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Abstract. This note documents the methods and formulas for the supsmooth

command which implements a bivariate regression smoother based on local linear
regression with adaptive bandwidths. This method is known as Friedman’s super
smoother. Adaptive bandwidths are especially useful in case of changing degree
of curvature in the underlying function and/or non-constant error variance.
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1 Introduction: Friedman’s super smoother

Friedman’s super smoother is a nonparametric regression estimator based on local linear
regression with adaptive bandwidths (Friedman [1984]). The basic idea is to first esti-
mate a number of fixed bandwidth smooths by local linear regression. The leave-one-out
cross-validated residuals from each of those initial estimates are then smoothed using a
constant bandwidth. Based on the smoothed residuals, the best bandwidths from the
initial estimates are selected at each data point over the range of the predictor vari-
able. Those local bandwidths are then smoothed with a constant bandwidth, and the
two estimates from the initial estimates with closest bandwidth values to the smoothed
bandwidths are selected, and the smoothed outcomes are linearly interpolated. The
interpolated points are then smoothed again with a fixed bandwidth, resulting in the
final estimate.
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2 Friedman’s Super Smoother

2 Adaptive bandwidth local linear regression

2.1 Motivation

Let x1...xn and y1...yn be n random samples from the joint distribution P (X, Y ). The
objective is to estimate the conditional expectation E[Y |X = x], such that the expected
squared difference E[Y − f(X)]2 is minimized, where f(X) is the true underlying func-
tion. Let P (X, Y ) be generated from the process

Y = f(X) + ǫ (1)

where f is an arbitrary function of X , and ǫ are i.i.d random errors with expectation
zero. Then, to estimate E[Y |X = x] we need to find the estimate f̂(x) in

yi = f̂(xi) + ǫi (2)

Local linear regression provides a method for estimating f(X) by locally fitting linear
least squares regressions. An optimal estimate for f(X) minimizes the expected squared
error of the estimated function and depends greatly on the size of the local window.
While local linear regression smoothing is often used with a window size that is constant
throughout the range of the predictor variable, situations arise where constant window
sizes fail to to produce an optimal estimate. The super smoother provides a method for
estimating f̂(x) based on locally adaptive bandwidths, which proves useful in certain
situations such as heteroskedastic error variance or a varying degree of curvature in the
underlying function, as pointed out in Friedman [1984].

2.2 Local linear regression

One way of estimating f̂(xi) is to locally fit linear least squares regressions of the form

Ê[Y |xi] = α̂ + β̂xj , xj ∈ Ni (3)

where N defines the local neighborhood around xi and is the tuning parameter, also
known as the bandwidth, which controls the bias-variance trade-off. In the fixed band-
width case, the size of the window N is constant, while in the adaptive bandwidth case
it can vary over the range of the predictor variable. Given a fixed bandwidth J , where
J is the number of observations in a window, we can write the local linear estimator as

ŷk = α̂ + β̂xk, k = 1, ..., n (4)

where α̂ and β̂ are obtained from local fits to data points i−J/2, ..., i+J/2, with xi ≤ xi+1

for i = J/2, ..., n − J/2.

An optimal bandwidth which minimizes the expected squared error
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e2(J) = E[Y − f(X |J)]2 (5)

can be obtained by estimating e2(J) via leave-one-out cross-validation:

ê2(J) =
1

n

n
∑

i=1

[yi − f̂(−i)(xi|J)]2 (6)

Minimizing ê2(J) then yields the cross-validated optimal bandwidth

ê2(Jcv) = min
0<J≤n

ê2(J) (7)

The leave-one-out squared residuals can be computed analytically:

ê2(J) =
1

n

n
∑

i=1

[yi − f̂(xi|J)]2/

[

1 −
1

J
−

(xi − x̄J )2

VJ

]2

(8)

where VJ =
∑i+J/2

j=i
−J/2

(xi − x̄J)2, and x̄J = 1
J

∑i+J/2

j=i
−J/2

xi.

2.3 The super smoother

In order to obtain an estimator with locally adaptive bandwidths, Friedman [1984]
proposed to minimize the estimate for

e2(f, J) = E
[

Y − f(X |J(X))
]2

(9)

with respect to both f(x) and J(x). In order to minimize (9), we first estimate (4)
using local linear regression over a grid of values for J . While Friedman [1984] originally
proposed to use J = 0.05n, J = 0.2n, and J = 0.5n, supsmooth allows for specification
of any number of bandwidths in the range 0 < J < n to allow for a finer grained
bandwidth space. We then compute the cross-validated residuals for each of these
initial constant bandwidth estimates by:

r(i)(J) = [yi − f̂(xi|J)]/

(

1 −
1

J
−

(xi − x̄J )2

VJ

)

(10)

and smooth |r(i)(J)| against xi with bandwidth J = 0.2n to estimate ê(f, J |xi) which
we use to find the optimal bandwidth at each point:

ê(f, Jcv(xi)|xi) = min
J

ê(f, J |xi) (11)
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The optimal bandwidths Jcv(xi) are then smoothed again (J = 0.2n) against xi and
the two initial estimates with closest bandwidths are selected, subject to

J1 ≤ Jcv(xi) ≤ J2 (12)

The penultimate smooth is then computed by linearly interpolating between these two
initial estimates with respect to Jcv(xi). Finally, the result of the interpolation is then
smoothed again with bandwidth J = 0.05n.

2.4 Implementation

supsmooth is implemented as ado file, with computations being performed in Mata. The
parameters of the local linear regressions are estimated by either using the updating
algorithm proposed by Friedman [1984], or by actually fitting a least squares model

in each window. Using the updating algorithm, intercept α̂ and slope β̂ from (4) are
computed as

α̂ = ȳJ − β̂x̄J (13)

β̂ =
CJ

VJ
(14)

with

x̄J =
1

J

i+J/2
∑

j=i
−J/2

xi (15)

ȳJ =
1

J

i+J/2
∑

j=i
−J/2

yi (16)

CJ =

i+J/2
∑

j=i
−J/2

(xi − x̄J )(yi − ȳJ) (17)

VJ =

i+J/2
∑

j=i
−J/2

(xi − x̄J)2 (18)

Since each window of the local regression is formed by adding and removing a single
observation, the results can be updated at each point of the interior space J/2, ..., n−J/2.
When adding an observation, we calculate:
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x̄J+1 = (Jx̄J + xJ+1)/(J + 1) (19)

ȳJ+1 = (JȳJ + yJ+1)/(J + 1) (20)

CJ+1 = CJ +
J + 1

J
(xJ+1 − x̄J+1)(yJ+1 − ȳJ+1) (21)

VJ+1 = VJ +
J + 1

J
(xJ+1 − x̄J+1)

2 (22)

When removing an observation, we calculate:

x̄J−1 = ((J + 1)x̄J − xJ−1)/J (23)

ȳJ−1 = ((J + 1)ȳJ − yJ−1)/J (24)

CJ−1 = CJ −
J

J + 1
(xJ−1 − x̄J−1)(yJ−1 − ȳJ−1) (25)

VJ−1 = VJ −
J

J + 1
(xJ−1 − x̄J−1)

2 (26)

Using the algorithm(wfit) option results in fitting least squares models at each point
instead of updating the results from the previous fit. While this can be considerably
slower for larger samples, this method can be expected to be more numerically stable.
The (weighted) least squares estimator of α̂ and β̂ from (4) is:

b̂ = (X ′WX)−1X ′WY (27)

where Y is an n × 1 vector of response variables, X is a n × 2 vector of predictor
variables and a constant, and W is a n × n diagonal weight matrix. b̂ is the resulting
2 × 1 coefficient vector.

In summary, to estimate f(X) using Friedman’s super smoother, we first estimate
(4) over a grid of bandwidths J , with 0 < J < n. For each of these initial smooths we
calculate (10) and smooth the result of (10) against xi using (4) with J = 0.2n. The
resulting smooths are used to estimate (11), i.e., the optimal bandwidths. The optimal
bandwidths are then smoothed again using (4) with J = 0.2n and the result of this
smooth is used for linearly interpolating between the two initial estimates with closest
bandwidth values at each point xi, subject to (12). Let y∗

i1
and y∗

i2
be the two smoothed

points at xi with closest bandwidths, then the penultimate estimate is obtained by
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y∗
i = (y∗

i1 − y∗
i2)/(Ji1 − Ji2)(J

∗
cv(xi) − Ji2) + y∗

i2 (28)

where Jik
are the bandwidths that correspond to the initial estimates y∗

ik
. The final

estimate is then obtained by smoothing y∗
i against xi using (4) with bandwidth J =

0.05n.

Oversmoothing

Friedman (Friedman [1984]) proposed an oversmoothing parameter which biases the
smooth towards the largest bandwidth from the grid of bandwidths over which the
cross-validation was performed. The parameter is defined in the range [0,10] where
zero corresponds to no oversmoothing, and 10 to the maximum oversmooth resulting
in a fixed bandwidth estimator with J = Jmax, where Jmax is the largest bandwidth
from the specified grid. Oversmoothing is applied to the results of (11), the optimal
bandwidths Jcv(xi), prior to smoothing them:

J(xi) = Jcv(xi) + (Jmax − Jcv(xi))R
10−α
i (29)

where α is the parameter that can be specified in the alpha(#) option of the supsmooth
command, and

Ri =

[

ê(Jcv(xi)|xi)

ê(Jmax|xi)

]

(30)

Local weighting

Fitting least squares models locally using the wfit algorithm also allows for using locally
varying weights, effectively allowing for locally weighted linear regression smoothing
with adaptive bandwidths. The local tricube weights are:

wj =

[

1 −

(

|xj − xi|

∆

)3]3

(31)

where ∆ = 1.001max(xi+J/2
− xi, xi − xi

−J/2
).
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