
The Stata Journal (yyyy) vv, Number ii, pp. 1–31

Robust Standard Errors for Panel Regressions
with Cross-Sectional Dependence

Daniel Hoechle
University of Basel

Abstract. In this paper I present a new Stata program, xtscc, which estimates
pooled OLS/WLS and fixed effects (within) regression models with Driscoll and
Kraay (Review of Economics and Statistics 80: 549-560) standard errors. By run-
ning Monte Carlo simulations, I compare the finite sample properties of the cross-
sectional dependence consistent Driscoll-Kraay estimator with the properties of
other, more commonly employed covariance matrix estimators that do not account
for cross-sectional dependence. The results indicate that Driscoll-Kraay standard
errors are well calibrated when cross-sectional dependence is present. However,
erroneously ignoring cross-sectional correlation in the estimation of panel models
can lead to severely biased statistical results. I illustrate the use of the xtscc

program by considering an application from empirical finance. Thereby, I also
propose a Hausman-type test for fixed-effects that is robust to very general forms
of cross-sectional and temporal dependence.

Keywords: First Draft, robust standard errors, nonparametric covariance estima-
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1 Introduction

In social sciences and particularly in economics it has become common to analyze large-
scale microeconometric panel datasets. Compared to purely cross-sectional data, panels
are attractive since they often contain far more information than single cross-sections
and thus allow for an increased precision in estimation. Unfortunately, however, actual
information of microeconometric panels is often overstated since microeconometric data
is likely to exhibit all sorts of cross-sectional and temporal dependencies. In the words
of Cameron and Trivedi (2005, p. 702) “NT correlated observations have less infor-
mation than NT independent observations”. Therefore, erroneously ignoring possible
correlation of regression disturbances over time and between subjects can lead to biased
statistical inference. To ensure validity of the statistical results, most recent studies
which include a regression on panel data therefore adjust the standard errors of the
coefficient estimates for possible dependence in the residuals. However, according to
Petersen (2007) a substantial fraction of recently published articles in leading finance
journals still fails to adjust the standard errors appropriately. Furthermore, while most
empirical studies now provide standard error estimates that are heteroscedasticity and
autocorrelation consistent, cross-sectional or “spatial” dependence is still largely ig-
nored.

However, assuming that the disturbances of a panel model are cross-sectionally in-
dependent is often inappropriate. While it might be difficult to convincingly argue why
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country or state level data should be spatially uncorrelated, numerous studies on social
learning, herd behavior, and neighborhood effects clearly indicate that microeconomet-
ric panel datasets are likely to exhibit complex patterns of mutual dependence between
the cross-sectional units (e.g. individuals or firms).1 Furthermore, because social norms
and psychological behavior patterns typically enter panel regressions as unobservable
common factors, complex forms of spatial and temporal dependence may even arise
when the cross-sectional units have been randomly and independently sampled.

Provided that the unobservable common factors are uncorrelated with the explana-
tory variables, the coefficient estimates from standard panel estimators2 are still con-
sistent (but inefficient). However, standard error estimates of commonly applied co-
variance matrix estimation techniques3 are biased and hence statistical inference that
is based on such standard errors is invalid. Fortunately, Driscoll and Kraay (1998) pro-
pose a nonparametric covariance matrix estimator which produces heteroscedasticity
consistent standard errors that are robust to very general forms of spatial and temporal
dependence.

Stata has a long tradition of providing the option to estimate standard errors that
are “robust” to certain violations of the underlying econometric model. It is the aim of
this paper to contribute to this tradition by providing a Stata implementation of Driscoll
and Kraay’s (1998) covariance matrix estimator for use with pooled OLS estimation and
fixed effects regression. In contrast to Driscoll and Kraay’s original contribution which
only considers balanced panels, I adjust their estimator for use with unbalanced panels
and use Monte Carlo simulations to investigate the adjusted estimator’s finite sample
performance in case of medium- and large-scale (microeconometric) panels. Consistent
with Driscoll and Kraay’s original finding for small balanced panels, the Monte Carlo
experiments reveal that erroneously ignoring spatial correlation in panel regressions typ-
ically leads to overly optimistic (anti-conservative) standard error estimates irrespective
of whether a panel is balanced or not. Although Driscoll and Kraay standard errors
tend also to be slightly optimistic, their small sample properties are significantly better
than those of the alternative covariance estimators when cross-sectional dependence is
present.

The rest of the paper is organized as follows. In the next section, I motivate why
Driscoll and Kraay’s covariance matrix estimator serves as a valuable supplement to
Stata’s existing capabilities. Section 3 describes the xtscc program which produces
Driscoll and Kraay standard errors for coefficients estimated by pooled OLS/WLS and
fixed effects (within) regression. Section 4 provides the formulas as they are implemented
in the xtscc program. In Section 5, I present the set-up and the results of Monte Carlo
experiments which compare the finite sample properties of the Driscoll-Kraay estimator
with those of other, more commonly employed covariance matrix estimation techniques
when the cross-sectional units are spatially dependent. Section 6 considers an empirical
example from financial economics and demonstrates how the xtscc program can be used

1. e.g. see Trueman (1994), Welch (2000), Feng and Seasholes (2004), and the survey article by
Hirshleifer and Teoh (2003).

2. e.g. fixed effects (FE) estimator, random effects (RE) estimator, or pooled OLS estimation
3. e.g. OLS, White, and Rogers or clustered standard errors
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in practice. Furthermore, by extending the line of arguments proposed by Wooldridge
(2002, p. 290) it is shown how the xtscc program can be applied to perform a Hausman
test for fixed effects that is robust to very general forms of cross-sectional and temporal
dependence. Section 7 concludes.

2 Motivation for the Driscoll-Kraay estimator

In order to ensure valid statistical inference when some of the underlying regression
model’s assumptions are violated, it is common to rely on “robust” standard errors.
Probably the most popular of these alternative covariance matrix estimators has been
developed by Huber (1967), Eicker (1967), and White (1980). Provided that the residu-
als are independently distributed, standard errors which are obtained by aid of this
estimator are consistent even if the residuals are heteroscedastic. In Stata 9, het-
eroscedasticity consistent or “White” standard errors are obtained by choosing option
vce(robust) which is available for most estimation commands.

Extending the work of White (1980, 1984) and Huber (1967), Arellano (1987), Froot
(1989) and Rogers (1993) show that it is possible to somewhat relax the assumption
of independently distributed residuals. Their generalized estimator produces consis-
tent standard errors if the residuals are correlated within but uncorrelated between
“clusters”. Stata’s estimation commands with option robust also contain a cluster()
option and it is this option which allows the computation of so-called Rogers or clustered
standard errors.4

Another approach to obtain heteroscedasticity and autocorrelation (up to some lag)
consistent standard errors was developed by Newey and West (1987). Their GMM
based covariance matrix estimator is an extension of White’s estimator as it can be
shown that the Newey-West estimator with lag length zero is identical to the White
estimator. Although Newey-West standard errors have initially been proposed for use
with time series data only, panel versions are available. In Stata, Newey-West standard
errors for panel datasets are obtained by choosing option force of the newey command.

While all these techniques of estimating the covariance matrix are robust to certain
violations of the regression model assumptions, they do not consider cross-sectional
correlation. However, due to social norms and psychological behavior patterns, spa-
tial dependence can be a problematic feature of any microeconometric panel dataset
even if the cross-sectional units (e.g. individuals or firms) have been randomly selected.
Therefore, assuming that the residuals of a panel model are correlated within but un-
correlated between groups of individuals often imposes an artificial and inappropriate
constraint on empirical models. In many cases it would be more natural to assume that
the residuals are correlated both within groups as well as between groups.

In an early attempt to account for heteroscedasticity as well as for temporal and
spatial dependence in the residuals of time-series cross-section models, Parks (1967)

4. Note that if the panel identifier (e.g. individuals, firms, or countries) is the cluster() variable,
then Rogers standard errors are heteroscedasticity and autocorrelation consistent.
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Table 1: Selection of Stata commands and options that produce robust standard error
estimates for linear panel models.

Command Option SE estimates are robust to dis-
turbances being

Notes

reg, xtreg robust heteroscedastic

reg, xtreg cluster() heteroscedastic and autocorre-
lated

xtregar autocorrelated with AR(1)1

newey heteroscedastic and autocorre-
lated of type MA(q)2

xtgls panels(),
corr()

heteroscedastic, contemporane-
ously cross-sectionally correlat-
ed, and autocorrelated of type
AR(1)

N < T required for fea-
sibility; tends to produce
optimistic SE estimates

xtpcse correla-

tion()

heteroscedastic, contemporane-
ously cross-sectionally correlat-
ed, and autocorrelated of type
AR(1)

large-scale panel regres-
sions with xtpcse take a
lot of time

xtscc heteroscedastic, autocorrelated
with MA(q), and cross-sectio-
nally dependent

1 AR(1) refers to first-order autoregression
2 MA(q) denotes autocorrelation of the moving average type with lag length q.

proposes a feasible generalized least squares (FGLS) based algorithm which has been
popularized by Kmenta (1986). Unfortunately, however, the Parks-Kmenta method
which is implemented in Stata’s xtgls command with option panels(correlated) is
typically inappropriate for use with medium- and large-scale microeconometric panels
due to at least two reasons. First, this method is infeasible if the panel’s time dimension
T is smaller than its cross-sectional dimension N which is almost always the case for
microeconometric panels.5 Second, Beck and Katz (1995) show that the Parks-Kmenta
method tends to produce unacceptably small standard error estimates.

To mitigate the problems of the Parks-Kmenta method, Beck and Katz (1995) sug-
gest to rely on OLS coefficient estimates with panel corrected standard errors (PCSE).
In Stata, pooled OLS regressions with panel corrected standard errors can be estimated
with the xtpcse command. Beck and Katz (1995) convincingly demonstrate that their

5. The reason for the Parks-Kmenta and other large T asymptotics based covariance matrix estimators
becoming infeasible when N gets large compared to T is due to the impossibility to obtain a nonsingular
estimate of the N × N matrix of cross-sectional covariances when T < N . See Beck and Katz (1995)
for details.
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large T asymptotics based standard errors which correct for contemporaneous corre-
lation between the subjects perform well in small panels. Nevertheless, it has to be
expected that the finite sample properties of the PCSE estimator are rather poor when
the panel’s cross-sectional dimension N is large compared to the time dimension T . The
reason for this is that Beck and Katz’s (1995) PCSE method estimates the full N × N
cross-sectional covariance matrix and this estimate will be rather imprecise if the ratio
T/N is small.

Therefore, when working with medium- and large-scale microeconometric panels it
seems tempting to implement parametric corrections for spatial dependence. However,
considering large N asymptotics, such corrections require strong assumptions about
their form because the number of cross-sectional correlations grows with rate N2 while
the number of observations only increases by rate N . In order to maintain the model’s
feasibility, empirical researchers therefore often presume that the cross-sectional corre-
lations are the same for every pair of cross-sectional units such that the introduction of
time dummies purges the spatial dependence. However, constraining the cross-sectional
correlation matrix is prone to misspecification and hence it is desirable to implement
nonparametric corrections for the cross-sectional dependence.

By relying on large T asymptotics, Driscoll and Kraay (1998) demonstrate that the
standard nonparametric time series covariance matrix estimator can be modified such
that it is robust to very general forms of cross-sectional as well as temporal depen-
dence. Loosely speaking, Driscoll and Kraay’s methodology applies a Newey-West type
correction to the sequence of cross-sectional averages of the moment conditions. Ad-
justing the standard error estimates in this way guarantees that the covariance matrix
estimator is consistent, independently of the cross-sectional dimension N (i.e. also for
N → ∞). Therefore, Driscoll and Kraay’s approach eliminates the deficiencies of other
large T consistent covariance matrix estimators such as the Parks-Kmenta or the PCSE
approach which typically become inappropriate when the cross-sectional dimension N
of a microeconometric panel gets large.

Table 1 gives a brief overview over selected Stata commands and options which
produce robust standard error estimates for linear panel models.

3 The xtscc program

xtscc - Compute spatial correlation consistent standard errors for linear panel models.

3.1 Syntax

xtscc depvar
[
varlist

] [
if
] [

in
] [

weight
] [

, lag(#) fe pooled level(#)
]
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3.2 Description

xtscc produces Driscoll and Kraay (1998) standard errors for coefficients estimated by
pooled OLS/WLS and fixed-effects (within) regression. depvar is the dependent variable
and varlist is an optional list of explanatory variables.

The error structure is assumed to be heteroscedastic, autocorrelated up to some lag,
and possibly correlated between the groups (panels). These standard errors are robust to
very general forms of cross-sectional (“spatial”) and temporal dependence when the time
dimension becomes large. Because this nonparametric technique of estimating standard
errors does not place any restrictions on the limiting behavior of the number of panels,
the size of the cross-sectional dimension in finite samples does not constitute a constraint
on feasibility - even if the number of panels is much larger than T . Nevertheless, because
the estimator is based on an asymptotic theory one should be somewhat cautious with
applying this estimator to panels which contain a large cross-section but only a very
short time dimension.

The xtscc program is suitable for use with both, balanced and unbalanced panels,
respectively. Furthermore, it is capable to handle missing values.

3.3 Options

lag(#) specifies the maximum lag to be considered in the autocorrelation structure.
By default, a lag length of m(T ) = floor[4(T/100)2/9] is assumed (see Section 4.4).

fe performs fixed-effects (within) regression with Driscoll and Kraay standard errors.
These standard errors are heteroscedasticity consistent and robust to very general
forms of cross-sectional (“spatial”) and temporal dependence when the time dimen-
sion becomes large. If the residuals are assumed to be heteroscedastic only, use
xtreg, fe robust. When the standard errors should be heteroscedasticity and
autocorrelation consistent, use xtreg, fe cluster(). Note that weights are not
allowed if option fe is chosen.

pooled is the default option for xtscc. It performs pooled OLS/WLS regression with
Driscoll and Kraay standard errors. These standard errors are heteroscedasticity
consistent and robust to very general forms of cross-sectional (“spatial”) and tempo-
ral dependence when the time dimension becomes large. If the residuals are assumed
to be heteroscedastic only, use regress, robust. When the standard errors should
be heteroscedasticity and autocorrelation consistent either use regress, cluster()
or newey, lag(#) force. Analytic weights are allowed for use with option pooled;
see [U] 11.1.6 weight and [U] 20.16 Weighted estimation.

level(#) specifies the confidence level, in percent, for confidence intervals. The default
is level(95) or as set by set level; see [U] 23.5 Specifying the width of
confidence intervals.
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3.4 Remarks

The main procedure of xtscc is implemented in Mata and is based in parts on Driscoll
and Kraay’s original GAUSS program which can be downloaded from John Driscoll’s
homepage (www.johncdriscoll.net).

The xtscc program includes several functions from Ben Jann’s moremata package.

4 Panel models with Driscoll and Kraay standard errors

Although Driscoll and Kraay’s (1998) covariance matrix estimator is perfectly general
and by no means limited to the use with linear panel models, I restrict the presentation
of the estimator to the case implemented in the xtscc program, i.e. to linear regression.
In contrast to Driscoll and Kraay’s original formulation, the estimator below is adjusted
for use with both balanced and unbalanced panel datasets, respectively.6

When option fe is chosen or if analytic weights are provided along with the pooled
option, the xtscc program first transforms the variables in a way which allows for
estimation by OLS. In case of fixed effects estimation, the corresponding transform
is the within transformation and for weighted least squares estimation the transform
applied is the WLS transform. Both transforms are described below.

4.1 Driscoll and Kraay standard errors for pooled OLS estimation

Consider the linear regression model

yit = x′
itθ + εit, i = 1, ..., N, t = 1, ..., T

where the dependent variable yit is a scalar, xit is a (K + 1) × 1 vector of independent
variables whose first element is 1, and θ is a (K + 1)× 1 vector of unknown coefficients.
i denotes the cross-sectional units (“individuals”) and t denotes time. It is common to
stack all observations as follows:

y = [y1t11 ... y1T1 y2t21 ... yNTN ]′ and X = [x1t11 ... x1T1 x2t21 ... xNTN ]′ .

Note that this formulation allows the panel to be unbalanced since for individual i only
a subset ti1, ... , Ti with 1 ≤ ti1 ≤ Ti ≤ T of all T observations may be available. It
is assumed that the regressors xit are uncorrelated with the scalar disturbance term εis

for all s, t (strong exogeneity). However, the disturbances εit themselves are allowed
to be autocorrelated, heteroscedastic, and cross-sectionally dependent. Under these
presumptions θ can consistently be estimated by ordinary least squares (OLS) regression
which yields

θ̂ = (X′X)−1X′y .

6. For details on the regularity conditions under which Driscoll and Kraay standard errors are con-
sistent, see Driscoll and Kraay (1998) and Newey and West (1987).
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Driscoll and Kraay standard errors for the coefficient estimates are then obtained as the
square roots of the diagonal elements of the asymptotic (robust) covariance matrix

V (θ̂) = (X′X)−1ŜT (X′X)−1

where ŜT is defined as in Newey and West (1987):

ŜT = Ω̂0 +
m(T )∑
j=1

w(j, m)[Ω̂j + Ω̂′
j ] . (1)

In expression (1), m(T ) denotes the lag length up to which the residuals may be auto-
correlated and the modified Bartlett weights

w(j, m(T )) = 1 − j/(m(T ) + 1)

ensure positive semi-definiteness of ŜT and smooth the sample autocovariance function
such that higher order lags receive less weight. The (K + 1) × (K + 1) matrix Ω̂j is
defined as

Ω̂j =
T∑

t=j+1

ht(θ̂)ht−j(θ̂)′ with ht(θ̂) =
N(t)∑
i=1

hit(θ̂) . (2)

Note that in (2) the sum of the individual time t moment conditions hit(θ̂) runs from 1
to N(t) where N is allowed to vary with t. This tiny adjustment to Driscoll and Kraay’s
(1998) original estimator suffices to make their estimator ready for use with unbalanced
panels. In the case of pooled OLS estimation the individual orthogonality conditions
hit(θ̂) in (2) are the (K +1)× 1 dimensional moment conditions of the linear regression
model, i.e.

hit(θ̂) = xitε̂it = xit(yit − x′
itθ̂) .

From (1) and (2) it follows that Driscoll and Kraay’s covariance matrix estimator equals
the heteroscedasticity and autocorrelation consistent covariance matrix estimator of
Newey and West (1987) applied to the time series of cross-sectional averages of the
hit(θ̂).7 By relying on cross-sectional averages, standard errors estimated by this ap-
proach are consistent independently of the panel’s cross-sectional dimension N . Driscoll
and Kraay (1998) show that this consistency result even holds for the limiting case where
N → ∞. Furthermore, estimating the covariance matrix by aid of this approach yields
standard errors that are robust to very general forms of cross-sectional and temporal
dependence.

7. While this representation of Driscoll and Kraay’s covariance matrix estimator emphasizes the fact
that the estimator belongs to the robust group of covariance matrix estimators, the exposition in Driscoll
and Kraay (1998) makes it somewhat simpler to see that their estimator indeed applies a Newey-West
type correction to the sequence of cross-sectional averages of the moment conditions.
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4.2 Fixed-effects regression with Driscoll and Kraay standard errors

The xtscc program’s option fe estimates fixed-effects (within) regression models with
Driscoll and Kraay standard errors. The respective fixed-effects estimator is imple-
mented in two steps. In the first step all model variables zit ∈ {yit,xit} are within-
transformed as follows (see [XT] xtreg):

z̃it = zit − zi + z where zi = T−1
i

Ti∑
t=ti1

zit and z =
(∑

Ti

)−1∑
i

∑
t

zit .

Recognizing that the within-estimator corresponds to the OLS estimator of

ỹit = x̃′
itθ + ε̃it , (3)

the second step then estimates the transformed regression model in (3) by pooled OLS
estimation with Driscoll and Kraay standard errors (see Section 4.1).

4.3 (WLS) regression with Driscoll and Kraay standard errors

As for the fixed-effects estimator, weighted least squares (WLS) regression with Driscoll
and Kraay standard errors is also performed in two steps. The first step applies the
WLS transform z̃it =

√
witzit to all model variables including the constant (i.e. zit ∈

{yit,xit}) and the second step then estimates the transformed model in (4) by pooled
OLS estimation (see [R] regress and Verbeek (2004, p. 84)):

ỹit = x̃′
itθ + ε̃it . (4)

4.4 A note on lag length selection

In expression (1), m(T ) denotes the lag length up to which the residuals may be au-
tocorrelated. Strictly speaking, by constraining the residuals to be autocorrelated up
to some lag m(T ), only moving average (MA) processes of the residuals are considered.
Fortunately, this is not necessarily a problem since autoregressive (AR) processes nor-
mally can well be approximated by finite order MA processes. However, for the case
of using modified Bartlett weights (see above), Newey and West (1987) have shown
that their estimator is consistent if the number of lags included in the estimation of the
covariance matrix, m(T ), increases with T but at a rate slower than T 1/4. Therefore,
it is not advisable to select an m(T ) which is close to the maximum lag length (i.e.
m(T ) = T − 1) even if one is convinced that the residuals follow an AR process.

In order to assist the researcher by choosing m(T ), Andrews (1991), Newey and
West (1994), and others have developed what is known as “plug-in” estimators. Plug-in
estimators are automized procedures which deliver the optimum number of lags accord-
ing to an asymptotic mean squared error criterion. Hence, the lag length m(T ) that is
selected by a “plug-in” estimator depends on the data at hand. Unfortunately, however,
no such procedure is available in official Stata right now.
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Therefore, the xtscc program uses a simple rule of thumb for selecting m(T ) when
no lag(#) option is specified. The heuristic applied is taken from the first step of
Newey and West’s (1994) plug-in procedure and sets

m(T ) = floor[4(T/100)2/9] .

Note, however, that choosing the lag length like this is not necessarily optimal because
this choice is essentially independent from the underlying data. In fact, this simple rule
of selecting the lag length tends to choose an m(T ) which might often be too small.

5 Monte Carlo Evidence

By theory, the coefficient estimate of a 95% confidence interval should contain the true
coefficient value in 95 out of 100 cases. The coverage rate measures how well this
assumption is met in practice. For example, if an econometric estimator is perfectly
calibrated, then the coverage rate of the 95% confidence interval should be close to the
nominal value, i.e. close to 0.95. However, when coverage rates and hence standard error
estimates are biased, statistical tests (such as the t-test) lose their validity. Therefore,
coverage rates are an important measure for assessing whether or not statistical inference
is valid under certain circumstances.

While it is well-known that the coverage rates of OLS standard errors are perfectly
calibrated when all OLS assumptions are met, remarkably few is known about how
well standard error estimates perform when the residuals and the explanatory variables
of large-scale microeconometric panels are cross-sectionally and temporally dependent.
Although there are both, studies which address the consequences of spatial and tempo-
ral dependence explicitly8 and studies that consider medium- and large-scale panels,9

respectively, I am not aware of an analysis which investigates the small sample proper-
ties of standard error estimates for large-scale panel datasets with spatially dependent
cross-sections. But as has been argued before, assuming that the subjects (e.g. indi-
viduals or firms) of medium- and large-scale microeconometric panels are independent
of each other might often be equivocal in practice due to things like social norms, herd
behavior, and neighborhood effects.

The Monte Carlo simulations presented in this section consider both large-scale
panels and intricate forms of cross-sectional and temporal dependence, respectively. By
comparing the coverage rates from several techniques of estimating (“robust”) standard
errors for linear panel models I can replicate and extend Driscoll and Kraay’s original
finding that cross-sectional dependence can lead to severely biased standard error esti-
mates if it is not accounted for appropriately. Even though coverage rates of Driscoll
and Kraay standard errors are typically below their nominal value, Driscoll and Kraay
standard errors have significantly better small sample properties than commonly applied
alternative techniques for estimating standard errors when cross-sectional dependence
is present. This result holds irrespective of whether a panel dataset is balanced or not.

8. e.g. see Driscoll and Kraay (1998) and Beck and Katz (1995)
9. e.g. see Bertrand et al. (2004) and Petersen (2007)
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5.1 Specification

Without loss of generality, the Monte Carlo experiments are based on estimating the
following bivariate regression model:

yit = α + βxit + εit (5)

In (5) it is assumed that the independent variable xit is uncorrelated with the dis-
turbance term εit, i.e. corr(xit, εit) = 0. To introduce cross-sectional and temporal
dependence, both the explanatory variable xit and the disturbance term εit contain
three components: An individual specific long-run mean (xi, εi), an autocorrelated
common factor (gt, ft), and an idiosyncratic forcing term (ωit, ϑit). Accordingly, xit

and εit are specified as follows:

xit = xi + θigt + ωit and εit = εi + λift + ϑit (6)

The common factors gt and ft in (6) are constructed as AR(1) processes:

gt = γgt−1 + wt and ft = ρft−1 + vt (7)

For simplicity, but again without loss of generality, it is assumed that the within variance
of xit, εit, gt, and ft is one. Together with the condition that the forcing terms ωit, ϑit,
wt, and vt are independently and normally distributed, it follows that

ωit
iid∼ N(0, 1 − θ2

i ) , wt
iid∼ N(0, 1 − γ2) , ϑit

iid∼ N(0, 1 − λ2
i ) , vt

iid∼ N(0, 1 − ρ2) .

Considering these distributional assumptions about the forcing terms, some algebra
yields that for realized values of xi and θi the correlation between xit and xj,t−s is given
by

corr(xit, xj,t−s) =
{

1 if i = j and s = 0
θiθjγ

s otherwise

Similarly, for the correlation between εit and εj,t−s it follows that

corr(εit, εj,t−s) =
{

1 if i = j and s = 0
λiλjρ

s otherwise

To complete the specification of the Monte Carlo experiments, it is assumed that both
the subject specific fixed effects (xi, εi) and the idiosyncratic factor sensitivities (θi, λi),
respectively, are uniformly distributed:

xi ∼ U [−a, +a] , εi ∼ U [−b, +b] , θi ∼ U [τ1, τ2] , λi ∼ U [ι1, ι2] (8)

5.2 Parameter settings (“scenarios”)

Because the parameters a and b in (8) are irrelevant for the correlations between subjects,
they are arbitrarily fixed to a = 1.5 and b = 0.6 in all Monte Carlo experiments.10

10. For a detailed discussion on the consequences of changes in the size of subject specific fixed effects
for statistical inference, see Petersen (2007).
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Accordingly, the total variances (i.e. within plus between variance) of xit and eit are
σ2

x = 1 + a2/3 = 1.75 and σ2
ε = 1 + b2/3 = 1.12, respectively. By contrast, parameter

values for τ1, τ2, ι1, and ι2 are altered in the simulations because they directly impact
the degree of spatial dependence. A total of six different scenarios is considered:

1. τ1 = τ2 = ι1 = ι2 = 0. This is the reference case where all assumptions of
the fixed-effects (within) regression model are perfectly met. In this scenario, xit

and εit both contain an individual specific fixed effect but they are independently
distributed between subjects and across time. By denoting with r(p, q) the average
or expected correlation between p and q it follows immediately that here we have
r(xit, xj,t−s) = r(εit, εj,t−s) = 0 (for i �= j or s �= 0).

2. τ1 = ι1 = 0 and τ2 = ι2 =
√

1/2. In this case, the expected contemporaneous
between subject correlations are given by r(xit, xjt) = r(εit, εjt) = 0.125 (for
i �= j).

3. τ1 = ι1 = 0 and τ2 = ι2 = 1. This yields r(xit, xjt) = r(εit, εjt) = 0.25 (for i �= j).

4. τ1 = ι1 = 0.6 and ι2 = τ2 = 1. Here, the expected contemporaneous between
correlations are quite high: r(xit, xjt) = r(εit, εjt) = 0.64 (for i �= j).

5. τ1 = 0.6, τ2 = 1, ι1 = 0, and ι2 =
√

1/2. This results in r(xit, xjt) = 0.64 and
r(εit, εjt) = 0.125 (for i �= j).

6. τ1 = 0, τ2 =
√

1/2, ι1 = 0.6, and ι2 = 1. In this scenario the independent variable
is only weakly correlated (r(xit, xjt) = 0.125 for i �= j) between subjects but the
residuals are highly dependent (r(εit, εj,t) = 0.64).

These six scenarios are simulated for three levels of autocorrelation, where for brevity
reasons only the case ρ = γ is considered in this paper. The autocorrelation parameters
ρ and γ are set to 0, 0.25, and 0.5, respectively. Finally, yit is generated according to
equation (5) with parameters α and β arbitrarily set to 0.1 and 0.5, respectively.

5.3 Results

Reference simulation: Medium-sized microeconometric panel with quarterly data

In the first simulation I consider the case of a medium-sized microeconometric panel
with N = 1,000 subjects and time dimension Tmax = 40 as it is typically encountered
in corporate finance studies with quarterly data. For all parameter settings, a Monte
Carlo simulation with 1,000 replications is run for both balanced and unbalanced panels,
respectively. To generate the datasets for the unbalanced panel simulations, I assume
that the panel starts with a full cross-section of N = 1,000 subjects that are labeled
by a running number ranging from 1 to 1,000. Then, from t = 2 on, only the subjects
i with i > floor(N(t − 1)/(Tmax − 1)) remain in the panel. Hence, while the datasets
in the balanced panel simulations contain a total of 40,000 observations, those of the
unbalanced panel simulations only comprise 20,018 observations.
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Figure 1: Coverage rates of 95% confidence intervals: Comparison of different techniques
for estimating standard errors. Monte Carlo simulation with 1,000 runs per parameter
setting for a balanced panel with N=1,000 subjects and T = 40 observations per subject.
The total number of observations in the panel regressions is NT = 40, 000 and the y-
axis labels 0, .25, and .5 denote the values of the autocorrelation parameters ρ and γ
(ρ = γ).

To summarize, the Monte Carlo simulations for each of the 18 parameter settings11

defined in Section 5.2 proceed as follows:

1. Generation of a panel dataset with N = 1,000 subjects and Tmax = 40 time periods
as specified above.

2. Estimation of the regression model in (5) by pooled OLS and fixed effects re-
gression. In case of pooled OLS estimation five covariance matrix estimators are
considered. For the fixed effects regression four techniques of obtaining standard
errors are applied.

3. After having replicated steps (1) and (2) a 1,000 times, the coverage rates of the
95% confidence intervals for all nine standard error estimates are gathered. This

11. i.e. 6 scenarios, 3 levels of autocorrelation
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Figure 2: Coverage rates of 95% confidence intervals: Comparison of different techniques
for estimating standard errors. Monte Carlo simulation with 1,000 runs per parameter
setting for an unbalanced panel with N=1,000 subjects and at most T = 40 observations
per subject. The total number of observations in the panel regressions is 20,018 and the
y-axis labels 0, .25, and .5 denote the values of the autocorrelation parameters ρ and γ
(ρ = γ).

is achieved by obtaining the fraction of times the nominal 95%-confidence interval
for α̂ (β̂) contains the true coefficient value of α = 0.1 (β = 0.5).

Figure 1 contains the results of the balanced panel simulation. Interestingly, al-
though the reference case of scenario 1 perfectly meets the assumptions of the fixed-
effects (within) regression model, pooled OLS estimation delivers coverage rates for the
intercept term α̂ that are not worse than those of the fixed-effects regressions. On the
contrary, Rogers standard errors obtained from pooled OLS regression are the single SE
estimates for which the coverage rates of α̂ correspond to their nominal value.

Turning to the estimates for the slope coefficient β̂, Figure 1 reveals that here all the
standard error estimates obtained from fixed effects regression are perfectly calibrated
under the parameter settings of scenario 1 (i.e. τ1 = τ2 = ι1 = ι2 = 0). Considering the
fact that scenario 1 perfectly obeys the fixed effects regression model, these simulation



Daniel Hoechle 15

results are perfectly in line with the theoretical properties of the fixed effects estimator.
Surprisingly, though, not only FE standard errors are appropriate under scenario 1 but
also are Rogers standard errors for pooled OLS estimation. Finally and consistently
with Driscoll and Kraay’s (1998) original findings, Figure 1 reveals that the coverage
rates of Driscoll and Kraay standard errors are slightly worse than those of the other
more commonly employed covariance matrix estimators when the residuals are spatially
uncorrelated (i.e. for scenario 1).

However, the results change significantly when cross-sectional dependence is present.
For OLS, White, Rogers, and Newey-West standard errors cross-sectional correlation
leads to coverage rates that are far below their nominal value irrespective of whether
regression model (5) is estimated by pooled OLS or fixed effects regression. Even worse,
although the true model contains individual specific fixed-effects, the coverage rates
of the within regressions are actually lower than those of the pooled OLS estimation.
Interestingly, Rogers standard errors for pooled OLS are again comparably well cali-
brated. However, they also tend to be overly optimistic when the cross-sectional units
are spatially dependent.

In addition, Figure 1 also indicates that the coverage rates of OLS, White, Rogers,
and Newey-West standard errors are negatively related to the level of cross-sectional
dependence. In other words, the more spatially correlated the subjects are, the more
severely upward biased will be the t-values of linear panel models estimated with OLS,
White, Rogers, and Newey-West standard errors. Furthermore, a comparison of the
results for scenarios (2) and (5) suggests that an increase in the cross-sectional depen-
dence of the explanatory variable xit exacerbates underestimation of the standard errors
and correspondingly lowers coverage rates further.

Looking at the consequences of temporal dependence, Figure 1 shows that autocorre-
lation tends to worsen coverage rates. However, it is somewhat difficult to appropriately
assess the impact of serial correlation for the coverage rates as the simulation presented
here only considers comparably low levels of autocorrelation, the highest average or
expected autocorrelation coefficient being equal to

r(εi,t, εi,t−1) = γmax · E(λi)2 = 0.5 · 0.82 = 0.32 .

Nevertheless, the figure indicates that the (additional) impact of autocorrelation for the
coverage rates of coefficient estimates is relatively small when cross-sectional dependence
is present.

Finally, from Figure 1 we see that Driscoll and Kraay standard errors tend to be
slightly optimistic, too. However, when spatial dependence is present then Driscoll-
Kraay standard errors are much better calibrated (and thus far more “robust”) than
OLS, White, Rogers, and Newey-West standard errors. Furthermore and in contrast to
the aforementioned estimators, the coverage rates of Driscoll-Kraay standard errors are
almost invariant to changes in the level of cross-sectional and temporal correlation.

A comparison of Figures 1 and 2 reveals that the results of the unbalanced panel
simulation are qualitatively similar to those of the balanced panel simulation. Hence,
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Figure 3: Ratio of estimated to true standard deviation: Monte Carlo simulation with
1,000 runs per parameter setting for a balanced panel with N = 1, 000 subjects and T =
40 observations per subject. The total number of observations in the panel regressions is
NT = 40, 000 and the y-axis labels 0, .25, and .5 denote the values of the autocorrelation
parameters ρ and γ (ρ = γ).

the slight adjustment of Driscoll and Kraay’s (1998) original estimator implemented in
the xtscc command seems to work well in practice.

Figure 3 contains a complementary representation of the results presented in Figure 1
above. Here, for each covariance matrix estimator considered in the analysis the average
standard error estimate from the simulation is divided by the standard deviation of the
coefficient estimates. The standard deviation of the estimated coefficients is the true
standard error of the regression. Therefore, for a covariance matrix estimator to be
unbiased this ratio should be close to one. Consistent with the findings from above,
Figure 3 shows that Rogers standard errors for pooled OLS are perfectly calibrated
when no cross-sectional correlation is present. However, OLS, White, Rogers, and
Newey-West standard errors worsen when spatial correlation increases. Contrary to this,
calibration of the Driscoll and Kraay covariance matrix estimator is largely independent
from cross-sectional dependence. Since the results of the unbalanced panel simulation
turn out to be qualitatively similar to those presented in Figure 3, they are not depicted
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Figure 4: Coverage rates of 95% confidence intervals: Comparison of different techniques
for estimating standard errors of linear panel models. Monte Carlo simulations with
1,000 replications per parameter setting for balanced panels with N = 2, 500 subjects
and temporally uncorrelated common factors ft and gt (i.e. ρ=γ=0).

here for brevity.

Alternative simulations: Large-scale microeconometric panel with annual data

The results of the reference simulation discussed in the last section suggest that the small
sample properties of Driscoll-Kraay standard errors outperform those of other (more)
commonly employed covariance matrix estimators when cross-sectional dependence is
present. However, by considering that Driscoll and Kraay’s (1998) nonparametric co-
variance matrix estimator relies on large T asymptotics one might argue that specifying
T = 40 in the reference simulation is clearly in favor of the Driscoll-Kraay estimator.

As a robustness check and in order to obtain a more comprehensive picture about
the small sample performance of Driscoll-Kraay standard errors I therefore perform a
set of four additional simulations. Specifically, I consider a large-scale microeconometric
panel containing N = 2,500 subjects whose time dimension amounts to T = 5, 10, 15,
and 25 periods.
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Figure 5: Ratio of estimated to true standard deviation: Comparison of different tech-
niques for estimating standard errors of linear panel models. Monte Carlo simulations
with 1,000 replications per parameter setting for balanced panels with N = 2, 500 sub-
jects and temporally uncorrelated common factors ft and gt (i.e. ρ=γ=0).

While being somewhat superior when there is no spatial dependence, coverage rates
of OLS and Rogers standard errors in Figure 4 are clearly dominated by those of the
Driscoll-Kraay estimator when cross-sectional correlation is present. Moreover, Fig-
ure 5 indicates that OLS and Rogers standard errors for pooled OLS tend to severely
overstate actual information inherent in the dataset when the subjects are mutually de-
pendent. Interestingly, both these results hold irrespective of the panel’s time dimension
T and they are particularly pronounced when the degree of cross-sectional dependence
is high.12

Finally, Figures 4 and 5 also demonstrate the consequences of the Driscoll and Kraay
(1998) estimator being based on large T asymptotics: The longer the time dimension
T of a panel is, the better calibrated are Driscoll-Kraay standard errors.

12. For brevity, Figures 4 and 5 only depict the results for a representative subset of the covariance
matrix estimators considered in the simulations. However, the omitted results are qualitatively similar
to those for OLS and Rogers standard errors.
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6 Example: Bid-Ask-Spread of Stocks

In this section I consider an empirical example from financial economics. The dataset
used in the application is by no means special in the sense that cross-sectional de-
pendence is particularly pronounced. Rather, the dataset considered here is just an
ordinary small-scale microeconometric panel as it might be used in any empirical study.
The main objective of this exercise is to illustrate that choosing different techniques
for obtaining standard error estimates can have substantial consequences for statistical
inference. Furthermore, I demonstrate how the xtscc program can be used to perform
a Hausman test for fixed effects that is robust to very general forms of spatial and
temporal dependence. In the last part of the example it is shown how to test whether
or not the residuals of a panel model are cross-sectionally dependent.

6.1 Introduction

The bid-ask spread is the difference between the ask price for which an investor can
buy a financial asset and the (normally lower) bid price for which the asset can be
sold. The bid-ask spread of stocks plays an important role in financial economics for a
long time. As such it constitutes a major component of the transaction costs of equity
trades (Keim and Madhavan (1998)) and it has become a popular measure for a stock’s
liquidity in empirical finance studies.13

According to Glosten (1987) the bid-ask spread depends on several determinants, the
most important being the degree of information asymmetries between market partici-
pants. Put simply, his theoretical model states that the more pronounced information
asymmetries between market participants are, the wider should be the bid-ask spread.
In this application I want to investigate whether or not typical measures for information
asymmetries between market participants (e.g. firm size) are able to explain parts of
the differences in quoted bid-ask spreads as suggested by Glosten’s (1987) model.

I analyze a panel of 219 European mid- and large-cap stocks which have been ran-
domly selected from the MSCI Europe constituents list as of December 31, 2000. The
data is month-end data from Thomson Financial Datastream and the sample period
ranges from December 2000 to December 2005 (61 months).

6.2 Description of the data

The BidAskSpread.dta dataset comprises an unbalanced panel whose subjects (i.e.
the stocks) are identified by variable ID and whose time dimension is set by variable
TDate. The quoted bid-ask spread, BA, serves as the dependent variable. Following Roll
(1984) who argues that percentage bid-ask spreads may be more easily interpreted than

13. Campbell et al. (1997, p. 99) define liquidity of stocks as “the ability to buy or sell significant
quantities of a security quickly, anonymously, and with relatively little price impact”.
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absolute ones, variable BA is defined in relative terms as follows:

BAit = 100 · Askit − Bidit

0.5(Askit + Bidit)
. (9)

In expression (9), Bidit and Askit denote the last bid and ask prices of stock i in month
t, respectively.

Variable TRMS contains the monthly return of the MSCI Europe total return index
in USD (in %) and variable TRMS2 is its square. TRMS2 constitutes a simple proxy for
the stock market risk and hence reflects uncertainty about future economic prospects.
The Size variable comprises the stocks’ size decile. A value of 1 (10) indicates that
the USD market capitalization of a stock was amongst the smallest (largest) 10% of the
sample stocks in a given month. Finally, variable aVol measures the stocks’ abnormal
trading volume which is defined as follows:

aVolit = 100 ·
(

ln(Volit) − 1
Ti

∑
t

ln(Volit)

)

Here, Volit and Ti denote the number (in thousands) of stocks i being traded on the
last trading day of month t and the total number of non-missing observations for stock
i, respectively.

The following Stata output lists an arbitrary excerpt of six consecutive observations
from the BidAskSpread.dta dataset:

. use "BidAskSpread.dta", clear

. list ID TDate BA-Size in 70/75, sep(0) noobs

ID TDate BA TRMS TRMS2 aVol Size

ABB LTD. 2001:08 0.244 -2.578 6.648 -88.977 8
ABB LTD. 2001:09 0.526 -9.978 99.559 -50.142 8
ABB LTD. 2001:10 0.297 3.171 10.058 4.515 8
ABB LTD. 2001:11 0.363 4.016 16.128 -33.736 8
ABB LTD. 2001:12 . 2.562 6.565 -73.165 8
ABB LTD. 2002:01 0.440 -5.215 27.200 -27.169 8

Technical note

The data at hand contains all the characteristics that are typical for microecono-
metric panels. While the dataset starts as a full panel, 27 out of 219 stocks leave the
sample early. In addition to being unbalanced, the BidAskSpread-panel also contains
gaps. For instance, variable BA is missing for all the stocks on March 29, 2002.
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6.3 Regression Specification and Formulation of the Hypothesis

In order to investigate whether or not the cross-sectional differences in quoted bid-ask
spreads can be partially explained by information differentials between market partici-
pants, I estimate the following linear regression model:

BAit = α+βaVol ·aVolit +βSize ·Sizeit +βTRMS2 ·TRMS2it +βTRMS ·TRMSit + εit . (10)

Here, i = 1, ..., 219 denotes the stocks and t = 491, ..., 551 is the month in Stata’s
time-series format.

Glosten’s (1987) model predicts that the degree of asymmetric information between
market participants should be positively related to the bid-ask spread. In the finance
literature it is generally believed that payed prices of frequently traded stocks contain
more information than those of rarely transacted equities. Accordingly, asymmetric
information between market participants is assumed to be smaller for liquid than for
illiquid stocks which leads to the hypothesis that frequently traded stocks should have
tighter bid-ask spreads than illiquid ones.

If this conjecture is correct we would expect that estimating regression model (10)
yields βaVol < 0 because stock prices contain more information when abnormal trading
volume is high compared to when it is low. Furthermore, similar reasoning leads to the
expectation that the coefficient estimate for the Size variable is also negative since small
stocks tend to be less frequently transacted than large stocks. However, in addition of
being negative, the coefficient estimate for βSize should also be highly significant. This is
due to the fact that besides Roll (1984) who finds that firm size is closely related to the
stocks’ “effective” bid-ask spread, numerous studies in empirical finance find evidence
for fundamental return differentials between small and large stocks.14

Since the volatility of stock market returns is closely related to the uncertainty about
future economic prospects, bid-ask spreads are expected to be positively correlated with
stock market risk. Hence, βTRMS2 should be positive. Finally, for variable TRMS no such
information story or another compelling economic argument is immediate. Accordingly,
whether the coefficient estimate for βTRMS should be positive or negative is indefinite
on an ex-ante basis.

6.4 Pooled OLS estimation

Estimating the regression model in (10) is likely to produce residuals that are positively
correlated over time. Furthermore, cross-sectional dependence cannot be completely
ruled out due to possibly available common factors that are not considered in the anal-
ysis. Therefore, I follow the suggestion from Section 5.3 and estimate regression model
(10) by pooled OLS with Driscoll and Kraay standard errors. Somewhat arbitrarily, a
lag length of 8 months is chosen. However, the results turn out to be quite robust to
changes in the selected lag length.

14. e.g. see Banz (1981) and Fama and French (1992, 1993).
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. xtscc BA aVol Size TRMS2 TRMS, lag(8)

Regression with Driscoll-Kraay standard errors Number of obs = 11775
Method: Pooled OLS Number of groups = 219
Group variable (i): ID F( 4, 218) = 142.84
maximum lag: 8 Prob > F = 0.0000

R-squared = 0.0290
Root MSE = 2.6984

Drisc/Kraay
BA Coef. Std. Err. t P>|t| [95% Conf. Interval]

aVol -.0017793 .0010938 -1.63 0.105 -.0039351 .0003764
Size -.151868 .0102688 -14.79 0.000 -.1721068 -.1316291
TRMS2 .0033298 .0008826 3.77 0.000 .0015902 .0050694
TRMS -.001836 .0052329 -0.35 0.726 -.0121496 .0084777
_cons 1.459139 .1354202 10.77 0.000 1.192238 1.726039

The regression results fully confirm the hypothesis about the signs of the coefficient
estimates. Furthermore and consistent with my conjecture from above, βSize is not only
negative, but rather it is highly significant.

It is interesting to compare the results of pooled OLS estimation with Driscoll-
Kraay standard errors with those of alternative (more) commonly applied standard
error estimates. Table 2 shows that statistical inference indeed depends substantially
on the choice of the covariance matrix estimator. This can probably best be seen from
variable aVol. While OLS standard errors lead to the conclusion that βaVol is highly
significant on the 1% level, Driscoll and Kraay standard errors indicate that βaVol is
insignificant even at the 10% level. However, Driscoll and Kraay standard errors need
not necessarily be more conservative than those of other covariance estimators as it can
easily be inferred from the t-values of βSize.

It is particularly interesting to compare the results for variable TRMS2. Although be-
ing significant at the one percent level, the t-stat obtained from Driscoll-Kraay standard
errors is markedly lower than that of the other covariance matrix estimators considered
in Table 2. This is perfectly in line with the Monte Carlo evidence presented above,
as in the presence of cross-sectional dependence coverage rates of OLS, White, Rogers,
and Newey-West standard errors are low when an explanatory variable is highly corre-
lated between subjects. Being a common factor, variable TRMS2 is perfectly positively
correlated between the firms. Therefore, coverage rates of OLS, White, Rogers, and
Newey-West standard errors are expected to be particularly low when spatial correla-
tion is present. As a result, the comparably low t-stat of the Driscoll-Kraay estimator for
variable TRMS2 suggests that cross-sectional dependence might indeed be present here.
Unfortunately, however, this conjecture cannot be formally tested because no adequate
testing procedure for cross-sectional dependence in the residuals of pooled OLS regres-
sions is available in Stata right now. Therefore, a formal test for spatial dependence in
the regression residuals has to be deferred to Section 6.7. There, I perform Pesaran’s
(2004) CD test on the residuals of the regression model in (10) being estimated by fixed
effects regression.
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Table 2: Comparison of standard error estimates for pooled OLS estimation

SE OLS White Rogers Newey-West Driscoll-Kraay

aVol -0.0018∗∗∗ -0.0018∗∗ -0.0018∗ -0.0018∗ -0.0018
(-4.006) (-2.043) (-1.831) (-1.760) (-1.627)

Size -0.1519∗∗∗ -0.1519∗∗∗ -0.1519∗∗∗ -0.1519∗∗∗ -0.1519∗∗∗

(-17.412) (-12.496) (-6.756) (-10.717) (-14.789)

TRMS2 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗ 0.0033∗∗∗

(5.295) (5.520) (5.495) (5.582) (3.773)

TRMS -0.0018 -0.0018 -0.0018 -0.0018 -0.0018
(-0.370) (-0.353) (-0.381) (-0.340) (-0.351)

Const. 1.4591∗∗∗ 1.4591∗∗∗ 1.4591∗∗∗ 1.4591∗∗∗ 1.4591∗∗∗

(25.266) (18.067) (9.172) (14.883) (10.775)

# obs. 11775 11775 11775 11775 11775
# clusters 219 219
R2 0.029 0.029 0.029 0.029 0.029

This table provides the coefficient estimates from the regression model in (10) estimated by pooled
OLS. The t-stats (in parentheses) are based on standard error estimates obtained from the covariance
matrix estimators in the column headings. The dataset contains monthly data from December 2000
to December 2005 for a panel of 219 stocks that have been randomly selected from the MSCI Europe
constituents list as of December 31, 2000. The dependent variable in the regression is the relative
bid-ask spread BA. aVol is the abnormal trading volume, Size contains the stock’s size decile, TRMS
denotes the monthly return in % of the MSCI Europe total return index and TRMS2 is the square
of it. ∗, ∗∗, and ∗∗∗ imply statistical significance on the 10, 5, and 1% level, respectively.

6.5 Robust Hausman test for fixed effects

If the pooled OLS model in (10) is correctly specified and the covariance between εit

and the explanatory variables is zero then either N → ∞ or T → ∞ is sufficient for
consistency. However, pooled OLS regression yields inconsistent coefficient estimates
when the true model is the fixed effects model, i.e.

BAit = αi + x′
itβ + eit (11)

with cov(αi,xit) �= 0 and i = 1, ..., 219. Under the assumption that the unobservable
individual effects αi are time-invariant but correlated with the explanatory variables
xit the regression model in (11) can be consistently estimated by fixed-effects or within
regression.

In order to test for the presence of subject-specific fixed effects, it is common to
perform a Hausman test. The null hypothesis of the Hausman test states that the
random effects model is valid, i.e. that E(αi + eit|xit) = 0. In this section I explain
how the xtscc program can be used to perform a Hausman test that is heteroscedas-
ticity consistent and robust to very general forms of spatial and temporal dependence.
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The exposition starts with the standard Hausman test as it is implemented in Stata’s
hausman command. Then, Wooldridge’s (2002, p. 288ff) suggestion on how to per-
form a panel-robust version of the Hausman test is adapted to form a test that is also
consistent if cross-sectional dependence is present.

Standard Hausman test as it is implemented in Stata

Although pooled OLS regression yields consistent coefficient estimates when the random
effects model is true (i.e. E(αi + eit|xit) = 0), its coefficient estimates are inefficient
under the null hypothesis of the Hausman test. Therefore, pooled OLS regression should
not be used when testing for fixed effects. Because feasible GLS estimation is both
consistent and efficient, respectively, under the null hypothesis of the Hausman test, it
is more appropriate to compare the coefficient estimates obtained from FGLS with those
of the FE estimator.15 Due to numerical reasons, Wooldridge (2002, p. 290) recommends
to perform the Hausman test for fixed effects with either the fixed effects or the random
effects estimates of σ2

e . Thanks to the hausman command’s option sigmamore, Stata
makes it simple to perform a standard Hausman test in the way suggested by Wooldridge
(2002):

. qui xtreg BA aVol Size TRMS2 TRMS, re // FGLS estimation

. est store REgls

. qui xtreg BA aVol Size TRMS2 TRMS, fe // within regression

. est store FE

. hausman FE REgls, sigmamore // see Wooldridge (2002, p.290) for details

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
FE REgls Difference S.E.

aVol -.0017974 -.0017916 -5.81e-06 .0000128
Size -.1875486 -.1603143 -.0272343 .0337314
TRMS2 .0031042 .0031757 -.0000715 .0000239
TRMS -.0014581 -.001634 .000176 .0001959

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 11.64

Prob>chi2 = 0.0203

Provided that the Hausman test applied here is valid (which it probably is not), the null
hypothesis of no fixed-effects is rejected on the 5% level of significance. Therefore, the
standard Hausman test leads to the conclusion that pooled OLS estimation is likely to
produce inconsistent coefficient estimates for the regression model in (10). As a result,
the regression model in (10) should be estimated by fixed effects (within) regression.

15. Note, however, that the FGLS estimator is no longer fully efficient under the null when αi or eit

are not iid. In this likely case the standard Hausman test becomes invalid and a more general testing
procedure is required. See below.
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Alternative formulation of the Hausman test and robust inference

In his seminal work on specification tests in econometrics, Hausman (1978) showed that
performing a Wald test of γ = 0 in the auxiliary OLS regression

BAit − λ̂BAi = (1 − λ̂)μ + (x1it − λ̂x1i)′β1 + (x1it − x1i)′γ + vit (12)

is asymptotically equivalent to the chi-squared test conducted above. In (12), x1it

denotes the time-varying regressors, x1i are the time-demeaned regressors, and λ̂ =
1 − σe/

√
σ2

e + Tσ2
α. For γ = 0, expression (12) reduces to the two-step representation

of the random effects estimator. As a result, the null hypothesis of this alternative
test (i.e. γ = 0) states that the random effects model is appropriate.16 While this
alternative formulation of the Hausman test does not necessarily have better finite
sample properties than the standard Hausman test implemented in Stata’s hausman
command, it has the advantage of being computationally more stable in finite samples
because it never encounters problems with non-positive definite matrices.

When αi or eit are not iid, then the random effects estimator is not fully efficient
under the null hypothesis of E(αi + eit|xit) = 0. As a result, estimating the augmented
regression in (12) with OLS standard errors or running Stata’s hausman test leads to
invalid statistical inference. Unfortunately, however, it is quite likely that αi or eit are
not iid as heteroscedasticity and other forms of temporal and cross-sectional dependency
are often encountered in microeconometric panel datasets. In order to ensure valid
statistical inference for the Hausman test when αi or eit are non-iid, Wooldridge (2002,
p. 288ff) therefore proposes to estimate the auxiliary regression in (12) with panel-robust
standard errors. In Stata the respective analysis can be performed as follows:

. qui xtreg BA aVol Size TRMS2 TRMS, re

. scalar lambda_hat = 1 - sqrt(e(sigma_e)^2/(e(g_avg)*e(sigma_u)^2+e(sigma_e)^2))

. gen in_sample = e(sample)

. sort ID TDate

. qui foreach var of varlist BA aVol Size TRMS2 TRMS {

. by ID: egen ‘var’_bar = mean(‘var’) if in_sample

. gen ‘var’_re = ‘var’ - lambda_hat*‘var’_bar if in_sample // GLS-transform

. gen ‘var’_fe = ‘var’ - ‘var’_bar if in_sample // within-transform

. }

. * Wooldridge’s auxiliary regression for the panel-robust Hausman test:

. reg BA_re aVol_re Size_re TRMS2_re TRMS_re aVol_fe Size_fe TRMS2_fe
> TRMS_fe if in_sample, cluster(ID)

(output omitted )

. * Test of the null-hypothesis ‘‘gamma==0’’:

. test aVol_fe Size_fe TRMS2_fe TRMS_fe

( 1) aVol_fe = 0
( 2) Size_fe = 0
( 3) TRMS2_fe = 0
( 4) TRMS_fe = 0

F( 4, 218) = 2.40
Prob > F = 0.0510

16. See Cameron and Trivedi (2005, p. 717f) for details.
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Here, the null hypothesis of no fixed effects has to be rejected at the 10% level. Because
of the marginal rejection of the null hypothesis, the regression model in (10) should be
estimated by fixed effects regression to ensure consistency of the results. However, note
that even though this alternative specification of the Hausman test is more robust than
the one presented above, it is still based on the assumption that cov(eit, ejs) = 0 for
i �= j. Therefore, statistical inference will be invalid if cross-sectional dependence is
present which is likely for microeconometric panel regressions.

To perform a Hausman test which is robust to very general forms of spatial and
temporal dependence and which should be suitable for most microeconometric applica-
tions I adapt Wooldridge’s suggestion and estimate the auxiliary regression in (12) with
Driscoll and Kraay standard errors:

. xtscc BA_re aVol_re Size_re TRMS2_re TRMS_re aVol_fe Size_fe TRMS2_fe TRMS_fe
> if in_sample, lag(8)

(output omitted )

. test aVol_fe Size_fe TRMS2_fe TRMS_fe

( 1) aVol_fe = 0
( 2) Size_fe = 0
( 3) TRMS2_fe = 0
( 4) TRMS_fe = 0

F( 4, 218) = 1.65
Prob > F = 0.1632

The F-stat from the test of γ = 0 is much smaller than that of the panel-robust Hausman
test encountered before and the null hypothesis of E(αi + eit|xit) = 0 can no longer
be rejected at any standard level of significance. Thus, after fully accounting for cross-
sectional and temporal dependence, the Hausman test indicates that the coefficient
estimates from pooled OLS estimation should be consistent.

Note that if the average cross-sectional dependence of a microeconometric panel
is positive (negative) on average, then the spatial correlation robust Hausman test
suggested here is less (more) likely to reject the null hypothesis than the versions of the
Hausman test described before.

6.6 Fixed effects estimation

Although the spatial correlation consistent version of the Hausman test indicates that
the coefficient estimates from pooled OLS estimation should be consistent I nevertheless
estimate regression model (10) by fixed-effects regression. Table 3 compares the results
from different techniques of obtaining standard error estimates for the fixed-effects es-
timator.

With the exception of the t-values for the size variable which are markedly smaller,
both the coefficient estimates and the t-values are quite similar to those of the pooled
OLS estimation above. However, the t-value of variable aVol which was insignificant
for the pooled OLS estimation with Driscoll and Kraay standard errors now indicates
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Table 3: Comparison of standard error estimates for fixed-effects regression

FE White Rogers Driscoll-Kraay

aVol -0.0018∗∗∗ -0.0018∗∗ -0.0018∗ -0.0018∗∗

(-4.161) (-2.166) (-1.852) (-2.057)

Size -0.1875∗∗∗ -0.1875∗∗∗ -0.1875∗∗∗ -0.1875∗∗∗

(-4.994) (-4.883) (-4.186) (-6.977)

TRMS2 0.0031∗∗∗ 0.0031∗∗∗ 0.0031∗∗∗ 0.0031∗∗∗

(5.072) (5.717) (5.370) (3.835)

TRMS -0.0015 -0.0015 -0.0015 -0.0015
(-0.302) (-0.300) (-0.311) (-0.279)

Const. 1.6670∗∗∗ 1.6670∗∗∗ 1.6670∗∗∗ 1.6670∗∗∗

(7.750) (7.452) (6.737) (7.965)

# obs. 11775 11775 11775 11775
# stocks 219 219 219 219
overall-R2 0.029 0.029 0.029 0.029

This table provides the coefficient estimates from the regression model in (10)
estimated by fixed effects (within) regression. The t-stats (in parentheses)
are based on standard error estimates obtained from the covariance matrix
estimators in the column headings. The dataset contains monthly data from
December 2000 to December 2005 for a panel of 219 stocks that have been
randomly selected from the MSCI Europe constituents list as of December
31, 2000. The dependent variable in the regression is the relative bid-ask
spread BA. aVol is the abnormal trading volume, Size contains the stock’s
size decile, TRMS denotes the monthly return in % of the MSCI Europe total
return index and TRMS2 is the square of it. ∗, ∗∗, and ∗∗∗ imply statistical
significance on the 10, 5, and 1% level, respectively.

significance on the 5% level.

6.7 Testing for Cross-sectional Dependence

Tables 2 and 3 indicate that standard error estimates depend substantially on the choice
of the covariance matrix estimator. But which standard error estimates are consistent
for the regression model in (10)? The Monte Carlo evidence presented in Section 5
indicates that the calibration of Driscoll-Kraay standard errors is worse than that of,
say, Rogers standard errors if the subjects are spatially uncorrelated. However, Driscoll
and Kraay standard errors are much more appropriate when cross-sectional dependence
is present. In order to test whether or not the residuals from a fixed effects estima-
tion of regression model (10) are spatially independent, I perform Pesaran’s (2004) CD
test.17 The null hypothesis of the CD test states that the residuals are cross-sectionally

17. CD stands for “cross-sectional dependence”. Note that Pesaran’s CD test is suitable for panels
with N and T tending to infinity in any order.
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uncorrelated. Correspondingly, the test’s alternative hypothesis presumes that spatial
dependence is present. Thanks to Rafael De Hoyos and Vasilis Sarafidis who imple-
mented Pesaran’s CD test in their xtcsd command, the CD test is readily available
in Stata.18 Because xtcsd is implemented as a postestimation command for xtreg, a
fixed-effects (or random-effects) regression model with OLS standard errors has to be
estimated prior to calling the xtcsd program:

. qui xtreg BA aVol Size TRMS2 TRMS, fe

. xtcsd, pesaran abs

Pesaran’s test of cross sectional independence = 94.455, Pr = 0.0000

Average absolute value of the off-diagonal elements = 0.160

From the output of the xtcsd command one can see that estimating (10) with fixed
effects produces regression residuals that are cross-sectionally dependent. On average,
the (absolute) correlation between the residuals of two stocks is 0.16. Therefore, it comes
as no surprise that Pesaran’s CD test rejects the null hypothesis of spatial independence
on any standard level of significance. As a result, regression (10) should be estimated
with Driscoll-Kraay standard errors since they are robust to very general forms of cross-
sectional and temporal dependence.

7 Conclusion

The xtscc program presented in this paper produces Driscoll and Kraay (1998) stan-
dard errors for linear panel models. Besides being heteroscedasticity consistent, these
standard error estimates are robust to very general forms of cross-sectional and tempo-
ral dependence. In contrast to Driscoll and Kraay’s (1998) original covariance matrix
estimator which is for use with balanced panels only, the xtscc program works with
both balanced and unbalanced panels, respectively.

Cross-sectional dependence constitutes a problem for many (microeconometric) pan-
el datasets as it can arise even when the subjects are randomly sampled. The reasons
for spatial correlation in the disturbances of panel models are manifold. Typically, it
arises because social norms, psychological behavior patterns, and herd behavior cannot
be quantitatively measured and thus enter panel regressions as unobserved common
factors.

The Monte Carlo experiments considered in this paper indicate that the choice of
the covariance matrix estimator is crucial for the validity of the statistical results. As
such, OLS, White, Rogers, and Newey-West standard errors are well calibrated when
the residuals of a panel regression are homoscedastic as well as spatially and temporally
independent. However, when the residuals are cross-sectionally correlated, then the
aforementioned covariance matrix estimators lead to severely downward biased standard

18. See DeHoyos and Sarafidis (2006) for further details about xtcsd. Note that besides Pesaran’s CD
test, the xtcsd program can also perform the cross-sectional independence tests suggested by Friedman
(1937) and Frees (1995). However, only Pesaran’s CD test is adequate for use with unbalanced panels.
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error estimates for both pooled OLS and fixed effects (within) regression, respectively.
By contrast, Driscoll-Kraay standard errors are well calibrated when the regression
residuals are cross-sectionally dependent but they are slightly less adequate than, say,
Rogers standard errors when spatial dependence is absent.

In order to ensure that statistical inference is valid, it is therefore important to test
whether or not the residuals of a linear panel model are cross-sectionally dependent.
If they are, then statistical inference should be based on the Driscoll-Kraay estimator.
However, when the residuals are believed to be spatially uncorrelated, then Rogers
standard errors are preferred. While no testing procedure for cross-sectional dependence
in the residuals of pooled OLS regression models is currently available in Stata, DeHoyos
and Sarafidis (2006) implemented Pesaran’s (2004) CD test for the FE and the RE
estimator in their xtcsd command.
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