Table 1 reports results for six different estimators. The Þrst and second estimators ignore the sample

selection problem, and just estimate the equation Yi � XT1i� ���i by ordinary least squares and two stage
least squares, respectively (the latter using instruments Zi ).
The third estimator controls for sample selection parametrically, but does not control for possible endo-

geneity. This is the two equation parametric model Yi � �XT1i� ���i �Di and Di � I [0 � Vi � XT1i� ��ei ],
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assuming��i and�ei are jointly normal and independent of Vi and X1i . This third estimator is the standard
Heckman model, estimated using maximum likelihood.
The fourth estimator is maximum likelihood estimation of the entire parametric model, which entails

simultaneously estimating the parametric selection, outcome, and instrument equations, assuming�epi ���i �
and�ei are jointly normal and independent of Zi and Vi .
The Þfth estimator is the semiparametrically weighted ordinary least squares estimator of �, that is,�� � �

�ni�1
�Wi X1i X1i T ��1�ni�1�Wi X1i Yi , using weights �Wi � �f �Vi � X1i ��1Di . This semiparametrically

controls for selection but not endogeneity, and so corresponds to estimating � when the true model is deÞned
by the system of two equations (14) and (16), assuming �i is uncorrelated with Pi and X2i .
The Þnal estimator is the semiparametrically weighted two stage least squares estimator given by equa-

tion (10). Here the weights are �Wi � �f �Vi � Xi ��1Di , where Xi � X1i � Z1i . This estimator semiparamet-
rically controls for both selection and endogeneity, and so corresponds to estimating � when the true model
is deÞned by the full general structure of equations (14), (15), and (16).
The density estimator �f �Vi � Xi ��1 is given by equation (4) with no trimming, so It �Vi � Xi � � 1 for all

observations, and a quartic kernel, with bandwidth chosen by ordinary cross validation. Estimates were also
generated with bandwidth�s constructed using the procedure described in Lewbel (2000), and by halving
the cross validated bandwidths to undersmooth as required for root n convergence. Those are not reported,
since the resulting coefÞcient estimates were not very sensitive to bandwidth choice.
The semiparametric estimators were computationally quick and straightforward, since they only entail

kernel density estimation and linear two stage least squares. In contrast, the maximum likelihood estimates
were quite difÞcult to obtain, with frequent numerical problems and failures to converge. The difÞculty
with maximum likelihood is that some parameters are intrinsically difÞcult to identify, in particular correla-
tions between the latent selection error�ei and the other model errors, and many structural parameters were
sensitive to the estimates of these correlations. The semiparametric estimator does not require estimation
of these difÞcult to obtain nuisance parameters.
In both the parametric and semiparametric models, controlling for selection and for endogeneity each

raise the estimate of �1 (recall the empirical Þnding in this literature is that naive estimates of this coefÞcient
are implausibly low). The semiparametric estimates are comparable to, though generally higher than, the
corresponding parametric model estimates.
This one sided censoring model is in theory less favorable for the estimator than two sided censoring

would be, and one could easily question whether V satisÞes all of the required conditional independence

32



assumptions in this application. Of course the maximum likelihood estimators also require some rather
suspect, though very different, strong assumptions. Still, the empirical results are sensible, suggesting at
a minimum that the semiparametric estimator produced plausible results here. Moreover, the similarity in
estimates obtained by the parametric and semiparametric estimators should increase conÞdence in at least
rough validity of the underlying model.

6 Conclusions

If a binary selection or treatment indicator D is monotonic in a continuous covariate V , then under mild
regularity conditions either D � I �0 � M � V � or D � I �M � V � 0� for some latent M� Let Y � DY �

for some unobserved Y �. This paper assumes the general structure D � I �a0 � M � V � a1� for
either Þnite or inÞnite a0 and a1, and shows that identiÞcation of the entire conditional distribution of
Y �� conditioned on covariates X , can be obtained by conditional independence and support assumptions
regarding the single covariate V . In short, strong assumptions about one observed covariate can replace the
usual strong assumptions about the joint distribution of D and Y �.
In particular, the mean of Y � or of XY � can be estimated as a weighted average of Y or XY , with

weights W�E�W �, where W equals D divided by the conditional density of V given X . As a result, linear
estimators that ordinarily could only be applied to Y � if Y � were observed, such as least squares, two stage
least squares, kernel regressions, or differencing out Þxed effects in panel models, can instead be applied
to WY�E�W �. Essentially, this weighting converts expectations of the censored data into expectations of
uncensored data. As a result, any estimator that is based on expectations can then be applied to the weighted,
censored data. Rather than weighing by a propensity score estimate, it is sufÞcient to weight by the density
of a covariate V that affects the propensity score.
The usefulness of these results in any application of course depends on whether an appropriate covariate

V exists. This paper provided one empirical application, and cited other studies that possess a plausible
candidate V . It seems likely that, in at least some applications, one would be more comfortable making
assumptions about an observed covariate than the alternative, which requires assumptions about the joint
distribution of all the unobservables that affect both selection and outcomes. If nothing else, one would have
more conÞdence in the results produced by more conventional estimators if the very different identifying
assumptions employed here yield comparable estimates.
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7 Appendix

This Appendix provides proofs of theorems, lemmas, and corollaries, and provides the statements of some
additional required lemmas.

LEMMA 1. Assume D is a random variable that takes on the value zero or one, and V is a continuously
distributed random scalar. Assume there exists a random vectorU and a function � such that D � ��V�U �

where ��V�U� is monotonic in V � Assume there exists (possibly inÞnite) constants 
0 and 
1 such that
prob[��
 j �U� � j ] � 1 for j � 0� 1, and that the support of V contains the interval [
0� 
1] (or the
interval [
1� 
0] if 
1 	 
0). Then there exists a function M�U� such that either D � I [0 � M�U�� V ] or
D � I [M�U�� V � 0]�

PROOF OF LEMMA 1. Consider Þrst the case where ��
� u� is increasing in 
 . For all u in the support of
U , deÞne the function M by M�u� � � inf�
 � 
 	 [
0� 
1]� ��
� u� � 1�. Then D � I [0 � M�U ��V ]� If
��
� u� is decreasing in 
 then let M�u� � � sup�
 � 
 	 [
0� 
1]� ��
� u� � 0� to obtain D � I [M�U ��
V � 0].

PROOF OF THEOREM 1. Assume for a given function h�Y �� X� that E[h�Y �� X�W ] exists. Then, given
Assumptions 1, 2, 3, and 4A,

E[h�Y �� X�W ] � E
�
h�Y �� X�D
f��V � X�

�
� E

�
E
�
h�Y �� X�I �a0 � M � V � a1�

f��V � X� � X� Y ��M
��

� E
��

supp���

h�Y �� X�I �a0 � M � 
 � a1�
f��
 � X� f��
 � X�Y ��M�d


�
� E

��
supp���

h�Y �� X�I �a0 � M � 
 � a1�d

�

� E
�
h�Y �� X�

�
supp���

I �a0 � M � 
 � a1 � M�d

�

� �a1 � a0�E[h�Y �� X�]

Taking h�Y �� X� to equal one above yields E�W � � �a1 � a0�, and therefore for any function h�Y �� X� we
have

E[h�Y �� X�W ] � E�W �E[h�Y �� X�] (17)
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Now consider a function g�Y� X� � g�Y �D� X�. Recalling thatW � 0 whenever D � 0 we have

E[Wg�Y� X�] � E[W �g�Y� X�� g�0� X�]� E[Wg�0� X�]
� E[W �g�Y �� X�� g�0� X�]� E[Wg�0� X�]
� E�W �E[g�Y �� X�� g�0� X�]� E�W �g�0� X�]

� E�W �E[g�Y �� X�]

where the third equality above follows from applying equation (17) twice, once with h�Y �� X� � g�Y �� X��
g�0� X� and once with h�Y �� X� � g�0� X�.

PROOF OF COROLLARY 1. Let [��0� �
�

1] denote the support of V . Follow the same steps as in the proof
of Corollary 2 below, replacing �� and � with ��0 and �

�

1, respectively. In particular W I ��V � � � � is then
replaced with W I ���0 � V � ��1� � W , and the resulting bias term is then O���0�1 � ���11 � � O���1�.

PROOF OF COROLLARY 2. DeÞne ��M� � � � min�a1 � M� � � � max�a0 � M����. Following the
same steps as in the proof of Theorem 1, for any function h�Y �� X�, we have

E[h�Y �� X�W I ��V � � ��] � E
��

supp���
h�Y �� X�I �a0 � M � 
 � a1�I ��
� � ��d


�
� E

�
h�Y �� X�

�
supp���

I [max�a0 � M���� � 
 � min�a1 � M� � �]d

�

� E[� �M� � �h�Y �� X�]

and therefore,

E[h�Y �� X�W I ��V � � ��]
E[W I ��V � � ��]

� E[h�Y �� X�]� co
[� �M� � �� h�Y �� X�]
E[� �M� � �]

If a1 and a0 are both Þnite then for sufÞciently large � we will have a1�M � � and a0�M � �� for all M ,
which makes ��M� � � � �a1�a0�which is constant and nonzero, and hence co
[� �M� � �� h�Y �� X�]�E[� �M� � �] �
0. If a1 � � and a0 is Þnite then for sufÞciently large � we will have � �M� � � � � � a0 � M� in which
case

co
[��M� � �� h�Y �� X�]
E[� �M� � �]

� co
[M� h�Y �� X�]
� � a0 � E�M�

� O���1� (18)

The remaining case of a0 � �� proceeds in the same way. The proof is Þnished by following the same
steps as in the proof of Theorem 1 to go from h�Y �� X� to g�Y� X��
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PROOF OF THEOREM 2. Let f� denote the probability density function of 
 and let F�m denote the joint
distribution function of Y � and M . For any function h we have� �1

�0

E[h�Y �� x�D � X � x� V � 
]d


�
� �1

�0

�
supp�Y ��M�

I �a0 � m � 
 � a1�h�y�� x�dF�m�y��m � X � x� V � 
�d


�
�
supp�Y ��M�

�� �1

�0

I �a0 � m � 
 � a1 � m�d

�
h�y�� x�dF�m�y��m � X � x�

�
�
supp�Y ��M�

[�a1 � a0�] h�y�� x�dF�m�y��m � X � x�

� �a1 � a0�E[h�Y �� X� � X � x]
Next, observe that [g�Y� X�� g�0� X�]D � [g�Y �� X�� g�0� X�]D, so we may apply the above result

with h��� x� � g��� x�� g�0� x�. We may also apply it with h��� x� � 1� which yields

��x� � g�0� x�� �a1 � a0�E[g�Y �� X�� g�0� X� � X � x]
E [�a1 � a0�E�1 � X�]

� E[g�Y �� X� � X � x]

LEMMA 2. Let Assumptions 1,2, and 3 hold. Assume [�� � � ] is in the support of V , and that
co
[M� g�Y �� X� � g�0� X� � X � x] and E�M � X � x� exist. Then ��x��� � � � � E[g�Y �� X� �
X � x]� O���1��

PROOF OF LEMMA 2. If �� � �0 and � � �1 then ��x��� � � � � ��x� � E[g�Y �� X� � X � x] by
Theorem 2. Consider next the case where �� � �0 and � � �1. Following the same steps as in the proof of
Theorem 2 gives � �

��

E[h�Y �� x�D � X � x� V � 
]d


� E[�� � a0 � M�h�Y �� X� � X � x]
so

��x��� � � � � g�0� x�� E[� � a0 � M��g�Y �� X�� g�0� X�� � X � x]
E [� � a0 � M� � X � x]

� E[g�Y �� X� � X � x]� co
[M� g�Y �� X�� g�0� X� � X � x]
� � a0 � E[M � X � x]
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which proves the result. The case of �� � �0 works in the same way.

PROOF OF COROLLARY 3. Applying Theorem 1 with g�Y� X� � Z�Y � XT1 �� yields E[WZ�Y �
XT1 ��]�E�W � � E[Z�Y � � XT1 ��] � E�Z�� � 0, and � � �E�WZY � follows immediately. Ap-
plying Corollary 1 with this g yields the result � � �E�WZY � � O���1�, and the ���� result fol-
lows from similarly applying Corollary 2 to E[I ��
� � ��WZY ]�E[I ��
 � � ��W ] and to E[I ��
� �
��WZXT1 Y ]�E[I ��
� � ��W ].

PROOF OF THEOREM 3. Let W and Wg denote the sample means of Wi and Wig�Yi � Xi �, respectively.
By algebra,

��1 � � � Wg �W

E�W �
� Rn

where the remainder term Rn is given by

Rn �
�
Wg �W

E�W �

�
[W � E�W �]

��1
W

�
BothWg�W andW�E�W � are sample means of mean zero, iid random variables having Þnite variances
(the latter is ensured by conditions (i) and (ii)), so by the Lindeberg-Levy central limit theorem each is
Op�n�1�2�. Now for any � � 0,

lim
n��

Pr[n�1�2W�1
	 �] � lim

n��
Pr[n1�2�W � E�W �� � ��1 � n1�2E�W �] � 1

where the second equality follows because n1�2�W � E�W �� goes to a normal, and so the limit goes to
probability that a normal is greater than��. We therefore have that W�1 � op�n1�2�, so Rn � op�n�1�2��
and the central limit theorem may now be applied to the above expression for ��1 � �.

PROOF OF THEOREM 4. Apply equation (3) with S � D to show that n�1
�n
i�1

�Wi � E�W � has
a mean zero, root n limiting distribution. Follow the same steps as in the proof of Theorem 3 to show
that � has the same limiting distribution as n�1�n

i�1
�Wi [g�Yi � Xi � � ]. Apply equation (3), now with

S � [g�Y� X�� ]D to obtain equation (7).

PROOF OF THEOREM 5. Apply equation (3) with S � ZY D and S � DZXT1 to obtain the limiting
distributions for �� � n�1

�n
i�1 ZiYi �Wi and for n�1�n

i�1
�Wi Zi XT1i . These yield n� �� � �� � Op�1�

(analogous to the treatment of �n�1
�n
i�1

�Wi ��1 in Theorem 3) andn �� � n�1�2�ni�1Q
i � op�1�� so

n �� � 

n �� �� � n�1�2 ���ni�1[Wi Zi X
T
1i� � �Q
i �Wi Zi XT1i��]� op�1�

� 
n� � n�1�2 ���ni�1�Q
i �Wi Zi XT1i���� op�1�

37



which yields the distribution for ��.

PROOF OF THEOREM 6. Consider Þrst the estimator ���x� � g�0� x� � ��1
� �1
�0

�m�
� x�d
 . It follows
from Theorem 4 of Lewbel, Linton, and McFadden (2001) that, with an arbitrary �Y ,

���x�� ��x�� b2��x��	
n�1b�d�x�

d�� N �0� 1��

so all that remains is to show that ���x� and ���x� have the same limiting distribution. By assumption,
there exists some constant c such that �0 � inf[supp�V �] � c and �1 � sup[supp�V �] � c. Therefore the
probability that�
0 	 �0 and that�
1 � �1 goes to one at a fast rate. Also, m�
� x� � m��
� x� � 0 for all

 	 �0 and all 
 � �1� and as a result, use of �
0 in place of �0 and �
1 in place of �1 will have no effect
on the limiting distributions of�� and ���x�. Next, we have that estimation of�� entails averaging over X�
which therefore converges at a faster rate than

� �1
�0

�m�
� x�d
 , so estimation error in�� is also asymptotically
irrelevant. The result is that���x� and���x� have the same limiting distribution.
The following Lemma will be used in the proof of Theorem 7.

LEMMA 3: Assume that f��
 � x� is bounded away from zero except at 
 � �, and that for some
constant c, f��
 � x� � f��
� for all 
 � c. Assume that D � I �0 � M � V �. DeÞne Z� i by

Z� i �
�� i Di I ��Vi � � ��

� f��Vi � Xi �
where �ti � ��Y �

i � Xi � � O���1� for some function ��Y �

i � Xi �� Assume that for some � � 2� E[��� ��]
exists for all large � and in the limit as � � �. Let Z � denote the sample mean of Z� i . DeÞne

����� t� � E[��
�

� t

c
f��
 � X�1��d
] (19)

DeÞne ��� � ���1� t� and � � � ��2��2. If � � � and ����2

�2 ���n1���2 � 0 then	
n�� � [Z � � E[��Y �� X�]� O�1���]�

E[��Y �� X�2]� O���1
�2 �

d�� N �0� 1��

PROOF OF LEMMA 3. The assumption that f��
 � x� � f��
� for 
 � c makes ����� � � � � E���
� ���� .

Positive densities must have a Þnite integral, so f��� � � o���1�, and therefore ������ � � and
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��1
�� ���� � � for any � � � � 1. For sufÞciently large � , DI ��V � � �� � I ��M � V � ��, so for any

� we have E�Z�� � � [����� � � ������� ��M�]��� , which for � � 1 simpliÞes to E�Z� � � E����O���1�
and for � � 1 gives ������E�Z�� � � E����� O���1

�� � and � � 
ar�Z� � � E��2�� O���1
�2 ��

By the central limit theorem for double arrays,

n[Z� � E�Z� �]�



ar�Z� �

d�� N �0� 1� if E[�[Z� �
E�Z� �]�



ar�Z� ���]n1���2 � 0 is satisÞed for some � � 2. DeÞne Z�� i the same as Z� i , except with

��� i � in place of �� i . Now �Z� i�E�Z� �� � Z�� i�E�Z�� � and so by a Taylor expansion E[�Z� �E�Z� ���] �
E�Z��� i � � O[E�Z���1� i �] � O��������� so the required moment condition holds if �

���2
�2 ���n1���2 � 0�

as assumed.

PROOF OF THEOREM 7. Let W� � W I ��V � � ���� and let W � denote the sample mean of W� i .
Applying Lemma 3 with �ti � 1 shows that E�W� � � 1� O���1�� W � � E�W� � � Op[�n�� � �

�1�2], and
that, similar to the proof of Theorem 3, W�1

� � op[�n�� � �
1�2]�

Now let �i � [g�Y �

i � Xi ��], �ti � E�W� �
�2�i and Zti � W��ti . Let W � and Z� denote the sample

means of W� i and Z� i , respectively. We have E��� � 0 and so by Lemma 3, Z� � Op[�n�� � �
�1�2]. Now

��� � � � Z� � Rn
where the remainder term Rn is given by

Rn � �W�
�1Z� [W� � E�W� �] � op[�n�� � �

1�2]

so the rate �n�� � �
1�2 limiting distribution of ��� �� equals the limiting distribution of Z� , which is given

by Lemma 3.

PROOF OF COROLLARY 4. It can be readily veriÞed that the proof of Corollary 2, and hence Corollary
3, holds replacing � with � � XT1 � � It then follows from Corollary 3 and equation (18) that

E[I �V � � � XT1 � �WZY ]
E[I �V � � � XT1 � �W ]

� E�Z XT1 �� � E[I �V � � � XT1 � �WZ�Y � XT1 ��]
E[I �V � � � XT1 � �W ]

� E�Z XT1 �� � co
�� � XT1 � � M� Z��
E�� � XT1 � � M�

� E�Z XT1 �� � E�Z�E�e��
�

� E�Z XT1 ��� � b�
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Table 1. Estimates of the Outcome Equation ProÞt CoefÞcient

no dummies plant type dummies types & ISIC dummies
OLS �231 �036 �219 �035 �221 �035
2SLS �383 �051 �353 �050 �355 �050
Heckman �298 �087 �287 �092 �298 �094
Endogeneous ML �468 �061 �403 �062 �413 �057
Weighted OLS �323 �062 �317 �059 �316 �051
Weighted 2SLS �470 �070 �431 �073 �411 �080

Notes: In each block, the Þrst number is �1, the coefÞcient of the proÞt rate in the outcome equation, and
the second number is the estimated standard error. In the Þrst pair of columns, X2 and Z2 consist only of the
constant term. In the second pair of columns, X2 and Z2 also include plant type dummies, and in the third
pair of columns, X2 and Z2 contain dummies both for plant type and for two digit industry (ISIC) code.
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