```
_____
     name: <unnamed>
      log: C:\Users\carmelia\Desktop\stndzxage\ado\log2.log
 log type: text
 opened on: 7 Mar 2019, 14:02:16
. do "C:\Users\carmelia\Desktop\stndzxage\ado\stndzxage tutorial.do"
. *stndzxage tutorial
. *by Sarah Reynolds
. *2-27-19
. *The file checks how the command stndzxage differs from zscore
. *The file illustrates how to use the command
. clear all
. set more off
. cd "C:\Users\carmelia\Desktop\stndzxage\ado"
C:\Users\carmelia\Desktop\stndzxage\ado
. use "stndzxage sample data.dta", clear
. count
 1,429
. *1,429 children in the data
. count if TestScore~=.
 1,420
. *1,420 were tested
. hist AgeMonth
(bin=31, start=10, width=.58064516)
```


- . *ages concentrated in the center
- . stndzxage TestScore AgeMonth
- . sum stx TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
stx_TestSc~e	1,332	4.73e-08	.9954819	-3.847551	3.815243

- . *mean about 0 & standard deviation about 1, as expected
- . *however, there are fewer observations
- . *Do a loop to check standardization with stata command $% \left(1\right) =\left(1\right) \left(1\right) \left($
- . levelsof AgeMonth, local(ages)
- 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28
- . gen Z TestScore=.
- (1,429 missing values generated)
- . foreach age of local ages {
 - 2. zscore TestScore if AgeMonth==`age'
 - 3. replace Z_TestScore=z_TestScore if AgeMonth==`age'
 - 4. drop z TestScore
 - 5. }
- z TestScore created with 1410 missing values
- (19 real changes made)
- $z_{\text{TestScore}}$ created with 1401 missing values
- (28 real changes made)
- z TestScore created with 1373 missing values
- (56 real changes made)
- z TestScore created with 1350 missing values
- (79 real changes made)

- z_TestScore created with 1316 missing values
 (113 real changes made)
- z_TestScore created with 1320 missing values
 (109 real changes made)
- z_TestScore created with 1304 missing values
 (125 real changes made)
- z_TestScore created with 1324 missing values
 (105 real changes made)
- z_TestScore created with 1301 missing values
 (128 real changes made)
- z_TestScore created with 1303 missing values
 (126 real changes made)
- z_TestScore created with 1309 missing values
 (120 real changes made)
- z_TestScore created with 1317 missing values
 (112 real changes made)
- z_TestScore created with 1318 missing values
 (111 real changes made)
- z_TestScore created with 1351 missing values
 (78 real changes made)
- z_TestScore created with 1359 missing values
 (70 real changes made)
- z_TestScore created with 1401 missing values
 (28 real changes made)
- z_TestScore created with 1417 missing values
 (12 real changes made)
- z_TestScore created with 1429 missing values
 (0 real changes made)
- . sum Z TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
Z TestScore	1,419	9.17e-10	.9943422	-3.847551	3.815243

- . *mean about 0 & standard deviation about 1, as expected
- . *however, there are more observations, equal to the
- . *number of children who took the test 1
- . sum AgeMonth if Z TestScore==. & TestScore~=.

Variable	Obs	Mean	Std. Dev.	Min	Max
AgeMonth	1			28	28

- . *The 1 corresponds to the child who was the only one of thier age $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($
- . *Check to see how well they line up if there are both standardization variables
- . scatter Z TestScore stx TestScore

. tab AgeMonth if stx_TestScore~=.

AgeMonth	Freq.	Percent	Cum.
12	-+ 56	4.20	4.20
13	79	5.93	10.14
14	113	8.48	18.62
15	109	8.18	26.80
16	125	9.38	36.19
17	105	7.88	44.07
18	128	9.61	53.68
19	126	9.46	63.14
20	120	9.01	72.15
21	112	8.41	80.56
22	111	8.33	88.89
23	78	5.86	94.74
24	70	5.26	100.00
Total	1,332	100.00	

. tab AgeMonth if Z_TestScore~=.

Per	Freq	AgeMonth	
	19	10	
	28	11	
	5 (12	
	7.9	13	

14	113	7.96	20.79
15	109	7.68	28.47
16	125	8.81	37.28
17	105	7.40	44.68
18	128	9.02	53.70
19	126	8.88	62.58
20	120	8.46	71.04
21	112	7.89	78.93
22	111	7.82	86.75
23	78	5.50	92.25
24	70	4.93	97.18
25	28	1.97	99.15
26	12	0.85	100.00
Total	1,419	100.00	

- . *mismatch in missings because stndzxage has 30 observations minimum
- . *find out how many are in each month to re-standardize the
- . *using the smallest number of observations!
- . tab AgeMonth

AgeMonth	Freq.	Percent	Cum.
10	+ 19	1.33	1.33
11	1 28	1.96	3.29
12	58	4.06	7.35
	•		
13	79	5.53	12.88
14	114	7.98	20.85
15	109	7.63	28.48
16	125	8.75	37.23
17	106	7.42	44.65
18	130	9.10	53.74
19	127	8.89	62.63
20	120	8.40	71.03
21	113	7.91	78.94
22	112	7.84	86.77
23	I 78	5.46	92.23
24	I 70	4.90	97.13
25	28	1.96	99.09
26	12	0.84	99.93
28	1	0.07	
20	ı ⊥ Ł	0.07	100.00
Total	1,429	100.00	

- . stndzxage TestScore AgeMonth, minbinsize(12)
- . assert stx_TestScore==Z_TestScore
 1,299 contradictions in 1,429 observations
 assertion is false
 r(9);

end of do-file

```
r(9);
. do "C:\Users\carmelia\AppData\Local\Temp\STD000000000.tmp"
. *This error turns out to be from rounding
. gen stx_round=round(stx_TestScore, 0.0001)
(10 missing values generated)
. gen Z_round=round(Z_TestScore, 0.0001)
(10 missing values generated)
. assert stx_round==Z_round
.
. *****Validation complete*******
.
. .
. ****Exploring options****
```

stndzxage TestScore AgeMonth, graph

- . *These ages had too few observations (default minbinsize is 30)
- . *BIN WIDTH

*GRAPHING

- . *let's widen the age bins so more ages are grouped together, resulting in $% \left(1\right) =\left(1\right) +\left(1\right)$
- . *a larger number of observations in each bin
- . stndzxage TestScore AgeMonth, binwidth(6) graph
- (9 observations deleted)

. *the waves in the standardized data indicate bins are probably too wide
. stndzxage TestScore AgeMonth, binwidth(3) graph
(9 observations deleted)

- . *still some age dependency but not so much
- . *note the last bin included 4 ages (see help file chart about bin grouping) $\,$
- . *MININIMUM BIN SIZE
- . *let's increase the minimum number of observations allowed in each bin
- . stndzxage TestScore AgeMonth, binwidth(3) minbinsize(150) graph
- (9 observations deleted)

- *CONTINUOUS
- . *continuous standardization is a good option when data density has gaps (in tails)
- . stndzxage TestScore AgeMonth, continuous graph
 (9 observations deleted)

. sum stx_TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
stx TestSc~e	1,420	.0001268	1.001219	-4.085064	3.63665

- . *note all observations are standardized
- . stndzxage TestScore AgeMonth, continuous poly(1) graph // linear
 (9 observations deleted)

- . stndzxage TestScore AgeMonth, continuous poly(5) graph // a bit more curvature
- (9 observations deleted)

- . *STANDARDIZING OVER ADDITIONAL VARIABLES
- . *you can use if to standardize a single subgroup
- . stndzxage TestScore AgeMonth if Male==1, binwidth(3)
- . tab Male, sum(stx_TestScore)

	Summary	of Stndz TestScor	e by
	AgeMonth	\sim N(0,1) binwidt	.h 3
Male	Mean	Std. Dev.	Freq.
Male	-7.448e-09	.99707603	686
Total	-7.448e-09	.99707603	686

- . stndzxage TestScore AgeMonth if Male==0, binwidth(3)
- . tab Male, sum(stx TestScore)

	_	of Stndz TestScor ~N(0,1) binwidt	_
Male	_	Std. Dev.	Freq.
Female	1.224e-07	.99710566	693
Total	1.224e-07	.99710566	693

- . *but below is more efficient
- . *standardize by age & gender
- . stndzxage TestScore AgeMonth Male, binwidth(3) graph
 (9 observations deleted)

. tab Male, sum(stx TestScore)

	· -	f Stndz TestS	-
	AgeMonth Ma	le $\sim N(0,1)$ bi	nwidth 3
Male	Mean	Std. Dev.	Freq.
	+		
Female	1.224e-07	.99710566	693
Male	-7.448e-09	.99707603	686
	+		
Total	5.780e-08	.99672906	1,379

- . *note means & s.d. are 0 in both cases
- . *standardize by age, gender, and urban

. stndzxage TestScore AgeMonth Male Urban, continuous graph
(9 observations deleted)

. tab Male Urban, sum(stx TestScore)

Means, Standard Deviations and Frequencies of Stndz TestScore by AgeMonth Male Urban $\sim N(0,1)$

		Urk	oan		
Male		rural	urban		Total
Female			00020896 .99970047 430		

Male	Ì	1.0038777	00151477 1.0026333 398		1.0024605
	-+-		00083663	-+	
			1.0005059 828		

- . *STANDARDIZING WTIH REGARDS TO A REFERENCE GROUP
- . stndzxage TestScore AgeMonth, binwidth(3) reference(Male) graph
 (9 observations deleted)

- . *The graph only illustrates the data for the reference group, which was used $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$
- . *for standardizing
- . tab Male, sum(stx TestScore)

	Summary	of Stndz TestSco	ore by
	AgeMonth	\sim N(0,1) binwidth	h 3; ref
		grp Male=1	
Male	Mean	Std. Dev.	Freq.
П1-	+	1 0157441	
	.06922886		693
Male	-7.448e-09	.99707603	686
Total	.03479013	1.0067312	1,379
10041		± • 0 0 0 7 0 ± 2	± 1 0 1 0

- . *note here the mean & s.d. is ~0 & ~1 for the reference group, but different for
- . *the non reference group
- . *USING A REFERENCE GROUP & A SUBGROUP
- . *can you do it both reference group
- . stndzxage TestScore AgeMonth Urban, binwidth(3) minbinsize(30) reference(Male) graph
- (9 observations deleted)

. tab Male Urban, sum(stx TestScore)

Means, Standard Deviations and Frequencies of Stndz TestScore by AgeMonth Urban ~N(0,1) binwidth 3; ref grp Male=1

	Urk		
Male	rural +	urban 	Total
Female	.10767812 1.1174035 256		.08912855 1.0254123 637
Male	.9946476	.99577762	-9.468e-09 .99449898 639
Total	1	.03957895 .97755028 738	.04449442 1.0106373 1276

. *USING A DIFFERENT RUNNING VARIABLE

.

^{. *}Suppose the test was administered with different questions to different ages $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

^{. *}Cut the data at the ages for each group

[.] egen testgroups=cut(AgeMonth), at(10, 13, 16, 19, 25, 30)

[.] tostring testgroups, replace
testgroups was float now str2

- . encode testgroups, gen(TestGroups)
- . label values TestGroups // remove label from TestGroup2
- . stndzxage TestScore TestGroups, graph
 (9 observations deleted)

- . rename stx TestScore testgroups z
- . *This graph has the test groups all lumped together
- . *If you want to see the ages graphed also, use the if option.
- . *Select the binwidth to be the widest number of ages in a bin.
- . levelsof TestGroups, local(groups)
- 1 2 3 4 5
- . gen testgroups_if_z=.
 (1,429 missing values generated)
- . foreach i of local groups {
- 2. stndzxage TestScore AgeMonth if TestGroups==`i', binwidth(6)
 graph
 - 3. replace testgroups if z=stx TestScore if TestGroups==`i'
 - 4.

(1,326 observations deleted)

(103 real changes made)

(1,128 observations deleted)

(301 real changes made)

(1,071 observations deleted)

(358 real changes made)

(812 observations deleted)

(617 real changes made)

(1,388 observations deleted)
(41 real changes made)

. assert testgroups z==testgroups if z

- . *Though the syntax below is appealing, it does not work because
- . *the ages are divided up by binwidth before the TestGroups
- . * stndzxage TestScore AgeMonth TestGroups, binwidth(6) graph
- . *don't use this code!

. *FLOORS & CEILINGS

- . *let's make an artificial floor in this data
- . replace TestScore=35 if TestScore<35

(21 real changes made)

. hist TestScore
(bin=31, start=35, width=1.2258065)

. scatter TestScore AgeMonth

- . * If your data actually looked like this, you might be ok with the test ceiling, but
- . *you might want to rethink the appropriateness of the test for the younger kids:
- . *the test best discriminates after about 15 months.
- . stndzxage TestScore AgeMonth, continuous graph
- (9 observations deleted)

. sum stx TestScore

. stndzxage TestScore AgeMonth, continuous floor graph
(9 observations deleted)

. sum stx TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
stx TestSc~e	1,420	.0066415	.8071882	-3.050389	2.605103

- . *The floor option uses a Tobit adjustment, which assumes a spread farther below $% \left(1\right) =\left(1\right) +\left(1\right) +$
- . \star that which is censored. Censoring pushes the mean up. Without the adjustment,
- . *Tobit adjustment. Average standadrdized scores are higher in the Tobit adjustment $% \left(1\right) =\left(1\right) +\left(1\right$

.

- . *We can take ceilings into account as well.
- . replace TestScore=60 if TestScore>60 & TestScore~=.
 (151 real changes made)
- . stndzxage TestScore AgeMonth, floor ceiling minbinsize(30)
 reference(Male) graph
 (9 observations deleted)

- . *USING THE MEDIAN & RESCALING
- . *The median can be used for standardizing instead of the mean.
- . *A different standard mean/median & standard deviation can be selected
- . stndzxage TestScore AgeMonth, sd(15) mean(100) binw(3)
- . sum stx TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
stx TestSc~e	1,420	 100	14.97355	39.86069	135.5473

- . stndzxage TestScore AgeMonth, median sd(15) mean(100) binw(3)
- . sum stx TestScore

Variable	Obs	Mean	Std. Dev.	Min	Max
stx TestSc~e	1,420	97.73348	15.05202	36.84235	133.5137

end of do-file

. log close

name: <unnamed>

log: C:\Users\carmelia\Desktop\stndzxage\ado\log2.log

log type: text

closed on: 7 Mar 2019, 14:05:01
