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Abstract

Recent work on the effects of currency unions (CUs) on trade stresses the importance
of using many countries and years in order to obtain reliable estimates. However,
for large samples, computational issues associated with the three-way (exporter-time,
importer-time, and country-pair) fixed effects currently recommended in the gravity
literature have heretofore limited the choice of estimator, leaving an important method-
ological gap. To address this gap, we introduce an iterative Poisson Pseudo-Maximum
Likelihood (PPML) estimation procedure that facilitates the inclusion of these fixed
effects for large data sets and also allows for correlated errors across countries and
time. When applied to a comprehensive sample with more than 200 countries trading
over 65 years, these innovations flip the conclusions of an otherwise rigorously-specified
linear model. Most importantly, our estimates for both the overall CU effect and the
Euro effect specifically are economically small and statistically insignificant. We also
document that linear and PPML estimates of the Euro effect increasingly diverge as
the sample size grows.
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1 Introduction and Motivation
To us, a plausible methodology to estimate the currency union ef-
fect on trade involves panel estimation with dyadic fixed effects. We
[. . . ] await computational advances to be able to estimate the Pois-
son analogues. (Glick and Rose, 2016, p. 86)

Writing at the beginning of a transformative period in the empirical study of international

trade, Rose (2000) reported the stunning finding that sharing a common currency more than

triples trade between countries. While this estimate was regarded as puzzlingly high at the

time, it succeeded in stimulating a vibrant and ongoing empirical literature investigating the

trade-creating effects of currency unions (CUs), having garnered over 3,100 citations since its

original publication in google scholar and 356 citations in Web of Science Core Collection.

This literature has notably included frequent re-examinations of the original evidence by

Rose himself—such as Glick and Rose (2002, 2016)—as well as fervent interest in whether

the European Monetary Union (EMU) in particular, as the largest CU to date, might have

had similarly remarkable effects.1

Parallel to this literature, the past two decades have seen the development and wide adop-

tion of many new econometric best practices for consistently identifying the determinants of

international trade. These have most notably included the use of Poisson Pseudo-Maximum

Likelihood (PPML) estimation to address issues related to heteroscedasticity and zeroes

(Santos Silva and Tenreyro, 2006), time-varying exporter and importer fixed effects to ac-

count for changes in the “multilateral resistance” constraints implied by theory (Anderson

and van Wincoop, 2003; Feenstra, 2004; Baldwin and Taglioni, 2007), and time-invariant

pair fixed effects to absorb unobservable barriers to trade (such as bilateral history) and

to address the endogeneity of trade policy variables due to time-invariant unobserved bi-
1Along with Glick and Rose (2002, 2016), some of Rose’s other work in this area includes Rose (2001),

Rose (2002), and Rose (2017). Contributions by Persson (2001), Nitsch (2002), Levy-Yeyati (2003), Barro
and Tenreyro (2007), de Sousa (2012), and Campbell (2013) are examples of reactions to Rose’s initial
finding. Finally, Micco, Stein, and Ordonez (2003), Baldwin and Taglioni (2007), Bun and Klaassen (2007),
Berger and Nitsch (2008), Santos Silva and Tenreyro (2010a), Eicher and Henn (2011), Olivero and Yotov
(2012), Herwartz and Weber (2013), and Mika and Zymek (2018) specifically investigate the effect of the
EMU. Santos Silva and Tenreyro (2010a) and Rose (2017) survey each of these literatures.

1



lateral heterogeneity (Baier and Bergstrand, 2007).2 Aiding these developments, empirical

researchers working in trade have also benefited from a new-found consensus on the theoret-

ical underpinnings of the gravity equation (Arkolakis, Costinot, and Rodríguez-Clare, 2012)

as well as recent computational advances that permit swift estimation of linear models with

a large number of fixed effects (Carneiro, Guimarães, and Portugal, 2012; Correia, 2016).

Reassuringly, as these new methods have filtered into the literature on currency unions,

they have led to more reasonable and reliable estimates. In their latest instalment, which em-

phasizes the use of time-varying exporter and importer fixed effects as well as time-invariant

pair fixed effects, Glick and Rose (2016) find—under their most rigorous specification—that

CUs generally increase trade by 40%, that CU entry and exit have symmetric effects on

trade, and that the EMU—which could not be included in earlier studies—has promoted

trade more than other CUs.3

Doing their due diligence, Glick and Rose (2016) also experiment with PPML estimation

with two-way (exporter-time and importer-time) fixed effects.4 However, as captured in

the opening quote, they are unable to obtain estimates for one particularly important and

desirable specification: the case of a PPML model with a full set of fixed effects (i.e., with

pair fixed effects also added to the exporter-time and importer-time fixed effects from the

two-way model).5

In this paper, we pick up where Glick and Rose (2016) leave off. The main technical
2Of course, endogeneity of common currencies may also arise from time-varying bilateral effects. Our

investigation does not tackle these sources of selection into currency unions.
3Glick (2017) demonstrates that these results are robust to controlling for EU membership and further

shows that there is heterogeneity in the trade effects between new and old EMU members.
4Glick and Rose (2016) include these results in an earlier working paper available online (Glick and Rose,

2015). They still estimate a generally positive “additional effect” for the EMU versus other CUs, but find
the overall CU effect disappears over time, echoing an earlier finding by de Sousa (2012).

5Even before Glick and Rose (2016), computational challenges with PPML have been quietly simmering
for some time. For example, Bratti, De Benedictis, and Santoni (2014) study the impact of immigrants on
trade and note that “[t]he use of [...] the Pseudo Poisson Maximum Likelihood (PPML) estimator [...] clashes
with the use of a large set of fixed effects that hamper convergence.” Henn and McDonald (2014) find PPML
“impracticable [because] convergence of PPML is usually not achieved with fixed effects of a dimensionality
as high as ours.” And in their services trade handbook, Sauve and Roy (2016) explain that “[u]nfortunately,
PPML estimation with several high-dimensional fixed effects led to non-convergence [...] even with the
application of different work-around strategies suggested in the recent literature.” Dutt, Santacreu, and
Traca (2014), Kareem (2014), and Magerman, Studnicka, and Van Hove (2016) share similar frustrations.
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challenge we overcome is Glick and Rose (2016)’s preference for as large a sample as possible,

covering trade between more than 200 countries over 65 years and therefore necessitating

the use of more than 50,000 fixed effects. In order to clearly demonstrate the importance

of our methods, we employ the same dataset as Glick and Rose (2016) and we rely on

the same theory-consistent gravity model with added pair fixed effects, reflecting the latest

developments in the gravity literature noted above. Thus, the differences in our results are

driven exclusively by the following two innovations. First (and most importantly), we present

an iterative PPML algorithm that specifically addresses the computational burden of the

three different types of high-dimensional fixed effects (“HDFEs”) that need to be computed to

obtain consistent point estimates of Glick and Rose (2016)’s preferred specification.6 Second,

with these consistent point estimates in hand, we take advice from Cameron, Gelbach, and

Miller (2011) and Egger and Tarlea (2015) and base our inferences on standard errors that

are clustered on all possible dimensions of the panel—here, exporter, importer, and time—

and similarly show how such “multi-way” clustering techniques may be adapted to the HDFE

PPML context.7

These two methodological changes—changing the underlying estimator and method of

clustering—lead to dramatic reversals in what we would otherwise consider the current

benchmark estimates from the literature. Unlike the vast majority of studies, we do not

find that the average effect of CUs on trade is statistically significant. This is for two main

reasons. First, multi-way clustering generally leads to more conservative inferences of all

estimates. Using standard, “robust” error corrections, for example, the overall CU effect is

positive and measured with high precision. Second, the implications of switching from OLS

to PPML are especially pronounced for our estimates of the EMU effect, which disappears

with the PPML estimator. However, for all CUs other than the EMU, we find (as much of
6The algorithm we present draws on an earlier method devised by Guimarães and Portugal (2010) for

PPML with two-way HDFEs. It was originally programmed by Zylkin (2017) and is available in Stata via ssc
(to install, type “ssc install ppml_panel_sg, replace”) or at https://econpapers.repec.org/software/
bocbocode/S458249.htm.

7While the current focus is on currency unions and trade, the methods we describe are equally well-suited
to a wide variety of other applications that call for the estimation of a gravity model.
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the literature had until more recently) the effect of sharing a currency has been very large

and highly significant, increasing trade by more than 100%.

We are not the first to document either a small EMU effect (c.f., Micco, Stein, and

Ordonez, 2003; Baldwin and Taglioni, 2007), or, indeed, an insignificant EMU effect (c.f.,

Santos Silva and Tenreyro, 2010a; Olivero and Yotov, 2012). However, other methodological

differences aside, these studies have mainly relied on relatively small samples.8 As Glick

and Rose (2016) and Rose (2017) rightly point out, using a sample with many countries and

years is in principle always the most sensible approach. However, in practice, it is also this

preference that contributes to the large difference in estimates. As Santos Silva and Tenreyro

(2006) highlight, OLS estimation of the log-linearised gravity model will in general be incon-

sistent in the presence of heteroscedasticity. We investigate the degree of heteroscedasticity

in Glick and Rose (2016)’s data by plotting estimation residuals against expected trade val-

ues for different benchmark subsamples split by development status, regions, and size. This

analysis reveals that trade flows involving the many smaller, poorer countries needed for a

comprehensive sample are noticeably more heteroscedastic than trade flows involving other

countries. The inclusion of these countries in Glick and Rose (2016)’s data (and in other

similarly large data sets) should therefore be expected to exacerbate the difference between

PPML and OLS estimates, a pattern we can confirm by comparing coefficient estimates

for different subsamples. We also use the example of the EMU effect to demonstrate that

the addition of very small countries that contribute only a tiny portion of world trade can

have a noticeable impact on OLS estimates of a currency union even if they are not part

of the currency union, whereas PPML estimates will tend to discount the addition of such

countries.9
8A notable exception is Mika and Zymek (2018), who also show that the EMU effect vanishes using

PPML with many countries. In their paper, the computational issues surrounding PPML are addressed by
“artificially balancing” bilateral trade (such that the usual “exporter-time” and “importer-time” FEs become
only “country-time” FEs) and by only using more recent years. Glick and Rose (2016) question whether these
adjustments lead to truly comparable results. Our findings, however, support those of Mika and Zymek.

9Indeed, Glick and Rose (2016)’s own sensitivity analysis—replicated in Table A2 of our Online
Appendix—makes it plain that linear estimates of the EMU effect do depend non-trivially on which non-EMU
reference countries are included in the sample. Another recent follow-up study by Campbell and Chentsov
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We now turn to describing our HDFE PPML estimation procedure. The following sec-

tions then add our estimates and conclusions.

2 PPML with High-Dimensional Fixed Effects

Following the latest developments in the gravity literature, we now describe and implement

a PPML estimation procedure that can be used to obtain estimates for a large number of

exporter-time, importer-time, and exporter-importer (“pair”) fixed effects. We also discuss

how to resolve the subsequent technical challenge of how to obtain multi-way clustered PPML

standard errors in the presence of these fixed effects.

2.1 Estimation Procedure

Let Xijt denote trade flows from exporter i to importer j at time t. wijt is a vector containing

our covariates of interest, including currency unions and other controls. With exporter-time

(λit), importer-time (ψjt), and exporter-importer (“pair”) fixed effects (µij), the estimating

equation is

Xijt = exp (λit + ψjt + µij + b′wijt) + νijt, (1)

where νijt denotes the remainder error term. This specification is in line with the best

practices for panel gravity estimation recommended by Yotov, Piermartini, Monteiro, and

Larch (2016) and has appeared in a number of recent empirical studies on the effects of trade

agreements, albeit only with smaller samples.10 Our goal is to obtain PPML estimates for

coefficient vector b for large samples in the presence of these three high-dimensional fixed

effects. To fix ideas, we first write an expression for the corresponding estimate of b, denoted

(2017) adds further emphasis on this point.
10See, for example, Dai, Yotov, and Zylkin (2014), Bergstrand, Larch, and Yotov (2015), Anderson,

Vesselovsky, and Yotov (2016), Anderson and Yotov (2016), and Heid and Larch (2016) who investigate
samples with 13 to 41 regions or countries. Some of these papers facilitate estimation of this specification
by further making the simplifying assumption that the pair fixed effect µij applies symmetrically in both
directions. Thanks to the algorithm introduced in this paper, these compromises are no longer necessary.
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by b̂, in the form of a generalized PPML first-order condition:

b̂ :
∑
i

∑
j

∑
t

[
Xijt − exp

(
λ̂it + ψ̂jt + µ̂ij + b̂′wijt

)]
wijt = 0. (2a)

Noting that the PPML first-order condition for a group fixed effect equates the sum of the

dependent variable with the sum of the conditional mean for that group, the remaining

first-order conditions associated with (1) may be written as

λ̂it : Yit − eλ̂it
∑
j

exp
(
ψ̂jt + µ̂ij + b̂′wijt

)
= 0, (2b)

ψ̂jt : Xjt − eψ̂jt
∑
i

exp
(
λ̂it + µ̂ij + b̂′wijt

)
= 0, (2c)

µ̂ij :
∑
t

Xijt − eµ̂ij
∑
t

exp
(
λ̂it + ψ̂jt + b̂′wijt

)
= 0, (2d)

where Yit ≡
∑
j Xijt and Xjt ≡

∑
iXijt respectively denote the sums of all flows associated

with each exporter i and importer j at time t.11

Along with (2a), these equations could be used to solve the complete system in terms

of b̂, eλ̂it , eψ̂jt , and eµ̂ij by extending the “zig-zag” algorithm demonstrated in Guimarães

and Portugal (2010) for the case of two-way HDFEs.12 However, to follow more closely the

actual methods used, and to emphasize the tight connection linking estimation with theory,

it is useful instead to re-write our system of equations in the form of a “structural gravity”

model à la Anderson and van Wincoop (2003). To do so, first define

Ψit ≡
Yit/
√
XWt

eλ̂it

, Φjt ≡
Xjt/
√
XWt

eψ̂jt

, Dij ≡ eµ̂ij , (3)

where XWt ≡
∑
i

∑
j Xijt denotes total world trade at time t, to be used as a scaling factor.13

11Most empirical applications, including the present one, tend not to include “self-trade” (i.e., “Xii”) in
the estimation. Thus, in our case, Yit is i’s total exports and Xjt is j’s total imports. However, Yotov,
Piermartini, Monteiro, and Larch (2016) describe several applications in which including Xii might be
appealing. The algorithm allows for either possibility without loss of generality. Furthermore, either approach
is compatible with structural gravity (c.f., eq. (17) in French, 2016).

12The PPML Hessian is negative definite (Gourieroux, Monfort, and Trognon, 1984). Thus, so long as a
solution for b̂ exists—a finer point we discuss further in the Online Appendix—it is guaranteed to be unique.
However, the fixed effects in (2b)-(2d) are only determined up to 2N + T normalizations, where N and T
respectively denote the numbers of countries and time periods.

13The utility of this scaling factor is that, as in the analogous system used in Anderson and van Wincoop
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We make these substitutions because, after plugging these definitions into (1), we arrive

at a new version of our estimating equation that closely resembles the famous “structural

gravity” equation of Anderson and van Wincoop (2003):

Xijt =
(
YitXjt

XWt

)Dije
b̂′wijt

ΨitΦjt

+ νijt.

And, furthermore, we may also now re-write our system of first-order conditions as follows:

0 =
∑
i

∑
j

∑
t

Xijt −
(
YitXjt

XWt

)Dije
b̂′wijt

ΨitΦjt

wijt, (4a)

Ψit =
∑
j

Xjt/XWt

Φjt

Dije
b̂′wijt , (4b)

Φjt =
∑
i

Yit/XWt

Ψit

Dije
b̂′wijt , (4c)

Dij =
∑
tXijt∑

t

(
YitXjt

XW t

) (
eb̂′wijt

ΨitΦjt

) . (4d)

In (4b) and (4c), Ψit and Φjt are analogues of the “multilateral resistances” from structural

gravity. As in Anderson and van Wincoop (2003) (and the vast subsequent literature fol-

lowing Anderson and van Wincoop, 2003), they capture the general equilibrium effects of

trade with third countries. The form of these constraints is well-known and Fally (2015) has

previously shown they naturally derive from the FOC’s of PPML with two-way fixed effects.

The new term we add, however, is Dij in (4d), the “pair” fixed effect recommended by Baier

and Bergstrand (2007). As with our other fixed effects, we may obtain this last term by

equating sums: in this case, pair-wise sums of actual and fitted trade flows over time, as in

(4d).

With this system in place, the steps to follow are exactly as outlined in (4a)-(4d). That

is: (i) given initial guesses for {Dij,Ψit,Φjt}, compute a solution for b̂ using (4a); (ii)-(iii)

Update Ψit and Φjt using (4b) and (4c); (iv) update Dij using (4d); and (v) return to step

(2003), imposing Dij = Φjt = Ψit = 1 (with b̂ = 0) equates to a world where trade frictions do not affect
choice of trade partner. We thus may use Dij = Φjt = Ψit = 1 as natural initial guesses for the fixed effects
when first solving for b̂.
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(i) with new values for {Dij,Ψit,Φjt}, iterating until convergence.14

2.2 Standard Errors

Of course, computing the point estimates themselves is just one part of the overall high di-

mensionality problem we must overcome in obtaining inferences. Estimating standard errors

also poses a significant technical challenge in this context. Even though in principle we may

readily construct from our iterative procedure the complete Hessian matrix associated with

our estimation, the usual method of inverting the Hessian to obtain the estimated Poisson

variance matrix is likely to be impractical, because of the number and variety of the included

fixed effects. Fortunately, recent advances in the related literature offer better alternatives.

For the slightly simpler case of a PPML model with two-way HDFEs, Figueiredo, Guimarães,

and Woodward (2015) show how the high dimensionality associated with this latter problem

may be efficiently discarded by recognizing the variance-covariance matrix of a Poisson re-

gression is proportional to that of an appropriately weighted linear regression, such that the

Frish-Waugh-Lovell theorem may then be applied. This same strategy also extends naturally

to the case of three-way HDFEs, as we show in our Online Appendix.

More generally, however, our emphasis on standard errors stems from our desire to incor-

porate assumptions about error correlation (or “clustering”) patterns that are most reason-

able for our data and model. Again, we draw on recent innovations. In particular, Egger and

Tarlea (2015) convincingly argue that standard errors for a panel-data gravity model should

allow for simultaneous correlations across all three main dimensions of the panel—exporter,

importer, and time—by implementing the “multi-way” clustering methodology first intro-

duced in Cameron, Gelbach, and Miller (2011). Adopting the logic of Egger and Tarlea
14One way to obtain b̂ in step (i) would be to solve for it directly via a nonlinear solver. However, an even

more efficient approach is to modify the procedure so that b̂ can be solved for using iteratively re-weighted
least squares (IRLS), inspired by Guimarães (2016) and further discussed in the Online Appendix. The
Online Appendix also covers other important details such as how to compute clustered standard errors and
how to implement the pre-estimation “existence check” recommended by Santos Silva and Tenreyro (2010b)
in the high-dimensional fixed effects context.
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(2015), it is reasonable to believe there are auto-correlations across time within countries

having to do with inertia in trade, as, e.g., bilateral trade responds sluggishly in the short-

run to long-run changes in local prices. A similar logic applies to possible cross-sectional

dependence within time periods, as general equilibrium price linkages across countries may

not fully reflect an idiosyncratic shock to trade at time t.

For added motivation, we also note that clustering simultaneously on i, j, and t ac-

tually allows for correlation in the error term within all six possible cluster dimensions

{i, j, t, it, jt, ij}. It thus explicitly nests the typical practice of assuming errors are solely

clustered across time within each country-pair ij. For this reason, we will expect multi-

way clustering to lead to more conservative inferences, just as in Egger and Tarlea (2015).

The details for implementing multi-way clustering in our setting largely follow Cameron,

Gelbach, and Miller (2011), requiring only some slight modification to account for the high

dimensionality mentioned above. Again, for brevity, we leave these specifics to our Online

Appendix.

In sum, our methods allow us to rapidly obtain estimates and flexibly clustered standard

errors for our key parameters of interest, even for data structures that would ordinarily be

too large for direct estimation to be feasible. Applying three-way FEs to Glick and Rose

(2016)’s data, for example, will require us to account for more than 50,000 fixed effects.15

Thus, their data will serve as an interesting test, which we now turn to.

3 Re-assessing the Effects of Currency Unions

Following Glick and Rose (2016)’s notation, we define CUijt—a dummy variable equal to 1

if i and j share a common currency in year t—as our main regressor of interest. Thus, we
15Table A1 of the Online Appendix summarizes computation times for different sample sizes (both in

terms of countries and years considered) for the ppml-command of Santos Silva and Tenreyro (2011) and the
HDFE ppml_panel_sg-command of Zylkin (2017). The gains in terms of whether and how fast convergence
is achieved will obviously vary with the specific soft- and hardware used to implement the procedure. The
main takeaway from Table A1 is that there are substantial speed and feasibility gains using our suggested
estimation procedure for high-dimensional fixed effects models compared with previously available methods.
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may re-produce Glick and Rose’s preferred specification with three-way fixed effects either

in its original OLS form,

lnXijt = λit + ψjt + µij + β′zijt + γCUijt + εijt, (5)

or in the form of our own preferred alternative, using PPML:

Xijt = exp (λit + ψjt + µij + β′zijt + γCUijt) + νijt, (6)

where, in either case, zijt denotes a set of non-CU controls (namely dummies indicating

the presence of regional trade agreements and current colonial relationships16) and the final

terms (εijt and νijt) denote residual errors.

To motivate our preference for PPML, we note, as Santos Silva and Tenreyro (2006) have,

that imposing the OLS moment condition E[lnXijt− ̂lnX ijt|·] = 0 does not also imply that

E[Xijt− X̂ijt|·] = 0. As a consequence, OLS estimates of γ will only be consistent when the

OLS error term εijt is homoscedastic, whereas PPML is consistent under much more general

circumstances. Since trade data are generally taken to be heteroscedastic—a supposition we

will later confirm—OLS is likely to be biased and inconsistent, with the bias increasing in

the degree of heteroscedasticity.17 For some further motivation, we also note that, unlike

with PPML, OLS first-order conditions for the exporter-time and importer-time fixed effects

λit and ψjt do not re-produce the adding-up constraints (4b) and (4c) typically implied by

theory; instead, they equate sums of log trade flows with sums of fitted log flows.
16Note this last variable is mainly identified by former colonies gaining independence during the period. It

is debatable whether the trade effect of a country’s independence is appropriately captured by this dummy.
We therefore re-ran our main specifications after dropping all colonies from the sample (reducing the number
of observations by 70%). Our results are both qualitatively identical and quantitatively similar.

17Santos Silva and Tenreyro (2006, 2011) provide an extensive discussion of this point as well as a com-
parison study of PPML versus a range of other nonlinear estimators. While PPML implicitly assumes that
the variance of νijt is proportional to the conditional mean, this assumption only affects the efficiency of
the estimator and PPML turns out to generally perform adequately even when this assumption is not met.
Fernández-Val and Weidner (2016) and Jochmans (2017) have documented favourable small-sample proper-
ties for PPML with two-way FEs. We note that similar investigations for the case of three-way FEs would
be valuable additions to the literature.
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3.1 Main Results

Columns (1) to (3) of Table 1 reproduce the right panel of Table 5 from Glick and Rose

(2016). Columns (4) to (6) estimate the same specifications but with PPML. Additionally,

we report for each coefficient two types of standard errors: in parentheses we report Huber-

White heteroscedasticity-robust standard errors (Huber, 1967; White, 1982) as in Glick and

Rose (2016); in curly brackets we report multi-way clustered standard errors clustered by

exporter, importer, and year, as advocated by Egger and Tarlea (2015).18

For all PPML specifications, as suggested by Santos Silva and Tenreyro (2006) and Man-

ning and Mullahy (2001), we perform a Park (1966)-type test for the hypothesis that the

multiplicative gravity model can be consistently estimated in the log-linearised form. We

obtain a p-value less than 0.001 in all cases, implying that the adequacy of estimating the

constant-elasticity model in log-linear form is strongly rejected. As a goodness of fit mea-

sure, we also calculate the squared correlation coefficients between observed and predicted

dependent variable values (which coincides with the R2 in the linear case). The R2 values

we obtain are 0.855 for the linear model and 0.987 for PPML, in line with the typical good

fit of gravity models.19

Our main observations from the estimates themselves are as follows. First, note that

the main effect for CUs is substantially smaller than in Glick and Rose (2016) (compare,

for example, columns (1) and (4).) If multi-way clustered standard errors are used, it also

becomes statistically insignificant.

Second, our PPML estimates for the EMU effect in columns (5) and (6) are even less

favourable. The estimated EMU coefficients—0.030 and 0.027, respectively—are an order of

magnitude smaller than the corresponding linear model estimates shown in columns (2) and
18Note that we drop singleton groups (i.e. fixed effects groups with only a single observation) in order to

avoid artificially low standard errors due to an overstated number of clusters (see Correia, 2015). This is
achieved with the dropsingletons-option in the ppml_panel_sg-command.

19Note that the higher values for PPML are not only driven by its better fit, but also by considering the
correlation of the levels of (fitted and observed) trade flows rather than of their logs as in the OLS case.
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(3). Furthermore, when clustered standard errors are used, the EMU loses significance.20

Third, for all other currency unions except the EMU, PPML leads to significant positive

effects and the magnitude is nearly tripled versus Glick and Rose (2016), suggesting a trade-

promoting effect of e.700 − 1 = 101.3% (versus e.298 − 1 = 34.7%). The strong positive result

for the “net EMU effect” from Glick and Rose (2016) thus completely reverses, suggesting

the EMU has been a major disappointment in this regard. The negative net EMU effect we

observe could be for several reasons. For example, the EMU countries are mainly developed

countries that already had comparably strong and stable individual currencies and which

were already well-integrated economically. It may be that the types of transaction costs that

currency unions alleviate may be more pronounced for countries that are less integrated with

one another and/or have weaker currencies to start with. Or, as de Sousa (2012) has argued,

it could also be that the importance of a common currency for trade has generally fallen over

time due to increased globalization, with the surprising lack of an EMU effect being part

of a broader trend.21 However, it is worth noting that estimates of the effect of non-EMU

currency unions are potentially less reliable, because a substantial part of the identifying

variation is due to currency union dissolutions that coincided with political events such as

warfare, communist takeovers, or colonial independence (Campbell, 2013).

Finally, other individual CU estimates, shown in column (6), are also affected, to varying

degrees. In particular, we see the large PPML estimate for non-EMU CUs is driven by the

British £, the French Franc, and “other CUs”.22 The finding of very large heterogeneity in

the trade effects across different currency unions is in line with previous findings by Eicher

and Henn (2011) and Glick and Rose (2016). However, an additional note of caution is
20Olivero and Yotov (2012) find the Euro effect is only significant when one accounts for slow, dynamic

adjustments over time. On the other hand, Berger and Nitsch (2008) argue the Euro effect is biased upward
by not accounting for long-term trends in European trade. For this reason, it is worth mentioning that our
results are robust to using pair time-trends, lagged CU and EMU terms, and/or wider time intervals.

21We investigate how the non-EMU effect changes over time in Section 3.3 and find further evidence that
the currency union effect has generally fallen over time.

22Note we treat missing observations in the Glick and Rose (2016) data set as missing for both our linear
and PPML specifications. As PPML allows zero trade flows, we also run specifications (4)-(6) treating all
missing observations as zero trade flows, presented as robustness check later on.
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in order (aside from the potential confounding with geopolitical events) for the estimated

effects of individual non-EMU currency unions: they tend to be identified based on very

little variation in the data. For example, the effects of the French Franc, the East Caribbean

Dollar, and the Australian Dollar are estimated based on the variation in bilateral trade

flows between only six, four, and three countries, respectively.

In sum, our PPML estimates of the trade-promoting effects of currency unions in Table 1

(and of the EMU and other individual currency unions in particular) are very different than

their OLS counterparts. Given the large magnitude of these differences, it is only natural to

wonder: Why do the two estimators give us such strikingly different results here? And is there

anything about this particular setting—with an unusually large sample of countries—that

would lead these estimates to offer such diverging conclusions? We address these questions

next.

3.2 Comparing OLS and PPML Estimates for Different Samples

Because the data set from Glick and Rose (2016) we work with is notably very large, there is

likely but one main reason behind the difference in the OLS and PPML estimates we obtain.

As our Park test results have confirmed, OLS is an inconsistent estimator in this context

because it suffers from a heteroscedasticity-induced bias that does not disappear in large

samples, whereas PPML can be shown to be consistent.23

Thus, to investigate why the difference in estimates is as large as it is, we need to be

able to say something about the pattern of heteroscedestacity and why it might induce an

especially large bias for this particular sample. Recall that OLS estimates are consistent
23Another reason sometimes cited in the literature for why PPML and OLS estimates differ is that the

implied moment conditions of OLS estimation make the regressors orthogonal to the difference between the
observed and fitted logged trade flows (i.e., lnXijt− ln X̂ijt), whereas the moment conditions used by PPML
establish orthogonality to the deviations in levels (i.e., Xijt − X̂ijt). For this reason, Eaton, Kortum, and
Sotelo (2013) and Head and Mayer (2013, 2014) conclude that PPML will assign more importance to larger
trade flows relative to OLS. However, these implied weighting differences should affect only the efficiency of
each estimator in small samples; for large samples, the consistency properties of the two estimators should
explain most of the difference in an otherwise correctly specified model.

13



in the special case where the OLS error term (εijt) is homoscedastic.24 A useful way of

visualizing how far off the data is from satisfying this assumption is to use what Tukey

(1977) calls a “wandering schematic” diagram. To create this diagram—demonstrated in

Figure 1—we first group all residuals from the estimation into 20 equal-sized bins, with

each bin collecting observations with similar predicted trade values. We then sort these bins

from smallest to largest predicted value and construct modified box plots summarizing the

distribution of the error term within each bin. As the top left panel of Figure 1 shows—

in a visual confirmation of our earlier Park test results—the residuals from our main OLS

specification (i.e., from column 2 in Table 1) are clearly not homoscedastic. In particular,

both the boxes for each bin (reflecting the first and third quartiles of the distribution) and

their associated whiskers (reflecting the adjacent values) grow steadily smaller from left to

right as we consider observations with a higher expected trade value, implying that the

variance of these residuals is inversely related to the conditional mean across the entire

sample.25 Note that this does not imply that the differences between observed and fitted

trade flows get smaller for larger trade flows. It rather implies a decrease in the percentage

difference.

To say something about the “degree” of heteroscedasticity using this type of analysis,

it is first necessary to offer some concrete benchmarks for comparison. Glick and Rose

(2016)’s robustness analysis offers us some standard ways of restricting the sample that are

convenient for this purpose. Drawing on Glick and Rose (2016)’s Table 8, the alternative

country subsamples we use are: “industrialized countries plus present/future EU” (countries

with an IFS code below 200 plus all current EU countries); “upper income” (countries whose

GDP per capita exceeds the World Bank “upper income” threshold of $12,736); “rich and
24This special case of a homoscedastic error term from the log-transformed model corresponds to the

situation described in Santos Silva and Tenreyro (2006) where the conditional variance from the multiplicative
model is proportional to the square of the conditional mean. Both estimators should be consistent when this
assumption is satisfied; thus, we would expect them to give similar results in this context.

25The adjacent values of a distribution, which occur at a distance 1.5 times the inter-quartile range past
the nearest edge of the “box”, are a standard concept used in data analysis to determine where the tails of
the distribution lie.
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big” (countries with a GDP per capita of at least $10,000 and/or a GDP exceeding $10

billion), and one sample each for OECD members and for current and future EU members.

Figure 2 presents comparisons of OLS and PPML estimates for these various subsamples,

along with 90% and 95% multi-way clustered confidence bounds. From these comparisons, it

is easy to see that OLS estimates of the EMU effect are only positive and significant for the

full sample; otherwise, the OLS estimate is generally much closer to the PPML estimate and

is near-zero and statistically insignificant for all subsamples except the “present/future EU”

subsample, where it is negative and significant. For non-EMU CUs, we generally observe

the PPML estimate is somewhat larger than the corresponding OLS estimate across each

of these subsamples, consistent with our results for the full sample. It is also apparent that

OLS estimates of both CU variables are generally more sensitive to varying which countries

are used, whereas PPML estimates are relatively more stable across different subsamples.

The remaining panels of Figure 1 then show how the heteroscedasticity in the data

changes when we restrict the sample to any of these benchmark country groupings. As

we observed earlier for the full sample, all the different subsamples feature observations

with smaller predicted values exhibiting higher variance than other observations. However,

unlike with the full sample, the heteroscedasticity in these subsamples is mainly limited

to the observations with smaller expected values versus the rest of the sample. With the

exception of the full sample, the righthand-sides of each of these panels are at least close

to homoscedastic. As Figure 3 suggests, this is likely because the full sample includes

disproportionately more observations with smaller expected trade values, which generally

seem to exhibit more variance and more heteroscedasticity than other observations. We

can therefore plausibly conclude that moving to a comprehensive sample from any of these

benchmark subsamples fundamentally alters the pattern of heteroscedasticity and amplifies

the bias affecting the OLS estimates.

Continuing further with our analysis of these subsamples, another result from Figure 2

that draws our curiosity is the close correspondence between the OLS and PPML estimates of
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the EMU effect across all the samples we consider except for the full sample. The similarity

between estimates for the sample of current/future EU members is particularly interesting to

us because this sample already includes all the EMU members; the only difference with the

larger sample is that the larger sample also adds many non-EU countries to the “reference

group” of trade partners against which within-EMU trade is compared in order to identify

the EMU effect. Or, more precisely, the addition of more reference group countries mainly

affects the estimation via the exporter-time and importer-time fixed effects λit and ψjt. Since

trade with a smaller trade partner contributes more to the sum of a country’s total log trade

flows (the key moment used to identify these fixed effects in OLS) than to its total trade in

levels (the key moment used in PPML), it’s conceivable that at least some of the divergence

in estimates reflects the relatively higher importance that OLS places on the many smaller

non-EMU countries present in the full sample.

To explore in more detail how differences between linear and PPML estimates evolve

with the composition of the reference group, Figure 4 plots estimates from both the linear

model and PPML starting with the EU as a whole and then adding one country at a time

ranked by 2013 GDP. These estimates reveal that adding more and more (smaller) countries

leads to a continually rising OLS estimate—even for the addition of the world’s tiniest

economies—while the PPML estimates stabilize after the inclusion of around 40 additional

countries. Based on the preceding discussion, this divergence is by no means surprising: as

we add smaller and smaller countries to the sample, we are tending to make the data more

heteroscedastic, thereby amplifying the bias in the OLS estimate. However, we also note

that the PPML and OLS estimates shown in Figure 4 are usually influenced in the same

direction whenever the next-largest country is added to the sample. As such, the PPML

and OLS estimates shown in the figure both seem to agree that trade has fallen between

EMU members relative to their trade with the rest of the EU as well as with the six largest

non-EU economies (the US, China, Japan, Brazil, and India), which together constitute

more than two-thirds of world non-EMU GDP. Intra-EMU trade appears to have risen,
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however, relative to trade with smaller partners, starting with the seventh largest non-EMU

economy (Canada). To interpret our earlier results in light of these patterns, the positive

and significant overall OLS estimate of the EMU effect we observe appears to be heavily

influenced by the apparent decline in trade between the EMU and the many smaller non-

EMU countries in the sample relative to intra-EMU trade. Since PPML naturally discounts

the addition of smaller reference group countries, and since this pattern is nowhere to be

found for the EMU’s most important outside partners, this feature of the data could help

explain some of the difference between the PPML and OLS estimates of the EMU effect.26

3.3 Other Robustness

To add some final experiments, we consider here the possible role played by zero trade flows

(which cannot be included in log-linear models) as well as some possible omitted temporal

factors such as lags, trends and anticipation effects. We also examine how the effect of

currency unions has changed over time.

Missing and Zero Trade Flows. As noted earlier, in order to obtain the main estimation

results, we treated missing observations in the Glick and Rose (2016) data set as missing

for both our linear and PPML specifications. Omitting zero trade flows could potentially

lead to a sample selection problem biasing our results. If a currency union induces country-

pairs to start trading (versus not at all), estimates based on positive trade flows only may

lead to a downward bias of the estimated effect of currency unions on trade. While OLS

cannot handle zero trade flows without further adjustments, such as adding a small, arbitrary

number (see e.g. Linnemann, 1966) or applying the inverse hyperbolic sine transformation

(see e.g. Kristjánsdóttir, 2012), they can be directly included into the PPML estimation. In

Table 2, we therefore show the results of re-estimating specifications (4)-(6), now treating
26To investigate this intuition, we ran our OLS main specification (column (2) of Table 1) with the product

of GDPs as weights. Indeed, the results from the weighted OLS regression are more similar to the PPML
estimates than the unweighted ones. Most importantly, the estimated EMU coefficient is 0.335 (compared
to 0.429 and 0.030 for unweighted OLS and PPML, respectively) and the estimated currency union effect
for all other CUs is 0.450 (compared to 0.298 and 0.700 for unweighted OLS and PPML, respectively).
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all missing observations as zero trade flows. The results indicate that including zero trade

flows hardly affects the estimates. Most importantly, estimating the gravity equation in its

multiplicative form still erases the EMU effect. The one small change from our earlier results

is that the general CU effect now remains marginally significant even when clustering at the

exporter, importer, and year dimension.

Time Periods. Our main specifications rest on the strong assumption that the influence

of the currency unions on trade has not changed over the last seventy years. But some

recent evidence provided by de Sousa (2012) suggests this may not be a good assumption.

In addition, since the EMU does not begin until relatively late in the sample, it is worth

investigating whether our estimates change if we use a more recent time series that is more

centred on the EMU specifically.

We thus use Table 3 to investigate how the effects of currency unions change over time,

both for our full country sample as well as for the benchmark subsamples considered in

Glick and Rose (2016)’s Table 8 and in our own Figure 2. The estimates using all years

from 1948-2013 for all subsamples are given in the first column; estimates presented in

subsequent columns then experiment with how CU effects vary when the sample period

begins in either 1985 or 1995 and/or ends in 2005.27 Consistent with our earlier Figure 2,

we find that no single subsample leads to a positive significant effect for the Euro and that

the large and positive non-EMU CU effect is robust for all samples with a large time span.

For samples beginning in 1985 or 1995, however, the non-EMU effect is always statistically

insignificant when multi-way clustered standard errors are used. This latter set of findings

lends support to de Sousa (2012)’s earlier observation that the trade-promoting effect of

currency unions seems to have weakened significantly over the course of the 20th century.

As discussed in de Sousa (2012), one plausible reason for the decreasing effect of currency

unions may be increased international economic integration, both in terms of trade and
27The corresponding OLS results, which largely replicate Glick and Rose (2016)’s Table 8, are provided in

Table A2 in the Online Appendix.
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financial globalization. However, we also note that subsamples without observations prior

to 1985 include only very few observations of country-pairs leaving or joining non-EMU

currency unions. Thus, we find no significant effects (or even cannot identify the effects) for

some subsamples.

Quadrennial Data. Because trade flows may require some time to adjust to changes in

trade costs, Cheng and Wall (2005) have suggested using intervals of several years rather

than yearly data. Following this advice has become general practice in the regional trade

agreements literature (see for example Baier and Bergstrand, 2007; Bergstrand, Larch, and

Yotov, 2015) and a similar argument conceivably applies to currency unions as well. We

therefore re-estimate our main specification based on 4-year intervals instead of using con-

secutive years. As can be seen from column (1) of Table 4, this hardly affects our point

estimates and standard errors, even though we only use about a quarter of the data.28

Time Trends. The inclusion of bilateral fixed effects only captures bilateral time-invariant

heterogeneity. One step towards capturing bilateral unobservables in a more flexible way is to

interact the pair fixed effects with the linear variable year in order to account for pair-specific

trends, as suggested in the EMU context by Bun and Klaassen (2007) and for the estimation

of regional trade agreement effects by Bergstrand, Larch, and Yotov (2015). The estimates

from column (2) of Table 4 demonstrate that the EMU effect continues to be insignificant

when these bilateral linear time trends are added, while the effect of all other CUs is about

halved.29 A possible explanation is that when not controlling for bilateral linear time trends,

part of the CU effect captures common changes in bilateral unobserved heterogeneity among

CU members. The addition of this time trend also requires a further extension to our PPML

estimation procedure, which we provide in the Online Appendix.

Lags. As discussed above, our failure to find a significant EMU effect could plausibly
28The OLS results for all specifications of Table 4 are presented in Table A3 in the Online Appendix.
29These results and all subsequent results in Table 4 continue to use every four years (as in column 1).

Our results are similar if we use every year.
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be because trade adjusts slowly to the introduction of a common currency rather than all

at once. On top of using 4-year intervals, an additional way to explicitly capture sluggish

adjustments and phasing-in effects of trade policies is to follow Baier and Bergstrand (2007)’s

suggestion of adding lagged explanatory variables. After adding lags of all variables, the

contemporaneous EMU effect is still insignificant (see column (3) of Table 4.) However,

the lagged value is now small, positive, and statistically significant. The combined EMU

(defined as the sum of the contemporaneous effect and the lagged effect) is 0.027, which is

again not statistically different from zero (std.err. = 0.093). For all other CUs, both the

contemporaneous and lagged value are positive, and statistically significant. Their joint size

of 0.668 (with std.err. = 0.188) is not statistically significantly different from the value from

column (1).

Leads. Lastly, in column (4) of Table 4, we estimate specifications including the leads of

all variables. A possible interpretation of this experiment is as a placebo test, as we should

not see any effect of CUs that are not already in place. Indeed, for the EMU, the lead

effect is close to zero and statistically insignificant. For the other CUs the lead is marginally

significant, but substantially smaller than the contemporaneous coefficient. The significance

of the lead variable could hint at an endogeneity problem or capture anticipation effects or

the impact of any other unobserved drivers of trade. Hence, while our analysis demonstrates

the effectiveness and empirical relevance of our methods, we again note that estimates of

the effects of the non-EMU CUs—both here and in the literature more generally—should be

interpreted with at least some caution.

4 Conclusions

We make three main contributions. First, we offer practical methods to overcome impor-

tant challenges with the estimation of structural gravity models with high-dimensional fixed

effects and clustered standard errors using PPML. Second, these innovations lead to very
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different conclusions about the effects of currency unions on trade, especially with regards

to whether the Euro has had a statistically significant effect on trade. Third, we identify a

cautionary example where OLS and PPML gravity estimates differ to an especially dramatic

degree. We relate this difference to the underlying heteroscedasticity, which renders OLS

inconsistent and which increases in the number of small countries included in our sample.

Notably, the increasing divergence between estimates for larger samples with more small

countries indicates that the computational issues we resolve in this paper would otherwise

limit a researcher’s choice of estimator precisely when this choice seems to matter most.
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Table 1: Linear Specification vs. PPML
Linear Specifications PPML

All CUs Disagg. EMU Disagg. CUs All CUs Disagg. EMU Disagg. CUs
(1) (2) (3) (4) (5) (6)

All CUs 0.343 0.130
(0.018)∗∗∗ (0.010)∗∗∗
{0.080}∗∗∗ {0.081}

EMU 0.429 0.432 0.030 0.027
(0.021)∗∗∗ (0.021)∗∗∗ (0.010)∗∗∗ (0.010)∗∗∗
{0.149}∗∗∗ {0.149}∗∗∗ {0.092} {0.091}

All Non-EMU CUs 0.298 0.700
(0.025)∗∗∗ (0.025)∗∗∗
{0.097}∗∗∗ {0.172}∗∗∗

CFA Franc Zone 0.583 0.137
(0.100)∗∗∗ (0.108)
{0.186}∗∗∗ {0.307}

East Caribbean CU -1.637 -1.014
(0.106)∗∗∗ (0.081)∗∗∗
{0.334}∗∗∗ {0.319}∗∗∗

Aussie $ 0.389 0.168
(0.196)∗∗ (0.121)
{0.248} {0.282}

British £ 0.554 1.004
(0.034)∗∗∗ (0.034)∗∗∗
{0.101}∗∗∗ {0.234}∗∗∗

French Franc 0.874 2.096
(0.083)∗∗∗ (0.062)∗∗∗
{0.269}∗∗∗ {0.302}∗∗∗

Indian Rupee 0.522 0.082
(0.115)∗∗∗ (0.149)
{0.110}∗∗∗ {0.308}

US $ -0.051 0.014
(0.063) (0.022)
{0.229} {0.066}

Other CUs -0.104 0.788
(0.058)∗ (0.052)∗∗∗
{0.247} {0.247}∗∗∗

RTAs 0.395 0.392 0.389 0.167 0.169 0.168
(0.009)∗∗∗ (0.010)∗∗∗ (0.010)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗
{0.062}∗∗∗ {0.061}∗∗∗ {0.061}∗∗∗ {0.076}∗∗ {0.075}∗∗ {0.076}∗∗

CurCol 0.262 0.275 0.248 0.733 0.545 0.303
(0.032)∗∗∗ (0.032)∗∗∗ (0.033)∗∗∗ (0.059)∗∗∗ (0.050)∗∗∗ (0.042)∗∗∗
{0.155}∗ {0.159}∗ {0.170} {0.288}∗∗ {0.251}∗∗ {0.150}∗∗

N 877,736 877,736 877,736 877,736 877,736 877,736
# of clusters

exporters 212 212 212 212 212 212
importers 212 212 212 212 212 212
years 66 66 66 66 66 66

(Pseudo-)R2 0.855 0.855 0.855 0.987 0.987 0.987
Park-Test (p-value) - - - <0.001 <0.001 <0.001

Notes: Columns (1) to (3) of this table reproduce the right panel of Table 5 from Glick and Rose (2016). Columns
(4) to (6) estimate the same specifications but with PPML. 877,736 observations for more than 200 countries for
the years 1948 to 2013. All columns include (roughly) 11,000 exporter-time, 11,000 importer-time, and 32,000 pair
FEs. Robust standard errors in parentheses. Standard errors clustered by exporter, importer, and year in curly
brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗ p < .01. See text for further details.
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Table 2: PPML with Missings as Zero Trade Flows
All CUs Disagg. EMU Disagg. CUs

(1) (2) (3)

All CUs 0.153
(0.010)∗∗∗
{0.083}∗

EMU 0.0521 0.0489
(0.010)∗∗∗ (0.010)∗∗∗
{0.095} {0.095}

All Non-EMU CUs 0.728
(0.026)∗∗∗
{0.180}∗∗∗

CFA Franc Zone -0.126
(0.100)
{0.354}

East Caribbean CU -0.877
(0.083)∗∗∗
{0.296}∗∗∗

Aussie $ 0.384
(0.119)∗∗∗
{0.226}∗

British £ 1.060
(0.035)∗∗∗
{0.239}∗∗∗

French Franc 2.096
(0.063)∗∗∗
{0.308}∗∗∗

Indian Rupee 0.170
(0.147)
{0.304}

US $ 0.0183
(0.022)
{0.051}

Other CUs 0.766
(0.053)∗∗∗
{0.250}∗∗∗

RTAs 0.159 0.160 0.159
(0.009)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗
{0.077}∗∗ {0.077}∗∗ {0.076}∗∗

CurCol 0.827 0.630 0.387
(0.064)∗∗∗ (0.055)∗∗∗ (0.047)∗∗∗
{0.291}∗∗∗ {0.257}∗∗ {0.156}∗∗

N 1,610,165 1,610,165 1,610,165
# of clusters

exporters 213 213 213
importers 213 213 213
years 66 66 66

Pseudo-R2 0.986 0.987 0.987
Park-Test (p-value) <0.001 <0.001 <0.001

Notes: This table reproduces the results from Table 1 after treating
all missing observations in the sample as zeroes. Robust standard
errors in parentheses. Standard errors clustered by exporter, im-
porter, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗
p < .01. See text for further details.

27



Table 3: PPML Estimation of Different Subsamples
1948-2013 1985-2013 1995-2013 1948-2005 1985-2005 1995-2005

All countries

EMU 0.030 0.006 0.010 -0.055 -0.063 -0.052
(0.010)∗∗∗ (0.010) (0.013) (0.013)∗∗∗ (0.010)∗∗∗ (0.011)∗∗∗
{0.092} {0.058} {0.038} {0.082} {0.050} {0.034}

All Non-EMU CUs 0.700 0.084 0.052 0.685 -0.002 0.009
(0.025)∗∗∗ (0.027)∗∗∗ (0.031)∗ (0.025)∗∗∗ (0.030) (0.035)
{0.172}∗∗∗ {0.073} {0.087} {0.156}∗∗∗ {0.056} {0.072}

Industrial countries plus present/future EU

EMU -0.138 -0.055 -0.009 -0.200 -0.122 -0.075
(0.012)∗∗∗ (0.011)∗∗∗ (0.014) (0.017)∗∗∗ (0.012)∗∗∗ (0.012)∗∗∗
{0.081}∗ {0.055} {0.037} {0.080}∗∗ {0.046}∗∗∗ {0.034}∗∗

All Non-EMU CUs 1.159 -0.188 0.007 1.066 -0.050 0.018
(0.043)∗∗∗ (0.147) (0.268) (0.041)∗∗∗ (0.145) (0.172)
{0.270}∗∗∗ {0.366} {0.160} {0.232}∗∗∗ {0.282} {0.095}

Upper income (GDP p/c ≥ $ 12,736)

EMU -0.076 -0.027 -0.002 -0.134 -0.089 -0.063
(0.012)∗∗∗ (0.011)∗∗ (0.015) (0.015)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗
{0.073} {0.052} {0.037} {0.066}∗∗ {0.043}∗∗ {0.032}∗∗

All Non-EMU CUs 0.762 0.743
(0.130)∗∗∗ (0.107)∗∗∗
{0.232}∗∗∗ {0.194}∗∗∗

Rich Big (GDP≥$ 10bn, GDP p/c≥$ 10k)

EMU -0.055 -0.025 -0.004 -0.108 -0.088 -0.073
(0.012)∗∗∗ (0.011)∗∗ (0.015) (0.015)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗
{0.077} {0.053} {0.038} {0.073} {0.043}∗∗ {0.032}∗∗

All Non-EMU CUs 1.312 1.223
(0.059)∗∗∗ (0.055)∗∗∗
{0.321}∗∗∗ {0.256}∗∗∗

OECD

EMU -0.103 -0.047 -0.027 -0.140 -0.092 -0.069
(0.012)∗∗∗ (0.012)∗∗∗ (0.016)∗ (0.016)∗∗∗ (0.013)∗∗∗ (0.013)∗∗∗
{0.071} {0.054} {0.040} {0.067}∗∗ {0.042}∗∗ {0.032}∗∗

All Non-EMU CUs 1.214 1.171
(0.062)∗∗∗ (0.370)∗∗∗
{0.439}∗∗∗ {0.365}∗∗∗

Present/future EU

EMU -0.305 -0.068 0.021 -0.448 -0.192 -0.060
(0.017)∗∗∗ (0.014)∗∗∗ (0.017) (0.026)∗∗∗ (0.018)∗∗∗ (0.017)∗∗∗
{0.099}∗∗∗ {0.055} {0.041} {0.124}∗∗∗ {0.084}∗∗ {0.063}

All Non-EMU CUs 1.157 1.131
(0.054)∗∗∗ (0.052)∗∗∗
{0.517}∗∗ {0.469}∗∗

Notes: This table reports robustness estimates of the findings of Specification (5) with respect to country
sample and period of investigation, as in Table 8 of Glick and Rose (2016). RTAs and CurCol are included
in the regressions, but their coefficient estimates are not shown for brevity. Robust standard errors in
parentheses. Standard errors clustered by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗
p < .05, ∗∗∗ p < .01. See text for further details.
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Table 4: PPML with Time Trends, Leads, and Lags
Intervals Trends Lags Leads

(1) (2) (3) (4)
EMU 0.022 -0.058 -0.056 0.020

(0.020) (0.023)∗∗ (0.025)∗∗ (0.028)
{0.091} {0.072} {0.070} {0.048}

All Non-EMU CUs 0.701 0.387 0.181 0.556
(0.050)∗∗∗ (0.050)∗∗∗ (0.071)∗∗ (0.067)∗∗∗
{0.176}∗∗∗ {0.133}∗∗∗ {0.080}∗∗ {0.164}∗∗∗

RTAs 0.178 0.125 0.077 0.216
(0.018)∗∗∗ (0.013)∗∗∗ (0.018)∗∗∗ (0.020)∗∗∗
{0.086}∗∗ {0.052}∗∗ {0.060} {0.083}∗∗∗

CurCol 0.619 0.347 -0.026 0.605
(0.117)∗∗∗ (0.096)∗∗∗ (0.108) (0.148)∗∗∗
{0.300}∗∗ {0.285} {0.134} {0.279}∗∗

EMUt−4 0.083
(0.026)∗∗∗
{0.035}∗∗

All Non-EMU CUst−4 0.488
(0.062)∗∗∗
{0.140}∗∗∗

RTAst−4 0.146
(0.017)∗∗∗
{0.063}∗∗

CurColt−4 0.674
(0.118)∗∗∗
{0.232}∗∗∗

EMUt+4 -0.031
(0.026)
{0.074}

All Non-EMU CUst+4 0.219
(0.076)∗∗∗
{0.126}∗

RTAst+4 0.019
(0.021)
{0.060}

CurColt+4 -0.040
(0.144)
{0.173}

N 221,170 221,170 217,462 196,559
# of clusters

exporters 212 212 212 211
importers 212 212 212 211
years 17 17 16 16

Pseudo-R2 0.987 0.995 0.987 0.986
Park-Test (p-value) <0.001 <0.001 <0.001 <0.001
Notes: Column (1) of this table reproduces the results of column (5) of Table
1 but using the data in four year intervals. In addition, we add bilateral
linear time trend in column (2) and lags and leads in columns (3) and (4),
respectively. Robust standard errors in parentheses. Standard errors clustered
by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗
p < .01. See text for further details.
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Figure 1: Visualizing Heteroscedesticity in the Data: OLS Residuals vs. Predicted Log Trade
Flows, Binned by Size.
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Figure 2: Comparing OLS and PPML Results Across Different Country Samples (with 90%
and 95% multi-way clustered confidence bounds).
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Figure 3: Density Plots of Expected Log Trade Values, by Subsample.

32



-.5
0

.5
1

EM
U

 c
oe

ff.

0 50 100 150
Rank of countries according to size (1 is largest)

Linear Model PPML
With 95% confidence interval bands:
   - light gray bracketed by solid lines: clustered by exporter, importer, and year.
   - white bracketed by dashed lines: robust standard errors.
Country 1 is EU countries, country 157 is group of 31 countries without GDP data.

Figure 4: The Effect of Varying the Reference Group of non-EMU countries on EMU Coef-
ficient Estimates

33



Online Appendix for
“The Currency Union Effect: A PPML Re-assessment with

High-Dimensional Fixed Effects”

This Online Appendix elaborates on several important considerations such as how to obtain
multi-way clustered standard errors and how to verify before estimation that valid estimates
do indeed exist. It is in part intended to serve as additional technical documentation for
interested readers seeking to work with or extend the machinery used in ppml_panel_sg or
implement the proposed procedure in other software packages such as Matlab or R.30 All
procedures described here can be verified to reproduce results produced by other widely-used
routines. See the supporting material included with Zylkin (2017) for examples. Further,
we provide some additional results and robustness checks.

Iteratively re-weighted least squares algorithm. The IRLS version of the algorithm
is analogous to typical IRLS estimation in that it repeatedly utilizes weighted least squares
estimation (of a particular form specific to the estimator being used), which is continuously
updated as new estimates are produced, until both weights and estimates eventually con-
verge. An IRLS approach is thus easily embedded within the broad approach described in
the paper.

For IRLS estimation of a PPML model, it is necessary to first define an adjusted depen-
dent variable—call it X̃ijt—which is given by:

X̃ijt = Xijt − X̂ijt

X̂ijt

+ b̂′wijt.

For PPML, the relevant weighting matrix for the estimation is simply given by the conditional
mean X̂ijt. Thus, given X̂ijt and X̃ijt, an updated value for b̂ can be simply computed as:

b̂ =
[
W′X̂W

]−1
W′X̂X̃,

where X̂ is a diagonal weighting matrix with elements X̂ijt on its main diagonal and W is
the matrix of main covariates wijt. As in a more-typical IRLS loop, the weighting matrix
is updated repeatedly as each new iteration of b̂ implies a new conditional mean.31 What
must be added here are the intermediate steps needed to compute Ψ, Φ, and D, which follow
from (4b)-(4d). Iterating repeatedly on these objects, along with b̂, will eventually converge
to the correct conditional mean, weighting matrix, and PPML estimates for b̂. Since the
algorithm requires repeated iteration anyway, the IRLS method is always the most efficient

30We use Stata because it is the most widely used software by trade economists running gravity regressions.
However, the procedure described here can be easily implemented in other software packages as well.

31For clarity, X̃ijt is derived from a first-order Taylor approximation of the PPML FOC for b̂ around
b̂0, where b̂0 denotes the current guess for b̂. The use of X̂ as a weighting matrix also follows from this
approximation. For a reference, see Nelder and Wedderburn (1972).
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approach versus solving the first-order condition for b̂ exactly each time through the loop.32

Three-way within transformation. A useful prior for the rest of these notes is the no-
tion of a three-way “within-transformation”, generalizing the two-way procedures of Abowd,
Creecy, and Kramarz (2002) and Guimarães and Portugal (2010) and as may be applied via
the hdfe algorithm of Correia (2016).

Let each of the “main” (non-fixed effect) regressors of the vector wijt on the right hand
side be denoted by wkijt, with superscript k indexing the kth regressor. The idea is to
(iteratively) regress each wkijt on the complete set of fixed effects. Doing so results in a new
set of “partialed-out” (or “within-transformed”) versions of wkijt, which have been removed
of any partial correlation with the set of fixed effects. For the current three-way HDFE
context—with it, jt, and ij fixed effects—the needed within-transformation for each wkijt is
given by the following system of equations:∑

j

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀i, t, (A1a)

∑
i

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀j, t, (A1b)

∑
t

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀i, j, (A1c)

where (A1a)-(A1c) are derived from the first-order conditions from an OLS regression of wk
on a set of fixed effects {λ̃kit, ψ̃kit, µ̃kij}. Either by using “zig-zag” iteration methods or via the
more sophisticated algorithm of Correia (2016), this system is easily solved even for a large
number of fixed effects. The resulting, now-transformed regressors, which we will denote as
w̃k, are given by:

w̃kijt = wkijt − λ̃kit − ψ̃kjt − µ̃kij.

Variations of this within-transformation procedure will come into play in the discussion that
follows of how we construct standard errors as well as how we implement the “check for
existence” recommended by Santos Silva and Tenreyro (2010). Thus, these basic mechanics
will be helpful to keep in mind.

Standard errors. The construction of standard errors largely follows the exposition in
the Appendix of Figueiredo, Guimarães, and Woodward (2015), which we extend to the case
of three-way HDFEs with multi-way clustering. Let ∑i,j,t denote a sum over all observations
and let xijt denote the vector of all covariates associated with observation ijt, including all
0/1 dummy variables associated with each fixed effect. The estimated “robust” variance-

32The adoption of IRLS in ppml_panel_sg was inspired by the use of a similar principle—albeit in an
altogether very different procedure—in the latest version of poi2hdfe, by Guimarães (2016).
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covariance (VCV) matrix for our PPML estimates that we need to construct is given by

V̂rob =
∑
i,j,t

X̂ijtxijtx′ijt

−1

︸ ︷︷ ︸
V̂

×

∑
i,j,t

(
Xijt − X̂ijt

)2
xijtx′ijt


︸ ︷︷ ︸

M

×

∑
i,j,t

X̂ijtxijtx′ijt

−1

︸ ︷︷ ︸
V̂

, (A2)

where V̂ is proportional to the usual (uncorrected) Poisson MLE VCV matrix and X̂ijt is the
conditional mean from our regression. The middle term, M, provides a heteroscedasticity
correction.

While we can compute the matrix ∑i,j,t X̂ijtxijtx′ijt, inversion of this matrix is potentially
infeasible due to the large dimension of xijt. The problem is simplified, however, by recog-
nizing we are only interested in the submatrix of V̂ that pertains to b̂, the coefficients for
our non-fixed effect regressors. Call this submatrix V̂∗. To obtain V̂∗, we make use of the
following two “tricks”: (i) the V̂ that appears in (A2) is proportional to the VCV matrix
that would be produced by any weighted least squares regression using xijt as covariates and√
X̂ijt as weights; (ii) By the Frish-Waugh-Lovell theorem, the dimensionality of an HDFE

linear regression can be easily reduced by first applying a within-transformation (a weighted
one in this case).

We thus proceed in two steps. First, using a weighted version of our within-transformation
procedure, we regress each weighted regressor

√
X̂ijtw

k
ijt on a set of exporter-time, importer-

time, and exporter-importer fixed effects, which themselves must also be weighted by
√
X̂ijt.

The system of equations associated with this operation may be written as∑
j

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀i, t, (A3a)

∑
i

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀j, t, (A3b)

∑
t

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀i, j, (A3c)

where {λ̃k∗it , ψ̃k∗it , µ̃k∗ij } are the fixed effects terms we now need to solve for. Despite the
presence of X̂ijt in (A3a)-(A3c), the basic principles and methods to solve are no different
than with (A1a)-(A1c).

The transformed regressors we need for our auxiliary regression—call these w̃k∗i —are
given by

w̃k∗ijt =
√
X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
.

With these residuals in hand, the second step is to now perform the following OLS regression:

Xijt =
∑
k

akw̃
k∗
ijt + ui. (A4)

The estimates obtained from this regression are irrelevant. The main point is that, after
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employing the two “tricks” mentioned above, the VCV matrix from (A4) will be equal to
s2 × V̂∗, where s2 is the usual mean squared error from the linear regression.

Finally, now that we have V̂∗, the full, heteroscedasticity-robust VCV matrix for our
main regressors can be computed as

V̂∗rob = V̂∗ ×M∗ × V̂∗,

where the middle term,

M∗ =

∑
i,j,t

(
Xijt − X̂ijt

)2

X̂ijt

w̃∗ijtw̃∗′ijt

 ,
must be adjusted to take into account the fact that each w̃k∗ijt is weighted by

√
X̂ijt.

Multi-way clustering. The multi-way clustered VCV matrix takes the form

V̂∗clus = V̂∗M∗
clusV̂∗,

where V̂∗ is calculated in the exact same way as described above. For the matrix M∗
clus, we

follow Cameron, Gelbach, and Miller (2011), taking into account that we are still dealing
only with a submatrix of the overall matrix V̂, and calculate it as follows:

M∗
clus =

∑
||r||=k,r∈R

(−1)k+1M̃∗
r,

with

M̃∗
r =

∑
l

∑
m

(
Xl − X̂l

)
√
X̂l

(
Xm − X̂m

)
√
X̂m

w̃∗l w̃∗′mIr(l,m) r ∈ R,

where the set R ≡ {r : rd ∈ {0, 1}, d = 1, 2, ..., D, r 6= 0}, where D is the number of
dimensions of clustering and the elements of R index whether two observations are joint
members of at least one cluster. l and m denote specific ijt-observations. Ir(l,m) takes the
value one if observations l and m are both members of all clusters for which rd = 1. ||r||
denotes the `1-norm of the vector r.

Check for existence. As illuminated in Santos Silva and Tenreyro (2010), depending
on the configuration of the data, estimates from Poisson regressions may not actually exist.
Specifically, if two or more regressors are perfectly collinear over the subsample where the
dependent variable is non-zero, researchers are advised to carefully investigate each “impli-
cated” regressor to see if it can be included in their model. Otherwise, estimation routines
may result in spurious estimates, or even no estimates at all.33

33Note this is a different issue altogether than the standard issue of “perfect collinearity” and can be
significantly more difficult to detect. See Santos Silva and Tenreyro (2010) for a simple example of a model
with non-collinear regressors that does not have a solution.
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With multiple high-dimensional fixed effects, implementing the checks favoured by San-
tos Silva and Tenreyro (2010) may seem a daunting task, since collinearity checks across all
the different fixed effects to determine whether one or more are “implicated” may be com-
putationally expensive and/or conceptually difficult, especially when there are more than
two HDFEs. In addition, it is also necessary to check whether each individual regressor is
collinear over Xijt > 0 with the complete set of fixed effects, as well as whether any subset
of fixed effect and non-fixed effect regressors are collinear over Xijt > 0.

Fortunately, however, it turns out these issues are quickly and easily resolved by (i)
applying the within-transformation technique described above and (ii) recognizing that fixed
effects themselves only present an issue under easily-identifiable circumstances. To see this,
let “w̃kijt|X>0” denote the within-transformed version of each non-fixed effect regressor wk after
performing a within-transformation (only this time restricted to the subsample Xijt > 0).
After applying the within-transformation, these w̃kijt|X>0’s now only contain the residual
variation in each wkijt overXijt > 0 that is uncorrelated with the set of fixed effects. Thus, any
individual w̃kijt|X>0 that is uniformly zero should be considered “implicated”, since this only
occurs if wkijt is perfectly collinear with the set of fixed effects over Xijt > 0. Furthermore, it
is now a simple matter to apply a standard collinearity check among the remaining w̃kijt|X>0
to test for joint collinearity over Xijt > 0, taking into account all possible correlations with
the set of fixed effects.

That still leaves the matter of collinearity among the potentially very many fixed effects,
which may seem the most difficult step of all. However, Santos Silva and Tenreyro (2010)
also clarify that it should always be possible to include any regressor that has “reasonable
overlap” in the values that it takes over both the Xijt > 0 and Xijt = 0 samples. While there
is no hard-and-fast rule that may be applied to determine how much overlap is “reasonable”,
the condition they include with their ppml command is to check whether the mean value
of each wkijt over Xijt > 0 lies between the maximum and minimum values it takes over
Xijt = 0. Setting aside the more general (and comparably benign) issue of collinearity over
all Xijt, the only situation where any of our fixed effects would fail this condition would be
if a country did not engage in exporting or importing in a given year or if a pair of countries
never trades during the sample.34 Thus, ppml_panel_sg drops all observations for pairs
of countries who never trade, exporters who do not export anything in a given year, and
importers who do not import anything in the given year.35

Time trends. For time trends, let αij be the time trend coefficient and let t = 0, 1, 2, 3...
34When multiple fixed effects are collinear over the whole sample (as is always the case in this context),

these manifest as redundant FOC’s that do not affect the existence or uniqueness of a solution for b̂. Thus,
even though one might construct examples where one or more of the fixed effect dummies do not take on both
0 and 1 over each subsample, these scenarios can always be resolved by accounting for general collinearity.

35Ultimately, whether or not these observations are dropped or kept does not affect much. What standard
Stata commands will do is try to force the conditional mean for these observations to zero, by (wrongly)
estimating large, negative values for their associated fixed effects. Stata users should be reassured that,
despite this oddity, other estimates are usually fine so long as the main set of non-fixed effect regressors
meets the conditions described above.
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be the time trend itself. The estimating equation is now given by:

Xijt = exp (λit + ψjt + µij + αijt+ b′wijt) + νijt. (A5)

The PPML first-order condition for αij is∑
t

(
Xijt − X̂ijt

)
t = 0,

which again amounts to a summation of actual and fitted flows, only this time multiplied by
the trend at time t (which we are here taking to be one and the same).

Now suppose we have an initial guess value α0
ij for the time trend and we want to obtain

the next value in a converging sequence α1
ij. To obtain α1

ij we may write:
∑
t

(
Xijt − X̂0

ijte
dαijt

)
t = 0, (A6)

where dαij = α1
ij−α0

ij is the change in αij from one iteration to another and X̂0
ijt are current

fitted values. The idea is that when the αij’s converge, dαij = 0 implies that the first-order
condition is satisfied. We want to obtain a new value for dαij based on (A6) that will allow
us to update α1

ij = α0
ij + dαij, but unfortunately (A6) is nonlinear in dαij and cannot be

solved analytically. Thus, we instead derive a first-order Taylor Series expansion around
dαij = 0: ∑

t

(
Xijt − X̂0

ijt

)
t− dαij

∑
t

X̂0
ijtt

2 = 0, (A7)

since f ′(0) in this case is −∑ X̂0
ijtt

2. We then solve (A7) to obtain dαij, update α1
ij =

α0
ij + dαij, iterate on all other first-order conditions, and repeat until convergence. The

system of equations we now need to solve to obtain standard errors is:∑
j

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij − α̃k∗ij t

)
= 0 ∀i, t, (A8a)

∑
i

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij − α̃k∗ij t

)
= 0 ∀j, t, (A8b)

∑
t

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij − α̃k∗ij t

)
= 0 ∀i, j, (A8c)∑

t

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij − α̃k∗ij t

)
t = 0 ∀i, j, (A8d)

which is again our weighted within-transformation exercise from before only with the last
set of equations representing the first-order conditions from a linear time trend.
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Table A2: OLS Estimation of Different Subsamples
1948-2013 1985-2013 1995-2013 1948-2005 1985-2005 1995-2005

All countries

EMU 0.429 0.444 0.476 0.172 0.176 0.177
(0.021)∗∗∗ (0.022)∗∗∗ (0.028)∗∗∗ (0.032)∗∗∗ (0.030)∗∗∗ (0.037)∗∗∗
{0.149}∗∗∗ {0.135}∗∗∗ {0.121}∗∗∗ {0.158} {0.140} {0.120}

All Non-EMU CUs 0.298 0.235 0.301 0.290 0.076 0.167
(0.025)∗∗∗ (0.088)∗∗∗ (0.132)∗∗ (0.026)∗∗∗ (0.107) (0.167)
{0.097}∗∗∗ {0.183} {0.224} {0.091}∗∗∗ {0.170} {0.209}

Industrial countries plus present/future EU

EMU -0.010 -0.052 0.043 -0.088 -0.158 -0.074
(0.021) (0.022)∗∗ (0.025)∗ (0.032)∗∗∗ (0.031)∗∗∗ (0.036)∗∗
{0.098} {0.074} {0.042} {0.107} {0.095} {0.068}

All Non-EMU CUs 0.537 -0.151 -0.444 0.532 0.300 0.059
(0.049)∗∗∗ (0.250) (0.329) (0.049)∗∗∗ (0.275) (0.302)
{0.196}∗∗∗ {0.732} {0.460} {0.181}∗∗∗ {0.644} {0.440}

Upper income (GDP p/c ≥ $ 12,736)

EMU 0.107 0.138 0.163 -0.017 -0.007 -0.085
(0.026)∗∗∗ (0.027)∗∗∗ (0.033)∗∗∗ (0.037) (0.035) (0.041)∗∗
{0.103} {0.094} {0.099} {0.123} {0.104} {0.108}

All Non-EMU CUs 0.456 0.378
(0.138)∗∗∗ (0.123)∗∗∗
{0.350} {0.277}

Rich Big (GDP≥$ 10bn, GDP p/c≥$ 10k)

EMU 0.109 0.098 0.094 0.051 0.016 -0.066
(0.023)∗∗∗ (0.024)∗∗∗ (0.029)∗∗∗ (0.032) (0.030) (0.032)∗∗
{0.093} {0.078} {0.081} {0.117} {0.088} {0.090}

All Non-EMU CUs 1.041 0.990
(0.100)∗∗∗ (0.093)∗∗∗
{0.263}∗∗∗ {0.239}∗∗∗

OECD

EMU 0.058 -0.001 -0.027 0.035 -0.038 -0.077
(0.017)∗∗∗ (0.015) (0.019) (0.023) (0.018)∗∗ (0.018)∗∗∗
{0.093} {0.053} {0.032} {0.086} {0.048} {0.039}∗

All Non-EMU CUs 0.991 0.947
(0.129)∗∗∗ (0.120)∗∗∗
{0.664} {0.615}

Present/future EU

EMU -0.267 -0.217 -0.037 -0.312 -0.289 -0.099
(0.024)∗∗∗ (0.023)∗∗∗ (0.024) (0.036)∗∗∗ (0.032)∗∗∗ (0.029)∗∗∗
{0.112}∗∗ {0.096}∗∗ {0.046} {0.123}∗∗ {0.125}∗∗ {0.078}

All Non-EMU CUs 0.814 0.736
(0.065)∗∗∗ (0.065)∗∗∗
{0.417}∗ {0.407}∗

Notes: This table reports estimates obtained from linear specifications that correspond to the PPML
estimates from Table 3 of the main text. RTAs and CurCol are included in the regressions, but their
coefficient estimates are not shown for brevity. Robust standard errors in parentheses. Standard errors
clustered by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗ p < .01. See
text for further details.
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Table A3: OLS with Time Trends, Leads, and Lags
Intervals Trends Lags Leads

(1) (2) (3) (4)
EMU 0.431 0.361 0.225 0.055

(0.042)∗∗∗ (0.047)∗∗∗ (0.057)∗∗∗ (0.073)
{0.169}∗∗ {0.128}∗∗ {0.148} {0.141}

All Non-EMU CUs 0.348 0.076 0.238 0.275
(0.051)∗∗∗ (0.065) (0.081)∗∗∗ (0.073)∗∗∗
{0.106}∗∗∗ {0.116} {0.087}∗∗ {0.098}∗∗

RTAs 0.414 0.053 0.207 0.325
(0.019)∗∗∗ (0.022)∗∗ (0.025)∗∗∗ (0.028)∗∗∗
{0.084}∗∗∗ {0.067} {0.109}∗ {0.115}∗∗

CurCol 0.321 -0.015 -0.076 0.341
(0.069)∗∗∗ (0.074) (0.101) (0.103)∗∗∗
{0.154}∗ {0.135} {0.132} {0.111}∗∗∗

EMUt−4 0.141
(0.068)∗∗
{0.105}

All Non-EMU CUst−4 0.075
(0.073)
{0.124}

RTAst−4 0.358
(0.027)∗∗∗
{0.103}∗∗∗

CurColt−4 0.358
(0.089)∗∗∗
{0.119}∗∗∗

EMUt+4 0.280
(0.063)∗∗∗
{0.137}∗

All Non-EMU CUst+4 0.127
(0.082)
{0.114}

RTAst+4 0.183
(0.026)∗∗∗
{0.084}∗∗

CurColt+4 -0.136
(0.117)
{0.080}

N 221,170 221,170 217,462 196,559
# of clusters

exporters 212 212 212 211
importers 212 212 212 211
years 17 17 16 16

R2 0.864 0.914 0.865 0.866
Notes: Column (1) of this table reproduces the results of column (2) of Table
1 but using the data in four year intervals. In addition, we add bilateral
linear time trend in column (2) and lags and leads in columns (3) and (4),
respectively. Robust standard errors in parentheses. Standard errors clustered
by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗
p < .01. See text for further details.
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