xtmixed & denominator degrees of freedom: myth or magic

2011 Chicago Stata Conference

Phil Ender

UCLA Statistical Consulting Group

July 2011
Here are two abbreviations I will be using:

- ddf – Denominator degrees of freedom.
- ddfm – Denominator degrees of freedom method.
Consider this Simple Randomized Block Example

Randomized block design with 16 subjects and 3 treatment levels.

```
. anova y trt id
```

```
Number of obs = 48  R-squared = 0.7592
Root MSE = 3.23265  Adj R-squared = 0.6227

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>988.166667</td>
<td>17</td>
<td>58.127451</td>
<td>5.56</td>
<td>0.0000</td>
</tr>
<tr>
<td>trt</td>
<td>63.1666667</td>
<td>2</td>
<td>31.5833333</td>
<td>3.02</td>
<td>0.0637</td>
</tr>
<tr>
<td>id</td>
<td>925</td>
<td>15</td>
<td>61.6666667</td>
<td>5.90</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>313.5</td>
<td>30</td>
<td>10.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1301.66667</td>
<td>47</td>
<td>27.6950355</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Computing the F-ratio

\[F = \frac{(SS_n)/(ndf)}{(SS_d)/(ddf)} \]
\[= \frac{(63.1666667)/(2)}{(313.5)/(30)} \]
\[= \frac{31.583}{10.45} \]
\[= 3.02 \]

The denominator degrees of freedom is 30.
Same data using `xtmixed`

```
. xtmixed y i.trt || id:, var
```

Mixed-effects REML regression
Group variable: id

Number of obs = 48
Number of groups = 16

Obs per group: min = 3
avg = 3.0
max = 3

Wald chi2(2) = 6.04
Prob > chi2 = 0.0487

Log restricted-likelihood = -134.12322

| | Coef. | Std. Err. | z | P>|z| | [95% CI] |
|----|-------|-----------|-------|------|---------|
| 2.trt | -0.875 | 1.142913 | -0.77 | 0.444 | -3.12 | 1.37 |
| 3.trt | -2.75 | 1.142913 | -2.41 | 0.016 | -4.99 | -0.51|
| _cons | 15.625 | 1.311541 | 11.91 | 0.000 | 13.05 | 18.2 |
Random-effects Parameters | Estimate Std. Err. [95% CI]
-------------------------------+--
id: Identity |
 var(_cons) | 17.07223 7.559526 7.17 40.66
-------------------------------+--
 var(Residual) | 10.45 2.698177 6.3 17.33
-------------------------------+--
LR test vs. linear regression: chibar2(01) = 16.95
 Prob >= chibar2 = 0.0000
Omnibus test for treatment.

```
. test 2.trt 3.trt

( 1) [y]2.trt = 0
( 2) [y]3.trt = 0

    chi2(  2) = 6.04
    Prob > chi2 = 0.0487
```

Scale chi-square as F-ratio.

```
. display r(chi2)/r(df)

    3.0223293
```

F-ratio from `xtmixed` is the same as the F-ratio from `anova`.
Assuming that the ddf for this simple balanced model is,

\[
ddf = obs - df(trt) - df(id) - 1
\]
\[
= 48 - 2 - 15 - 1
\]
\[
= 30
\]

Then, the p-value equals,

\[
F_{\text{tail}}(2, 30, 3.022) = 0.06372709
\]
Comparing p-values

The p-value for the chi-square is 0.0487

The p-value for the anova F-ratio is 0.0637

Chi-square is a large sample normal based statistic, so for small experimental designs we prefer the p-values obtained from the F-distribution. If \texttt{xtmixed} provided denominator degrees of freedom this would be a very simple matter.
There are many situations that **anova** does not handle well. Here are three examples.

- Incomplete data within subject
- Unequally spaced time intervals
- Level 1 covariance structures other than compound symmetry

UCLA has many researchers working within traditional anova frameworks with relatively small experimental designs. Reviewers and editors of journals in these fields are familiar with experimental designs and with F-ratios.

However, it is common for data to be unbalanced within subject, as is the need for alternative level 1 covariance structures. **Xtmixed** would be ideal for these situations if it could produce probabilities adjusted for smaller samples.
Consider a modification of our randomized block example with one missing observation for each of four subjects.

Same `xtmixed` command.

```
. xtmixed y i.trt || id:, var
```
Mixed-effects REML regression

Number of obs = 44

Group variable: id

Number of groups = 16

Obs per group: min = 2
avg = 2.8
max = 3

Wald chi2(2) = 6.51

Log restricted-likelihood = -120.42308
Prob > chi2 = 0.0385

| | Coef. | Std. Err. | z | P>|z| | [95% CI] |
|-------|--------|-----------|-------|------|------------|
| 2.trt | -1.358164 | 1.133608 | -1.20 | 0.231 | -3.58, .86 |
| 3.trt | -2.821488 | 1.105687 | -2.55 | 0.011 | -4.99, -.65|
| _cons | 15.37974 | 1.275609 | 12.06 | 0.000 | 12.88, 17.878|
Random-effects Parameters | Estimate Std. Err. [95% CI]
+---------------------------------+----------------------------------+
 id: Identity |
 var(_cons) | 16.27504 7.162905 6.87 38.56
+---------------------------------+----------------------------------+
 var(Residual) | 8.929243 2.465748 5.2 15.34
+---------------------------------+----------------------------------+

LR test vs. linear regression: chibar2(01) = 16.66
 Prob >= chibar2 = 0.0000
Omnibus test for main effect for treatment.

```
. test 2.trt 3.trt

( 1) [y]2.trt = 0
( 2) [y]3.trt = 0

chi2( 2) = 6.51
Prob > chi2 = 0.0385
```

Scale chi-square as F-ratio.

```
. display r(chi2)/r(df)
3.2572416
```
Comparing p-values

The p-value for the chi-square is 0.0385

The p-value for the F-ratio is $F_{\text{tail}}(2, ?, 3.257) = ?$

Even thought the chi-square has been rescaled as an F-ratio, there is no p-value for the F-ratio because we don’t know the denominator degrees of freedom.
So, why doesn’t xtmixed provide the ddf?

The simple answer:

xtmixed does not know the denominator degrees of freedom. It does not have mean squares or numerators or denominators in the anova sense. And, it does not compute F-ratios at all. xtmixed performs statistical tests by dividing parameter estimates by their standard errors.
What can be done?

Since there is no actual denominator degrees of freedom, we need an approximation of an F-distribution that has appropriate control over the Type I Error and has adequate power.

This is not an easy task. There does not seem to be a single F-approximation that works for all possible mixed models. It may be difficult, but it doesn’t mean that no one ever tried.
<table>
<thead>
<tr>
<th>Package</th>
<th>Command</th>
<th>ddf method</th>
<th>Philosophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stata</td>
<td>xtmixed</td>
<td>none</td>
<td>Statistical</td>
</tr>
<tr>
<td>R</td>
<td>lmer</td>
<td>none</td>
<td>Purity</td>
</tr>
<tr>
<td>R</td>
<td>lme</td>
<td>containment</td>
<td>Empirical</td>
</tr>
<tr>
<td>SPSS</td>
<td>mixed</td>
<td>Satterthwaite</td>
<td>Pragmatism</td>
</tr>
<tr>
<td>SAS</td>
<td>proc mixed</td>
<td>Satterthwaite Kenward-Roger* between-within residual containment</td>
<td></td>
</tr>
</tbody>
</table>

* SAS’ current favorite.
Residual df = \(N - \text{rank}(X) \)
= 44 - 3
= 41

Containment df = \(N - \text{rank}(X, Z) \)
= 44 - 3 - 15
= 44 - 18
= 26

Betwithin df = Residual df - \text{rank}(Z)
= 41 - 15
= 26
The Satterthwaite approximation is intended as an accurate F-test approximation, and hence accurate p-values for the F-test. SAS does warn that the small-sample properties of the Satterthwaite approximation have not been thoroughly investigated for all models.
The Kenward-Roger method is an attempt to make a further adjustment to the F-statistic, to take into account the fact that the REML estimates of the covariance parameters are estimates and not known quantities. This method inflates the marginal variance-covariance matrix and then applies the Satterthwaite method on the resulting matrix.
Residual, containment and between-within methods are fairly simple to compute. However, Satterthwaite and Kenward-Rogers are both computationally and resource intensive.

The computational overhead increases with the complexity of the design and with the complexity of the unbalancedness.
Various F-approximations with our RB-3 example with 4 missing observations using SAS.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>ddf</th>
<th>p-value</th>
<th>ddfm</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>3.26</td>
<td>26.7</td>
<td>0.0542</td>
<td>Satterthwaite</td>
</tr>
<tr>
<td>F</td>
<td>3.25</td>
<td>26.7</td>
<td>0.0546</td>
<td>Kenward-Roger</td>
</tr>
<tr>
<td>F</td>
<td>3.26</td>
<td>26</td>
<td>0.0547</td>
<td>between-within</td>
</tr>
<tr>
<td>F</td>
<td>3.26</td>
<td>26</td>
<td>0.0547</td>
<td>contain</td>
</tr>
<tr>
<td>F</td>
<td>3.26</td>
<td>41</td>
<td>0.0487</td>
<td>residual</td>
</tr>
<tr>
<td>chi2</td>
<td>6.514</td>
<td></td>
<td>0.0385</td>
<td>from Stata</td>
</tr>
</tbody>
</table>
xtmixed does not provide adjusted ddf’s, however anova with the repeated option will adjust both the numerator and denominator degrees of freedom.

We will return the original randomized block data, the one without any missing observations and rerun anova using repeated(trt).
. anova y trt id, repeated(trt)
...

Between-subjects error term: id
 Levels: 16 (15 df)
 Lowest b.s.e. variable: id

Repeated variable: trt
 Huynh-Feldt epsilon = 1.0847
 *Huynh-Feldt epsilon reset to 1.0000
 Greenhouse-Geisser epsilon = 0.9505
 Box’s conservative epsilon = 0.5005

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>Regular</th>
<th>H-F</th>
<th>G-G</th>
<th>Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>trt</td>
<td>2</td>
<td>3.02</td>
<td>0.0637</td>
<td>0.0637</td>
<td>0.0668</td>
<td>0.1026</td>
</tr>
<tr>
<td>Residual</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use Three-Step Procedure to determine statistical significance.

\[
\begin{align*}
F_{tail}(2, 30, 3.022) &= 0.06372709 // \text{Regular} \\
F_{tail}(2 \times 1, 30 \times 1, 3.022) &= // \text{Huynh – Feldt} \\
F_{tail}(2, 30, 3.022) &= 0.06372709 \\
F_{tail}(2 \times .9505, 30 \times .9505, 3.022) &= // \text{Greenhouse – Geisser} \\
F_{tail}(1.901, 28.515, 3.022) &= 0.0668668 \\
F_{tail}(2 \times .5, 30 \times .5, 3.022) &= // \text{Box's Conservative} \\
F_{tail}(1, 15, 3.0222) &= 0.10261965
\end{align*}
\]
And, of course, t-test with unequal variances

both Satterthwaite and Welch degrees of freedom for t-tests with unequal variances produce latent ddf.

. ttest y, by(grp)

Two-sample t test with equal variances:
t = -2.0325 df = 38 p-value = 0.0491

Two-sample t test with unequal variances using Satterthwaite’s df:
t = -2.0325 df = 26.7921 p-value = 0.0521

Two-sample t test with unequal variances using Welch’s df:
t = -2.0325 df = 27.6124 p-value = 0.0518
What can you do short of running SAS?

Consider a split-plot design with \textbf{a} between subjects and \textbf{b} within subjects and with missing observations within subject:

\begin{verbatim}
 . xtmixed y a##b || id:
\end{verbatim}

Use the ddf from the following \texttt{anova} models with the chi-squares rescaled as F-ratios from \texttt{xtmixed}:

\textbf{Between-within ddf:} (two error terms)
\begin{verbatim}
 . anova y a / id|a b a##b /
\end{verbatim}

\textbf{Containment ddf:} (one error term)
\begin{verbatim}
 . anova y a id|a b a##b
\end{verbatim}

\textbf{Residual ddf:} (one error term)
\begin{verbatim}
 . anova y a b a##b
\end{verbatim}
Mostly myth

