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ABSTRACT: Reweighting is a popular statistical technique to deal with inference in presence of a non-

random sample. In the literature, various reweighting estimators have been proposed. This paper presents the 

user-written STATA command treatrew implementing the reweighting on propensity score estimator as 

proposed by Rosenbaum and Rubin (1983) in their seminal article, where parameters’ standard errors can be 

obtained either analytically or via bootstrapping. Since an implementation in STATA of this estimator with 

analytic standard errors was still missing, this paper (and the ADO-file and HELP-file accompanying it) aims 

at filling this gap by providing the community with an easy-to-use implementation of the reweighting on 

propensity score method, as a valuable tool for estimating treatment effects under selection on observables. 
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1. Introduction 

treatrew is a STATA routine for estimating Average Treatment Effects by reweighting on propensity 

score.  Depending on the model specified (probit or logit), treatrew provides consistent estimation of 

Average Treatment Effects under the hypothesis of “selection on observables”. Conditional on a pre-

specified set of observable exogenous variables x – thought of as those driving the non-random assignment 

to treatment – treatrew estimates the Average Treatment Effect (ATE), the Average Treatment Effect on 

Treated (ATET) and the Average Treatment Effect on Non-Treated (ATENT), as well as these parameters 

conditional on the observable factors x (i.e., ATE(x), ATET(x) and ATENT(x)).   

In the literature, a plethora of reweighting estimators have been proposed. This paper presents the 

user-written STATA command treatrew implementing the reweighting on propensity score estimator as 

proposed by Rosenbaum and Rubin (1983) in their seminal article, where parameters’ standard errors can be 

obtained either analytically (using Wooldridge, 2010, p. 920-930) or via bootstrapping. The command 

treatrew assumes that the propensity score specified by the user is correct. Thus, it is severely sensitive 

to propensity score misspecification. 

The paper is organized as follows: section 2 provides the statistical description of the reweighting on 

propensity score estimator; section 3 provides the formulas for calculating the causal parameters and their 

standard errors; section 4 presents the syntax of treatrew (i.e., its STATA help-file), and an application to 

real data; section 5 concludes the paper. 

 

2. The reweighting estimator of treatment effects: a brief overview 

Reweighting is a valuable approach to estimate (binary) treatment effects in a non-experimental statistical 

setting, when units’ non-random assignment to treatment is due to selection on observables. The idea behind 

the reweighting procedure is quite straightforward: when the treatment is not randomly assigned, we expect 

that the treated and untreated units present very different distributions of their observable characteristics. 

This may happen either because of units’ self-selection into the experiment (units may ponder the net cost-

benefit gain of participating or not), or because of the selection process operated by an external entity (such 

as, for instance, a public agency managing a subsidization program whose explicit objective is that of 

selecting beneficiaries with peculiar characteristics to maximize the policy effect). Many examples can be 

drawn both from social and epidemiological statistical settings. 

If this is the case, the distribution of the variables feeding into x could be strongly unbalanced. To 

establish again a balance in these distributions, a suitable way could be that of “reweighting” the 

observations using their “probability of becoming treated”, that is, according to their propensity score. A 

possible reweighting estimation protocol is as follows: 

 

1. estimate the propensity score (based on x) by a Logit or a Probit getting the predicated probability pi ; 

2. build weights as 1/pi for the treated observations, and 1/(1-pi) for the untreated observations; 

3. calculate the ATE simply by a comparison of the weighted means of the two groups (for instance, by a 

weighted regression).  

 

This particular weighting scheme is based on the inverse probability regression (Robins et al., 2000; Brunell 

and Dinardo, 2004) and the intuitive idea is that of penalizing (advantaging) treated units with higher (lower) 
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probability to be treated, and advantaging (penalizing) untreated units with higher (lower) probability to be 

treated, thus rendering the two groups as more similar as possible. In other words, for each observation the 

weight wipes out a component induced by the extent of the non-random assignment to the program (a 

confounding element).  

Various alternative weighting schemes have been proposed in the literature
1
 and some authors have 

shown as the various Matching methods can be also seen as specific reweighting estimators (Lunceford and 

Davidian, 2004; Morgan and Harding, 2006). As in the case of Matching, these estimators have different 

properties but the main limits reside in the specification of the propensity score, as measurement errors in 

this specification could produce severe bias. In what follows we focus on reweighting on propensity-score 

inverse probability as proposed by Rosenbaum and Rubin (1983) in their seminal paper. In this case, we start 

by the following assumptions about the data generating process (DGP)
2
: 

 

i. y1 = g0(x)  + ε0  ,   E(ε0)=0 

ii. y0 = g1(x)  + ε1  ,   E(ε1) =0 

iii. y = y1  + y0 (1-w) 

iv. Conditional Mean Independence (CMI) holds, so that: 

E(y1| w, x) = E(y1| x)   and   E(y0| w, x) = E(y0| x) 

v. x exogenous, 

 

where y1 and y0 is the unit’s outcome when it is treated and untreated respectively;  g1(x)  and  g0(x) is the 

unit’s reaction function to the confounder x when the unit is treated and untreated respectively; ε0 and ε1  are 

two errors with unconditional zero mean; x is a set of observable exogenous confounding variables assumed 

to drive the non-random assignment into treatment. Very concisely, the CMI assumption states that it is 

sufficient to control only for x in order to restore random assignment conditions. We now prove that, when 

assumptions i-v hold, then: 

 

[ ( )]
ATE = E

( )[1 ( )]

[ ( )]
ATET = E

( 1)[1 ( )]

[ ( )]
ATENT = E

( 0) ( )]

 
 

 

 
 

  

 
 

 

w p y

p p

w p y

p w p

w p y

p w p

x

x x

x

x

x

x

 

 

To this purpose, observe first that:  wy = w[y1  + y0 (1-w)] = wy1 + wy0 - w
2
y0 = wy1 , since w

2
=w.  

 

                                                      
1
 Another possible weighting scheme could that of assuming pi /(1-pi)  for the untreated units and 1 for the treated ones 

(Austin, 2007) 

2
 As reminder, we consider the following versions of the Low of Iterated Expectations: LIE 1: Ey(y) = y  = Ex[Ey (y|x)]; 

LIE 2: Ey(y| x)= 2(x)= Ez [Ey (y |x, z) | x] = Ez [1 (x, z) | x]; LIE 3: E(h) = p1 ∙ E( h | x1) + p2 ∙ E( h | x2) + … + pM ∙ E( h | 

xM).        
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Therefore: 

 

 

LIE2 CMI
1 1 1

1 1 1
1

1
1

E( | , )
E | E |     E E | , | E |

( ) ( ) ( ) ( )

E( | ) ( ) ( )
E | E | ( ) E | E |

( ) ( ) ( ) ( )

( )
( ) ( )

( )

= =
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w

p p p p

w y wg w g
g w

p p p p

g
p g

p

x
x x x x x

x x x x

x x x
x x x x x

x x x x

x
x x

x

  (1) 

 

because: E(w | x) = p(x). Similarly, we can show that: 

 

0

(1 )
E | ( )

[1 ( )]

 
  

w y
g

p
x x

x
      (2) 

 

Combining (1)  and (2) we have that: 

 

1 0

(1 ) [ ( )]
ATE( )= ( ) ( ) E | E | E |

( ) [1 ( )] ( )[1 ( )]

      
              

wy w y w p y
g g

p p p p

x
x x x x x x

x x x x
 

 

provided that 0 < p(x) < 1. To get the ATE, it is sufficient to take the expectation on x: 

 

[ ( )] [ ( )]
ATE=E {ATE( )}=E E | E

( )[1 ( )] ( )[1 ( )]

    
       

w p y w p y

p p p p
x x

x x
x x

x x x x
 

 

It is interesting to show that the previous formula for ATE is equal to the famous Horvitz-Thompson 

estimator of the population mean. Indeed: 

 

[ ( )] ( ) [ ( ) ( ) ]
ATE E E

( )[1 ( )] ( )[1 ( )]

( ) [1 ( )] ( )
E

( )[1 ( )] ( )[1 ( )] ( )[1 ( )]

=E E
1 ( ) ( ) 1 ( ) 1 ( ) ( )
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x x x x x
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Summing-up: 

(1 )
ATE E E

( ) 1 ( )

   
       

wy w y

p px x
                     (3) 

 

whose sample equivalent is: 

1 1

1 (1 )ˆATE
( ) 1 ( ) 


 


 

N N
i i i i

i ii i

w y w y

N p px x
 

 

An example can provide the poof. Suppose to get a dataset {y, w, x} as in Table 1. 

 

Table 1. Dataset coming from a non-experimental statistical setting. 

id y w Inclusion probability 

1 y1 1 π1 = p1(x) 

2 y2 0 π2 = 1 - p2(x) 

3 y3 1 π3 = p3(x) 

4 y4 1 π4 = p4(x) 

5 y5 0 π5 = 1 - p5(x) 

 

If we define the inclusion probability of unit i into the sample S as:  

 

πi = Pr{i  => S} 

 

it is immediate to see that: 

 for treated units the inclusion probability is equal to the propensity score:  p(w=1 | x); 

 for untreated units the inclusion probability is equal to:  p(w=0 | x) = 1 - Pr(w=1 | x).  

 

Thus, by applying to this example the last formula for ATE, we get: 

 

1 3 4 2 5

1 3 4 2 5

1 3 4 2 5

1 3 4 2 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 1ˆATE
5 ( ) ( ) ( ) 5 1 ( ) 1 ( )

1

5 ( ) ( ) ( ) 1 ( ) 1 ( )

1

5 ( ) 1 ( ) ( ) ( ) 1 ( )

1

5     

   
        

    

 
      

  

 
      

  


    



y y y y y

p p p p p

y y y y y

p p p p p

y y y y y

p p p p p

y y y y y

x x x x x

x x x x x

x x x x x

5

1

1

5 


 


 i

i i

y
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Therefore, we have proved that: 

 

1

1ˆ ˆATE 


  
N

i
HT

i i

y

N
 

 

The Inverse Probability Reweighting estimation of ATE is thus equivalent to the Horvitz–Thompson 

estimator, due to Daniel G. Horvitz and Donovan J. Thompson in 1952. In sampling theory it is a method for 

estimating the total and mean of a super-population in a stratified sample. Inverse probability weighting is 

applied to account for “different proportions of observations within strata in a target population”. The 

Horvitz-Thompson estimator is frequently applied in survey analyses and can be used also to account for 

missing data.  

Similarly, we can also calculate the ATET by considering that: 

 

[w - p(x)] y = [w - p(x)] ∙ [y0  + w ∙ (y1 - y0)] = [w - p(x)] ∙ y0 + w ∙ [w - p(x)] ∙ (y1 - y0) = 

= [w - p(x)] ∙ y0 + w ∙ [1 - p(x)] ∙ (y1 - y0) ,  since w
2
=w. 

 

Thus, by dividing the previous expression by [1 - p(x)] : 

 

0
1 0

[ ( )] [ ( )]
( )

[1 ( )] [1 ( )]

 
  

 

w p y w p y
w y y

p p

x x

x x
               (4) 

 

Consider now the quantity 0[ ( )]w p yx in the RHS of (4). We have that: 

 

[w - p(x)] y0 = E{[w - p(x)] y0 | x} = E(E{[w - p(x)] y0 | x, w}| x) = E([w - p(x)] ∙ E{y0 | x, w}| x) = 

E([w - p(x)] ∙ E{y0 | x}| x) = E([w - p(x)] ∙ g0 (x) | x) = g0 (x) ∙ E([w - p(x)] | x) = g0 (x) ∙ [ E(w | x) -  

E(p(x)| x)] = g0 (x) ∙ [p(x) - p(x)] = 0. 

 

Taking relation (3), and applying the expectation conditional on x: 

 

   0
1 0 1 0

[ ( )] [ ( )]
E | E | E ( ) | E ( ) |

[1 ( )] [1 ( )]

    
       

    

w p y w p y
w y y w y y

p p

x x
x x x x

x x
 

 

since we proved that [w - p(x)] y0 is zero. By LIE 1, we can get that: 

 

 1 0 1 0

[ ( )] [ ( )]
E E | =E      

[1 ( )] [1 ( )]

E E ( ) | E{ ( )}

     
   

    
   

w p y w p y

p p
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that is: 

1 0

[ ( )]
E E{ ( )}     

[1 ( )]

 
  

 

w p y
w y y

p

x

x
 

 

From the LIE 3 we know that, if x is a generic discrete variable assuming values x = (x1, x2, … , xM) with 

probabilities p = (p1, p2, … , pM), then:  

 

E(h) = p1 ∙ E( h | x1) + p2 ∙ E( h | x2) + … + pM ∙ E( h | xM).  

 

Thus, by assuming h=w(y1-y0), we get that: 

 

E(h)=E[w(y1-y0)] = p(w=1) ∙ E[w(y1-y0) | w=1] + p(w=0) ∙ E[w(y1-y0) | w=0] =  

= p(w=1) ∙ E[(y1-y0) | w=1]  = p(w=1) ∙ ATET . 

 

It means that:  

1 0

[ ( )]
E E{ ( )} ( 1) ATET   

[1 ( )]

 
     

 

w p y
w y y p w

p

x

x
 

 

proving that: 

[ ( )]
ATET=E

( 1)[1 ( )]

 
 

  

w p y

p w p

x

x
      (5) 

 

Now, by remembering that ATE = p(w=1)∙ATET + p(w=0)∙ATENT, we have that: 

 

ATE ( 1)
ATENT= ATET =

( 0) ( 0)

1 [ ( )] [ ( )]
= E ( 1)

( 0) ( )[1 ( )] ( 1)[1 ( )]

1 [ ( )] [ ( )]
E
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E
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This implies, finally, that: 

[ ( )]
ATENT = E

( 0) ( )]

 
 

 

w p y

p w p

x

x
       (6) 

 

3. Sample estimation and standard errors for ATE, ATET and ATENT 

Assuming that the propensity score is correctly specified, we can estimate previous parameters simply by 

using the “sample equivalent” of the population parameters, that is:  

 

^

1

^

1

^

1

ˆ1 [ ( )]
ATE =

ˆ ˆ( )[1 ( )]

ˆ1 [ ( )]
ATET  =  

ˆ ˆ( 1)[1 ( )]

ˆ1 [ ( )]
ATENT  = 

ˆ ˆ( 0) ( )













 











N
i i i

i i i

N
i i i

i i

N
i i i i

i i

w p y

N p p

w p y

N p w p

w p y

N p w p

x

x x

x

x

x

x

 

 

Estimation follows in two steps: (i) estimate the propensity score p(xi) getting p  (xi); (ii) substitute p (xi) into 

the formulas to get the parameter. Observe that consistency is guaranteed by the fact that these estimators are 

M-estimators. How to get the standard errors for previous estimations? We can exploit some results from the 

case in which the first step is a ML-estimation and the second step is a M-estimation. In our case, the first 

step is a ML based on logit or probit and the second step is a standard M-estimator. For case like this, 

Wooldridge (2007; 2010, p. 922-924) has proposed a straightforward procedure to get standard errors, 

provided that the propensity score is correctly specified. In what follows, we set out the Wooldridge’s 

procedure and formulas for obtaining these (analytical) standard errors.  

 

(i) Standard Errors estimation for ATE 

First: define the estimated ML-score of the first step (Probit or Logit). It is, by definition equal to: 

 

ˆ ˆˆ ˆ[ ( , )]' [ ( , )]
ˆ ˆ ˆ( , , )

ˆ ˆˆ ˆ( , )[1 ( , )]

  
 



i i i

i i i

i i

p w p
w

p p

γ x γ x γ
d d x γ

x γ x γ
 

 

Observe that d is a row-vector of the R-1 parameters γ and is the gradient of  the function p(x, γ). 

Second: define the generic estimated summand of ATE as: 

 

ˆ[ ( )]ˆ
ˆ ˆ( )[1 ( )]






i i i
i

i i

w p y
k

p p

x

x x
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Third: calculate the OLS residuals from this regression: 

 

ˆ ˆ     on    (1, )   with  1,..., i ik i Nd  

 

and call them îe  (i = 1, ..., N). The asymptotic standard error for ATE is equal to: 

 

1/2
N

2

1

1
ˆ   

  

 
 
 

 i

i

e
N

N
 

 

and we can use it to test the significance of ATE. Of course, d will have a different expression according to 

the probability model considered. Here, we consider the logit and probit case. 

 

Case 1: Logit  

Suppose that the correct probability follows a logistic distribution. It means that: 

 

exp( )
( , ) ( )

1 exp( )
  



i
i i

i

p
x γ

x γ x γ
x γ

 

Thus, by simple algebra, we get that: 

 

1xR

ˆ ˆ( )  i i i iw pd x  

 

Case 2: Probit  

Suppose that the right probability follows a Normal distribution. It means that: 

 

( , ) ( )i ip x γ x γ  

 

Thus, by simple algebra, we get that: 

 

ˆ( , ) [ ( )]ˆ
( )[1 ( )]

  
 

 

i i i i
i

i i

wx γ x x γ
d

x γ x γ
 

 

Observe that one can add also functions of x to estimate previous formulas. This reduces the standard errors 

if these functions are partially correlated with k. 
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Finally, observe that the previous procedure produces standard errors that are lower than those produced by 

ignoring the first step (i.e., the propensity score estimation via ML). Indeed, the naïve standard error: 

 

1/ 2
N

2

1

1 ˆ ˆ ( ATE)  


 
 

 
 i

i

k
N

N
 

 

is higher than the one produced by the previous procedure. 

 
(ii) Standard error for ATET 

It follows a route similar to ATE. In fact, define: 

 

ˆ[ ( )]
ˆ

ˆ ˆ( 1)[1 ( )]




 

i i i
i

i

w p y
q

p w p

x

x
 

 

and calculate:  

 

ˆˆ ˆ = residuals form the regression of  "  on 1, "i ir q d  

 

Then, the asymptotic standard error for ATET is given by:  

 

1/ 2
N

1 2

1

1 ˆˆ ˆ[ ( 1)]  ( ATET)  



 
    

 
 i i

i

p w r w
N

N
 

 

(iii) Standard error for ATENT 

In this case, define: 

ˆ[ ( )]ˆ
ˆ ˆ( 0) ( )]






i i i i
i

i

w p y
b

p w p

x

x
 

 

and then calculate:  

 

ˆ ˆˆ  = residuals form the regression of  "  on 1, "i is b d  
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The asymptotic standard error for ATENT is: 

 

1/ 2
N

1 2

1

1 ˆˆ ˆ[ ( 0)]  ( (1 ) ATENT)  



 
     

 
 i i

i

p w s w
N

N
 

 

Previous standard errors are correct as soon as the probit or the logit are the correct probability rules in the 

DGP. If not, then a measurement error is present and previous estimation might be inconsistent. The 

literature has provided more flexible non-parametric estimation of previous standard errors, such as in 

Hirano, Imbens, and Ridder (2003) or in Li, Racine, and Wooldridge (2009). Under correct specification, a 

straightforward alternative is to use bootstrapping, where the binary response estimation and the averaging 

are included in each bootstrap iteration. 

 

4. The STATA routine treatrew: syntax and use 

treatrew estimates the previous parameters with either analytical or bootstrapped standard errors. The 

syntax is rather simple and follows the typical STATA command syntax. The help of the command is 

reported in Table 2. The user has to declare: (a) the outcome variable, i.e. the variable over which the 

treatment is expect to have an impact (outcome); (b) the binary treatment variable (treatment); (c) a set of 

confounding variables (varlist); and finally (d) a series of options. Two options are important: the option 

“model” sets the type of model, probit or logit, that has to be used in the estimation of the propensity score; 

the option “graphic” produces a chart where the distribution of ATE(x), ATET(x) and ATENT(x) are jointly 

reported.  

As e-class command, treatrew provides a ereturn list of objects (such as scalars and matrices) to 

be used in next elaborations. In particular, the values of ATE, ATET and ATENT are returned in the scalars 

e(ate), e(atet) and e(atent) and they can be used to get bootstrapped standard errors. Observe that, 

by default, treatrew provides analytical standard errors. 

To show a practical application of treatrew, we employ an instructional dataset called FERTIL2.DTA 

accompanying the manual "Introductory Econometrics: A Modern Approach", by Wooldridge (2000) 

collecting cross-sectional data on 4,361 women of childbearing age in Botswana. This dataset is freely 

downloadable at http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta. It contains 28 variables on 

various woman and family characteristics.  

Using FERTIL2.DTA, we are interested in evaluating the impact of the variable "educ7" (taking value 1 if a 

woman has more than or exactly seven years of education and 0 otherwise) on the number of family children 

("children"). Several conditioning (or confounding) observable factors are included in the dataset, such as: 

the age of the woman (age), whether or not the family owns a TV (tv), whether or not the woman lives in a 

city (urban), and so forth. In order to inquiry into the relation between education and fertility and according 

to Wooldridge (2002, example 18.3, p. 624) specification we estimate ATE, ATET and ATENT (as well as 

ATE(x), ATET(x) and ATENT(x)) by “reweighting” using treatrew. We also compare reweighting 

results with those from a regression analysis based on a random-coefficient specification with 

“heterogeneous reaction to confounders” (see the user-written STATA command ivtreatreg for an 

implementation of this method (Cerulli, 2012)), and the usual “Difference-In-Mean” (DIM) as benchmark. 

All the results are reported in Table 3. 

http://fmwww.bc.edu/ec-p/data/wooldridge/FERTIL2.dta
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Table 2. The treatrew help file. 

 

Title 

 

    treatrew  - Estimation of Average Treatment Effects by reweighting on propensity score 

 

 

Syntax 

 

    treatrew  outcome treatment [varlist] [if] [in] [weight], model(modeltype) [GRaphic conf(number) vce(robust)] 

 

        fweights, iweights, and pweights are allowed; see weight. 

 

 

 

Description 

 

    treatrew  estimates Average Treatment Effects by reweighting on propensity score.  Depending on the model 

    specified, treatrew  provides consistent estimation of Average Treatment Effects under the hypothesis of 

    "selection on observables".  Conditional on a pre-specified set of observable exogenous variables x - thought of 

    as those driving the non-random assignment to treatment - treatrew  estimates the Average Treatment Effect (ATE), 

    the Average Treatment Effect on Treated (ATET) and the Average Treatment Effect on Non-Treated (ATENT), as well 

    as the estimates of these parameters conditional on the observable factors x (i.e., ATE(x), ATET(x) and 

    ATENT(x)). Parameters standard errors are provided either analytically (following Wooldridge, 2010, p. 920-930) 

    and via bootstrapping.  treatrew  assumes that the propensity score specification is correct. 

 

       According to the syntax: 

 

    outcome: is the target variable over which measuring the impact of the treatment 

    treatment: is the binary treatment variable taking 1 for treated, and 0 for untreated units 

    varlist: is the set of pre-treatment (or observable confounding) variables 

 

      

Options 

     

    model(modeltype) specifies the model for estimating the propensity score, where modeltype must be one out of 

        these two:  "probit" or "logit". It is always required to specify one model. 

 

    graphic allows for a graphical representation of the density distributions of ATE(x), ATET(x) and ATENT(x). 
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    vce(robust) allows for robust regression standard errors in the probit or logit estimates. 

 

    conf(number) sets the confidence level of probit or logit estimates equal to the specified number.  The default 

        is number=95. 

 

  modeltype_options           description 

  -------------------------------------------------------------------------------------------------------------------- 

  probit                      The propensity score is estimated by a probit regression 

  logit                       The propensity score is estimated by a logit regression 

  -------------------------------------------------------------------------------------------------------------------- 

 

    treatrew  creates a number of variables: 

 

 

        ATE_x is an estimate of the idiosyncratic Average Treatment Effect. 

 

        ATET_x is an estimate of the idiosyncratic Average Treatment Effect on treated. 

 

        ATENT_x is an estimate of the idiosyncratic Average Treatment Effect on Non-Treated. 

 

 

    treatrew  returns the following scalars: 

 

        e(N) is the total number of (used) observations. 

 

        e(N1) is the number of (used) treated units. 

 

        e(N0) is the number of (used) untreated units. 

 

        e(ate) is the value of the Average Treatment Effect. 

 

        e(atet) is the value of the Average Treatment Effect on Treated. 

 

        e(atent) is the value of the Average Treatment Effect on Non-treated. 
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Results on the column DIM are obtained by typing: 

 
. xi: reg children educ7 

 

whereas, results on the column CF-OLS are obtained by typing: 

 
. xi: ivtreatreg children  educ7 age agesq evermarr urban electric tv ,  /// 

hetero(age agesq evermarr urban electric tv) model(cf-ols)   

 

*\ Bootstrapping std. err. for "atet" and "atent": 

. xi: bootstrap atet=r(atet) atent=r(atent), rep(200):                   /// 

ivtreatreg children  educ7 age agesq evermarr urban electric tv  ,       /// 

hetero(age agesq evermarr urban electric tv) model(cf-ols) 

 

Finally, results on the column REW are obtained by typing: 

 
. xi: treatrew children educ7 age agesq evermarr urban electric tv ,      /// 

model(probit)   

 

 

Table 3. Comparison of results among DIM, CF-OLS and REW 
 

  DIM CF-OLS REW 

ATE 

-1.77 *** -0.374 *** -0.434 *** 

0.062 0.051 0.068 

-28.46 -7.35 -6.34 

ATET 

  -0.255 *** -0.355 ** 

 

0.048 0.15 

  -5.37 -2.37 

ATENT 

  -0.523 *** -0.532 

 

0.075 0.19 *** 

  -7.00 -2.81 

Legend: b/se/t; DIM: Difference-in-Mean; CF-OLS: Control-function OLS; REW: Reweighting on propensity score. 

 

 

Unlike DIM, results from CF-OLS and REW are fairly comparable both in terms of coefficients’ size and 

significance: ATE, ATET and ATENT values obtained using reweighting on propensity score are just a little 

higher than those obtained by CF-OLS. It means that the linearity of the outcome equations assumed by the 

CF-OLS is an acceptable approximation. According to the value of ATET in the REW column of Table 3, an 

educated woman in Botswana would have been – ceteris paribus – significantly more fertile if she had been 

less educated. We can conclude that “education” has a negative impact on fertility, leading to have around 

0.5 children less. Observe that, if confounding variables are not considered as it happens using DIM, this 

negative effect would appear dramatically higher and around 1.77 children: the difference between 1.77 and 

0.5 (around 1.3) is an estimation of the bias induced by the presence of selection on observables. Finally, 

Figure 1 sets out the estimated kernel density for the distribution of ATE(x), ATET(x) and ATENT(x) when 

treatrew is used with the option “graphic”.   
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Figure 1. Estimation of the distribution of ATE(x), ATET(x) and ATENT(x) by reweighting  

on propensity score. 

 

5. Conclusion  

This paper provides a simple STATA routine, treatrew, for estimating average treatment effects by 

reweighting on propensity score as proposed by Rosenbaum and Rubin (1983). Although reweighting is a 

popular and long-standing statistical technique to deal with the bias induced by drawing inference in 

presence of a non-random sample, its implementation in STATA with parameters’ analytic standard errors 

(as proposed by Wooldridge, 2010, p. 920-930) was still missing. This routine fills this gap by providing an 

easy-to-use implementation of the reweighting method, thought of as a valuable tool for estimating causal 

effects under selection on observables. 
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