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Introduction

• This presentation sets out a specification test of the Tobit model against the 

alternative of a specification described by the Box Cox transformation.

• An LM test is used to test the null hypothesis of no specification error as this 

requires estimates of the restricted (nested) Tobit) model

• The size and power of the test using asymptotic and bootstrap critical values 

is estimated by the empirical rejection probabilities for small sample sizes
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1. The Box Cox Tobit Model

• The Tobit model is used to address censoring and corner solution problems. 

• When censoring occurs at zero, the model in both applications is written:

where      is a `latent’ variable and . The observation rule is:

• In censored data problems, we are usually interested in the features of     such       

as                . For corner solutions however, it is               that is of interest. 

• Estimation of the parameters   , and    in (1) is by Maximum Likelihood (ML), 

with individual contribution to the log-likelihood given by:
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1. The Box Cox Tobit Model

• As Moffat (2003) noted however, there are many instances where      exhibits 

positive skew that cannot be attributed to the asymmetric censoring. 

• In the double hurdle model, Moffat takes the following transformation of     to 

preserve normality:

• The transformation, originally proposed by Box & Cox (1966) for uncensored 

data, was designed to ensure that the model for     is:

1. Linear in the explanatory variables

2. Has a constant conditional error variance  

3. Has a normally distributed error term

• The above properties are essential for the ML-estimators to be consistent       

for the true parameters in the Tobit model (1):
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1. The Box Cox Tobit Model

• Applying the Box Cox Transformation (BCT) to the Tobit model therefore, leads 

to the following observation rule:

• where        is the `transformed’ latent variable with specification:

• This should now satisfy (or approximately) the distributional requirements     

for the ML-estimator to be consistent.  

• By a change of variables, the      contribution to the log-likelihood is:  
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2. LM test of the Tobit specification

• A test of the linearity, homoskedasticity and normality assumptions of the 

Tobit specification, is therefore equivalent to a test of:

• against the more general alternative:

• The LM-statistic is the easiest to compute as this requires parameter estimates 

under the restrictions imposed by the null                        . 

• Denoting     as an          vector one 1’s,                                where

represents the      contribution to the  unrestricted score 

evaluated at the restricted   , then the OPG-version of the LM-test is:

H0 : ¸= 1

H1 : ¸ 6= 1

»
µ = (

»
¯;

»
¾; 1)

»
gi =

@ lnLi
@µ

j»
µ

»
G= (

»
g1; :::;

»
gN)

0
¿

»
µ

LM = ¿
0»
G(

»
G

0»
G

0

)¡1
»
G

0

¿
d¡! Â21

ith
N £ 1



77

2. LM test of the Tobit specification

• In this form, the LM-statistic is simply               from artificial regression: 

• From (2), the individual elements of       are:

• where                                 and                       . Under the restrictions 

imposed by the null, (3) and (4) are the scores of the Tobit model evaluated 

at the Tobit MLE’s; (5) can therefore be constructed from these estimates.   
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3. Bootstrap Critical Values

• The critical value for a test of size- is the solution to                              where  

and                          is the distribution of the data.

• Unless      is known,       cannot be obtained  and we use critical values from 

the limiting distribution under   , i.e.: .             

• The size of the test using         is which can be determined through 

the asymptotic expansion . This error can be large

• An alternative approach is to obtain critical values from the bootstrap null 

distribution                which replaces     with a consistent estimator     . Then:    

• which has a smaller error of order              . The critical value         solving 

be found by Monte Carlo simulation  as  the           

quantile of the B ordered bootstrap statistics   
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4. The Parametric Bootstrap Algorithm 

• The null                 is rejected if                . 

• In the    - simulations, each bootstrap sample is generated by re-sampling     

from the EDF, while generating       from                 . The algorithm is:
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5. Monte-Carlo Design 

• The size and power of the LM-test using bootstrap and first-order asymptotic 
critical values can be estimated from the empirical rejection probabilities. 

• The data for the Monte-Carlo experiments is generated from the DGP:

The experiments consist of the following steps:

. 

• As                 , then . Thus  for
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• Under , the empirical rejection probability  is an estimate of the size 

of the LM-test using bootstrap & asymptotic critical values .

• For these experiments          ,             ,             ,            ,

and                             where: ,             and 

. The size estimates are:

• Using bootstrap critical values there is no size distortion. This is not the      

case using asymptotic critical values which result in  large size distortions 

5.1 Size Estimates 
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5.2 Power Estimates (1) 

• Under                 , the empirical rejection probability is an estimate of the 

power of the LM-test against the alternative. 

• For these experiments,         ,             ,           ,             ,                       

and where                       ,           ,   and      

. The power estimates are:

• With the exception of            , the LM-test using bootstrap critical values    

at the 5% level of significance seems reasonably powerful for 
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5.3 Power Estimates (2)

• Whilst the LM-test exhibits reasonable power for        , it is worth examining 

the power against DGP’s where a         would necessary for consistency

• For these experiments,          , ,          , , and the data are 

generated using similar DGP’s to those used by Drukker(2002):

• The     are generated from,         ,    , and     , distributions and the function              

for homoskedastic and                  for hetroskedastic errors.

• The following table sets out the power estimates:
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6. Description of `bctobit’ Program 

bctobit [, Fixed Nodots bfile(string) reps(integer 499)] 

Description

• bctobit computes the LM-statistic for testing                    against                
in the Box Cox Tobit model. This is equivalent to testing the linearity, 
normality and homoskedasticity assumptions of the Tobit specification. 

• The regressors are assumed to be random, and critical values are obtained 
from the bootstrap null distribution of the LM test statistic by repeated 
sampling from the (parametric) bootstrap DGP. 

Options

• Fixed - specifies that the regressors are fixed in the bootstrap null distribution

• Nodots – suppresses the replication dots 

• bfile(name) – the name of the saved file which contains the LM-statistics computed    
from the bootstrap samples

• reps(#) - the number of samples to be drawn from the bootstrap DGP to estimate the   
percentiles of the bootstrap null distribution. Default is 499

H0 : ¸= 1 H1 : ¸ 6= 1
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6. Description of `bctobit’ Program 
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7. Further Research....

• A natural extension would be to consider the alternative of a Box Cox 

transformation with an error term that is hetroskedastic

• where    is an unknown function , with             ,             and 

• A test of the joint hypothesis: against the alternaitve  of          

is  equivalent to testing the validity of the Tobit specification. 

• The LM statistic would now be based on the additional components of the 

score vector, evaluated at the restrictions given by the null. These are:

• As such                            . The  size and power using  bootstrap critical 

values can be estimated from empirical rejection probabilities as before. 
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