Title
spivreg postestimation -- Postestimation tools for spivreg
Description
The following postestimation commands are available after spivreg:
command description ------------------------------------------------------------------------- INCLUDE help post_estat INCLUDE help post_estimates INCLUDE help post_lincom INCLUDE help post_lrtest INCLUDE help post_nlcom predict predicted values INCLUDE help post_predictnl INCLUDE help post_test INCLUDE help post_testnl -------------------------------------------------------------------------
predict [type] newvar [if] [in] [, statistic]
statistic Description ------------------------------------------------------------------------- Main naive predictions based on the observed values of y; the default xb linear prediction -------------------------------------------------------------------------
Options for predict
+------+ ----+ Main +-------------------------------------------------------------
naive predicted values based on the observed values of y, Y*g + lambda*W*y + X*b.
xb calculates the linear prediction X*b.
The methods implemented in predict after spivreg are documented in Drukker, Prucha, and Raciborski (2011) which can be downloaded from http://econweb.umd.edu/~prucha/Papers/WP_spivreg_2011.pdf.
The predictor computed by the option naive will generally be biased; see Kelejian and Prucha (2007) for an explanation.
See Remarks in spreg postestimation for a more detailed discussion of biased and unbiased spatial predictors.
Examples
Setup . use pollute . spmat use cobj using pollute.spmat . spivreg pollution area (factories = penalties), id(id) dlmat(cobj) elmat(cobj)
Obtain predicted values based on the observed values of y . predict yhat
References
Drukker, D. M., I. R. Prucha, and R. Raciborski. 2011. A command for estimating spatial-autoregressive models with spatial autoregressive disturbances and additional endogenous variables. Working paper, The University of Maryland, Department of Economics, http://econweb.umd.edu/~prucha/Papers/WP_spivreg_2011.pdf.
Kelejian H. H., and I. R. Prucha. 2007. The relative efficiencies of various predictors in spatial econometric models containing spatial lags. Regional Science and Urban Economics 37, 363-374.
Also see
Online: spivreg, spreg (if installed)