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Introduction

We derive the identification and estimation of a semiparametric
ACRF with sample selection in a high-dimensional covariate
environment.
▶ An average causal effect (ACR) is usually defined as the

expected difference between the outcomes of the treated, and
what these outcomes would have been in the absence of
treatment, especially for multi-valued treatment (Angrist and
Imbens,1995)

▶ ACR has been widely applied in treatment effect literature
with many interesting applications such as drug dosage, hours
of exam preparation, cigarette smoking, and years of schooling
in the treatment effect literature (Abadie, 2003)

▶ high-dimensional covariates => model the endogenous
treatment in a more flexible way and justify the validity of IV
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What we do?

We considers identification and estimation of a semiparametric
ACRF in a high-dimension framework with an application to US
Job Corps data:
▶ Propose the identification moment for ACRF with endogenous

treatment and derive Neyman orthogonal moments to
estimate two semi-parameric estimators based on it: HDSS
and HDSS-series;

▶ Derived asymptotics for the proposed estimators and both of
them are proved to be consistent and asymptotically normal,
and Monte Carlo simulations demonstrate that ACRF
performs better than the existing IV estimators in many
empirically relevant scenarios;
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What we do?

We considers identification and estimation of a semiparametric
ACRF in a high-dimension framework with an application to US
Job Corps data:
▶ Derive bounds on the proposed ACRF with one single IV with

more complex selection mechanism (i.e., the treatment status
affects the selection process)

▶ Apply the proposed methods to NJCS data to evaluate the
causal response of residential component and yields new
insights with consideration of heterogeneous causal effects
with high-dimensional covariates.
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Possible contributions

Our model owns four distinct features: high-dimensional setup,
nonparametric response function, sample selection, and nontrival
empirical findings. Our work may
▶ contribute to the high-dimensional treatment effect literature

(Chernozhukov et al.,2018;Fan et al.,2022) by deriving a set of
Neyman orthogonal moments with three nuisance parameters and
utilizing the double machine learning techniques to estimate the
proposed functional estimators;

▶ extend ACR to be ACRF which can be varying on covariates and
estimate both of them in a unified framework (Angrist and
Imbens,1995;Abadie,2003; Callaway et al., 2024);
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Possible contributions

Our model owns four distinct features: high-dimensional setup,
nonparametric response function, sample selection, and nontrivial
empirical findings. Our work may
▶ consider the identification and estimation of heterogeneous average

causal effect function with sample selection and derive bounds on
the ACRF with one single IV, which extends the treatment effect
bounds in Lee (2009), Chen and Flores (2015) and more recently
Bartalotti et al(2023);

▶ contribute to the broad literature on evaluation of the effectiveness
of US Job Corps program (JC) and recent debate on its reform
(Chen et al, 2018; Huber et al, 2020; Strittmatter 2019;
Thrush,2018).
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Model Setting
Consider a sample selection model with heterogeneous treatment
function m(X1, D) and high-dimensional covariates X2

Y = S · Y ∗ (1)
Y ∗ = m(X1, D) + g(X2) + U (2)
D = D(X1, X2, X3, V ) (3)
S = S(X1, X2, ε) (4)

▶ X1 ∈ Rd1 : low dimensional covariates, X2 ∈ Rp: high-dimensional
covariates

▶ The m(X1, D) and g(X2) are unknown functions and separate
additive

▶ D(X1, X2, X3, V ): the treatment equation and S(X1, X2, ε): the
selection equation

▶ (U, V , ε) is joint errors which may be correlated with each others,
and X3 is an instrument variable for binary treatment D
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Parameter of Interest

The parameter of interest is

θ(X1) = m(X1, 1) − m(X1, 0), (5)

which may vary by X1, and

ACR = E [θ(X1)|S = 1] = E [m(X1, 1) − m(X1, 0)|S = 1]. (6)

▶ Parameter in Eq.(5) is an average causal response function (ACRF)
and Parameter in Eq.(6) is the average causal response (ACR) for
binary treatment (Angrist and Imbens,1995;Abadie,2003;Callaway et
al., 2024)

▶ ACRF could be regarded as a conditional average treatment effect
(CATE) under strong assumps (Y (1) − Y (0) is identical for all
individuals)
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Identification of Parameter of Interest

Assumption 1
Given X1 and X2, X3 is independent of (U, V , ε).

Since S = S(X1, X2, ε), this assumption implies that X3 is independent of
selection S and unobserved heterogeneity U (i.e. the source of
endogeneity) for given values of X1 and X2. This is an analog of exclusive
restriction.

Assumption 2
P(S = 1|X1) > 0 with probability one.

For almost all possible values of X1, outcome Y is observed (S = 1) with
positive probability. This allows us to identify the casual effect θ(x1) for
any given value of x1.



13/50

Assumption 3
Let µ(X1, X2, X3) = E [D|X1, X2, X3, S = 1]. The propensity score
function µ( · ) satisfies that

P
(
µ(X1, X2, X3) ̸= E [µ(X1, X2, X3)|X1, X2, S = 1]

∣∣X1 = x1, S = 1
)

> 0.

This assumption implies that X3 truly affects D. This is an analog
of relevant condition.
Summary of Assumptions 1 to 3: X3 can exogenously affect
treatment assignment D without altering the sample selection
mechanism S, this tells us that X3 is a valid instruments in our
context.
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Identification of Parameter of Interest

E [Y |X1, X2, X3, S = 1]
=E [m(X1, 0) +

(
m(X1, 1) − m(X1, 0)

)
D + g(X2) + U|X1, X2, X3, S = 1]

=m(X1, 0) +
(
m(X1, 1) − m(X1, 0)

)
E [D|X1, X2, X3, S = 1] + g(X2)

+ E [U|X1, X2, X3, S = 1]
=m(X1, 0) + g(X2) + E [U|X1, X2, X3, S = 1]

+
(
m(X1, 1) − m(X1, 0)

)
E [D|X1, X2, X3, S = 1]

=m(X1, 0) + g(X2) + f (X1, X2)
+
(
m(X1, 1) − m(X1, 0)

)
E [D|X1, X2, X3, S = 1]

=m̃(X1, X2) + θ(X1)µ(X1, X2, X3)

The slope coefficient θ(X1) is identified by exploring the ratio of
the variation in E [Y |X1, X2, X3, S = 1] to the variation in
µ(X1, X2, X3) caused exogenously by the change of X3.
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Neyman Orthogonal Moments
Recall:

E [Y |X1, X2, X3, S = 1] = m̃(X1, X2) + θ(X1)µ(X1, X2, X3) (7)

Conditioning on (X1, X2, S = 1), by LIE:
E [Y |X1, X2, S = 1] = m̃(X1, X2) + θ(X1)µ̃(X1, X2),
where µ̃(X1, X2) = E [D|X1, X2, S = 1]. Therefore,

m̃(X1, X2) = h(X1, X2) − θ(X1)µ̃(X1, X2), (8)

where h(X1, X2) = E [Y |X1, X2, S = 1].
Also, Eq.(7) can be written as a moment condition

E [Y − m̃(X1, X2) − Dθ(X1)|X1, X2, X3, S = 1] = 0. (9)

Plug (8) into (9),

E
[
Y − h(X1, X2) − θ(X1)

(
D − µ̃(X1, X2)

)∣∣∣X1, X2, X3, S = 1
]

= 0.

(10)
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Neyman Orthogonal Moments

Since X2 is of high dimension, Neyman orthogonal moments can
be derived based on the identification strategy as follows

E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)
·

[
Y − h(X1, X2) − θ(X1)

(
D − µ̃(X1, X2)

)]∣∣∣∣∣X1 = x1, S = 1
]

= 0

(11)

▶ It follows a similar idea as Example 1.1 in Chernozhukov et al.
(2018)

▶ There are three nuisance parameters η0 =
(
µ( · ), h( · ), µ̃( · )

)
.

▶ We can verify the Neyman orthogonality condition holds with
respect to the nuisance parameters.
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Estimation

Based on the Neyman orthogonal moment in Eq.(11), we can solve

θ(x1) =
E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)(

Y − h(X1, X2)
)∣∣∣X1 = x1, S = 1

]
E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)(

D − µ̃(X1, X2)
)∣∣∣X1 = x1, S = 1

] ,

(12)

▶ Note that the denominator is non-zero by Assumption 3.
▶ θ(x1) is a ratio of two conditional expectation and a multiple

step procedure is proposed.
▶ Depends on different techniques used in the last step, we

proposed two estimators: HDSS and HDSS-series.
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Estimation Procedure: HDSS
Step 1 For each k = 1, 2, . . . , K , we estimates within sample Ic

k
(i) Let X̃3 be (X1, X2, X3) or a series of functions of (X1, X2, X3).

Consider
P(D = 1|X1, X2, X3, S = 1) ≈ Λ(X̃ ′

3α).
α can be estimated on the subsample Ic

k by logistic regression
with ℓ1 penalty, denoted by α̂−k .

µ̂(X1, X2, X3; Ic
k ) = Ê [D|X1, X2, X3, S = 1]|Ic

k
= Λ(X̃ ′

3α̂−k);

(ii) Let X̃2 be (X1, X2) or a series of functions of (X1, X2). Regress
Y on X̃2 with ℓ1 penalty (i.e., LASSO), and obtain

ĥ(X1, X2; Ic
k ) = Ê [Y |X1, X2, S = 1]|Ic

k
= X̃ ′

2γ̂−k ;
(iii) Similar to Step 1(i), we estimate

P(D = 1|X1, X2, S = 1) ≈ Λ(X̃ ′
2ν)

on the subsample Ic
k by logistic regression with ℓ1 penalty,

denoted by ν̂−k . It yieldŝ̃µ(X1, X2; Ic
k ) = Ê [D|X1, X2, S = 1]|Ic

k
= Λ(X̃ ′

2ν̂−k).
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Estimation Procedure: HDSS

Step 2 Denote Kh(x1; X1i) = 1
hd1 K

(X1i −x1
h

)
.

θ̂Ker (x1) =
∑K

k=1
∑

i∈Ik Si∆µ̂i · ∆Yi · Kh(x1; X1i)∑K
k=1

∑
i∈Ik Si∆µ̂i · ∆Di · Kh(x1; X1i)

(13)

where

∆µ̂i : = µ̂(X1i , X2i , X3i ; Ic
k ) − ̂̃µ(X1i , X2i ; Ic

k )
∆Yi : = Yi − ĥ(X1i , X2i ; Ic

k )
∆Di : = Di − ̂̃µ(X1i , X2i ; Ic

k )

Which is denoted as High-dimensional sample selection
estimator, i.e., HDSS estimator.
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Estimation Procedure: HDSS-series
To avoid the boundary bias introduced by nonparametric kernel
estimation, we also propose a series estimation procedure which is
more precise and robust to boundary points within the range of X1.

E
[

pk(X1)
(
µ(X1, X2, X3) − µ̃(X1, X2)

)[
Y − h(X1, X2)−

θ(X1)
(
D − µ̃(X1, X2)

)]∣∣∣∣∣S = 1
]

= 0, k = 1, 2, . . .

Thus by series approximation θ(X1) ≈
∑Kn

k=1 βkpk(x1),

E
[

pk(X1)
(
µ(X1, X2, X3) − µ̃(X1, X2)

)[
Y − h(X1, X2)−

Kn∑
k=1

βkpk(x1)
(
D − µ̃(X1, X2)

)]∣∣∣∣∣S = 1
]

≈ 0, k = 1, 2, . . . , Kn

(14)
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Estimation Procedure: HDSS-series

Step 1 The same as HDSS estimator;
Step 2 Denote zi ,wi , qi and their estimates ẑi , ŵi , q̂i as

zi =


p1(X1i)

(
µ − µ̃(X1i , X2i)

)
p2(X1i)

(
µ − µ̃(X1i , X2i)

)
...

pKn (X1i)
(
µ − µ̃(X1i , X2i)

)
 ; ẑi =


p1(X1i)

(
µ̂ − ̂̃µ(X1i , X2i)

)
p2(X1i)

(
µ̂ − ̂̃µ(X1i , X2i)

)
...

pKn (X1i)
(
µ̂ − ̂̃µ(X1i , X2i)

)

 ;

wi =


p1(X1i)

(
Di − µ̃(X1i , X2i)

)
p2(X1i)

(
Di − µ̃(X1i , X2i)

)
...

pKn (X1i)
(
Di − µ̃(X1i , X2i)

)
 ; ŵi =


p1(X1i)

(
Di − ̂̃µ(X1i , X2i)

)
p2(X1i)

(
Di − ̂̃µ(X1i , X2i)

)
...

pKn (X1i)
(
Di − ̂̃µ(X1i , X2i)

)

 ;

qi = Yi − h(X1i , X2i); q̂i = Yi − ĥ(X1i , X2i).



23/50

Estimation Procedure: HDSS-series

Step 2 Continued
Then Eq.(14) is equivalent to E [zi(qi − w ′

i β
Kn )] ≈ 0. A series

estimator is

β̂Kn =
( N∑

i=1
Si ẑi ŵ ′

i
)−1( N∑

i=1
Si ẑi q̂i

)
(15)

θ̂Series(x1) = pKn (x1)′β̂Kn . (16)

In practise, the polynomial order Kn is chose by leave-one-out
Cross-Validation. We denote this estimator as HDSS-series
estimator.
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Asymptotics for HDSS Estimator (I)
Under assumptions 1-3, sample splitting, kernel estimation and first stage
converge rate assumptions, we obtain following asymptotic linear
representation for ACRF based on kernel estimation:

Theorem 1
If Assumptions 1 to 6 hold and x1 ∈ T is an interior point, then

sup
x∈T

∣∣θ̂Ker (x1) − θ(x1)
∣∣ = Op

(
hs +

(
log(n)

/
(nhd1 )

)1/2
)

,

θ̂Ker (x1) − θ(x1) − hsB(x1) = V(x1)−1 1
hd1

(Pn − P) Siη
D
i νY

i
P(S = 1)K

(
X1i − x1

h

)
+ Rθ(x1)

where ηD
i = µ(X1i , X2i , X3i) − µ̃(X1i , X2i),

νY
i = Yi − h(X1i , X2i) − θ(X1i)

(
Di − µ̃(X1i , X2i)

)
, and

sup
x∈T

|Rθ(x1)| = op

(
hs +

(
log(n)

/
(nhd1 )

)1/2
)

.

B(x1) and V(x1) are defined in our paper.

Note that E [ηD
i νY

i |X1i , Si = 1] = 0 by the Neyman orthogonal moment.
The asymptotic linear representation above implies an asymptotic normal
distribution.
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Asymptotics for HDSS Estimator (II)
To reduce boundary bias, we assume a subset T of supp(X1) that
excludes the boundary area and propose a trimmed average casual
response estimator as follows

ÂCRT ,Ker = 1
nTS

n∑
i=1

Si1
(
X1i ∈ T

)
θ̂Ker (X1i),

where nTS =
∑n

i=1 Si1
(
X1i ∈ T

)
.

Theorem 2
If Assumptions 1 to 7 hold and nh2s → 0, then

√
n
(
ÂCRT ,Ker − ACRT

) d−→ N (0, σ2
acr ),

where

σ2
acr = 1

P(S = 1)E
[{

ηD
i νY

i
}2 1

(
X1i ∈ T

)
fX1|S=1(X1i)2

P(X1 ∈ T |S = 1)2V(X1i)2

∣∣∣∣Si = 1
]

+
Var
(
θ(X1i)

∣∣X1i ∈ T , Si = 1
)

P(X1 ∈ T , S = 1) .

The variance consists of : (i) estimation of θ(X1i); (ii) taking average of θ(X1i).
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Asymptotics for HDSS-series Estimator (I)
Theorem 3
If Assumptions 1 to 4, Assumptions 8 to 9 hold, then

(i) supx1∈X1 |θ̂Series(x1) − θ(x1)| = Op
(
K −α

n ζ0(Kn)2 + ζ0(Kn)/
√

n
)

= op(1).

(ii) Denote Σ̂θ,Kn (x1) as

Σ̂θ,Kn (x1) =pKn (x1)′
(

n−1
n∑

i=1

Si ẑi ŵ ′
i

)−1(
n−1

n∑
i=1

Si ẑi ẑ ′
i {q̂i − ŵ ′

i βKn }2
)

(
n−1

n∑
i=1

Si ŵi ẑ ′
i

)−1
pKn (x1).

If x1 satisfies that lim infn→∞
∥pKn (x1)∥

ζ0(Kn) = c(x1) > 0, then

√
nΣ̂θ,Kn (x1)−1/2(θ̂Series(x1) − θ(x1) − Bn(x1)

) d−→ N (0, 1),

where Bn(x1) = O(K −α
n ζ0(Kn)2) is a bias term defined in our paper.

This thm presents both consistency and asymptotic normality of
HDSS-series est. A standard t-test is applicable for inference here.
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Asymptotics for HDSS-series Estimator (II)
Our suggested series estimator of average causal response is

ÂCRSeries =
∑n

i=1 Si θ̂Series(X1i)∑n
i=1 Si

,

Theorem 4
Denote Σacr = E

[
Si{ηD

i νY
i }2q(X1i)2

]
+

Var
(

θ(X1i )
∣∣Si =1

)
P(Si =1) and

Σ̂acr =
(

nS
−1

n∑
i=1

SipKn (X1i)′
)(

n−1
n∑

i=1

Si ẑi ŵ ′
i

)−1(
n−1

n∑
i=1

Si ẑi ẑ ′
i {q̂i − ŵ ′

i βKn }2
)

·

(
n−1

n∑
i=1

Si ŵi ẑ ′
i

)−1(
nS

−1
n∑

i=1

SipKn (X1i)
)

+ 1
nS

n∑
i=1

Si
{

θ̂Series(X1i) − θS
}2

,

where nS =
∑n

i=1 Si , S = n−1∑n
i=1 Si , and θS = n−1

S
∑n

i=1 Si θ̂Series(X1i). If
Assumption 1 to Assumption 4, Assumption 8 to Assumption 10 hold, then
√

n
(
ÂCRSeries − ACR

) d−→ N (0, Σacr ) and Σ̂acr
p−→ Σacr as n → ∞.
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Comments: HDSS v.s. HDSS-series

▶ As for the estimation of ACRF θ(x1), both estimators are
asymptotic normally distributed. However, kernel-based HDSS
estimator has to exclude the boundary area of supp(X1) while
HDSS-series estimator presents more robustness near the
boundary.

▶ The asymptotic variance of both estimators for ACR have two
components: (i) The first part is because of the estimation of
θ( · ); (ii) The second part is the variance from averaging
θ(X1i). Moreover, both estimators have

√
n−convergent rates.
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A Short Note for Efficiency

▶ According to Theorem 2 and Theorem 4, if we ignore
trimming and assume all regular assumptions hold, both
estimators for ACR have the same asymptotic variance, i.e.
Σacr = σ2

acr . This can be verified algebraically.

▶ If we further assume that there is no sample selection, this
asymptotic variance is also the same as semiparametric
efficient variance for average linear regression function, see
Graham and de Xavier Pinto(2022). But our approach attains
this efficiency in a high-dimensional setting.
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Monte Carlo Settings

We consider the following DGP with a benchmark case
Y = S ∗ Y ∗

Y ∗ = X1 + 2X1D + X 2
1 D + 3X21 + 4X 2

22 + U (DGP1)
with m(X1, D) = X1 + 2X1D + X 2

1 D, g(X2) = 3X21 + 4X 2
22

D = 1{V < X1 + 2X22 + 3X3}
S = 1{ε < 2 + 2X1 + X22}

where X1 = (0.5X21 + W )/
√

1.25 ∼ N(0, 1) and is correlated with X21;

with X2 ∼ N(0, Σp), (i , j)-th element: Σij = ρ|i−j| (Default: ρ = 0.6)
and W ∼ N(0, 1), X3 ∼ N(0, 1)(U

V
ε

)
∼ N

((0
0
0

)
,

(
σ2

u 0.5 0.5
0.5 σ2

v 0
0.5 0 σ2

ε

))
.

With σ2
u = σ2

v = σ2
ε = 1.

...
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Monte Carlo Settings

The true function of θ and and the average causal response estimator
(ACR) is

θ(X1) = 2X1 + X 2
1

E [θ(X1)|S = 1] = 2E [X1|S = 1] + E [X 2
1 |S = 1].

Note that Corr(X1, X21) ̸= 0, thus we compare results of the proposed
method with nonpara 2SLS estimators.
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Monte Carlo Settings

We also investigate several scenarios with exponential decaying
coefficients on high-dimensional X2, binary X3, and discrete X1:
▶ DGP2: Y ∗ = X1 + 2X1D + X 2

1 D +
∑p

j=1(0.8)j−1X2j + U with
m(X1, D) = X1 + 2X1D + X 2

1 D, g(X2) =
∑p

j=1(0.8)j−1X2j
▶ DGP3: Binary IV, X3 ∼ Binomial(0.5)
▶ DGP4: Discrete X1 with equal prob of 1/3

Pr(X1 = 0) ≈ Pr(X1 = 1) ≈ Pr(X1 = 2) ≈ 1/3

X1 =


0, 0.5X21 + W < −

√
5

4 ;
1, −

√
5

4 ≤ 0.5X21 + W <
√

5
4 ;

2, 0.5X21 + W ≥
√

5
4 .

and is correlated with X21.

Simulation tables: The first row of each panel reports the Bias and
the second row reports the RMSE. Replicate 100 times.
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Simulation Results for DGP 1
Table: ACRF with High Dimension Sample Selection Model by DGP 1

θ(X1) NPIV-oracle NPIV-lasso HDSS-nonorth HDSS HDSS-series
ACR -0.028 -0.216 -0.310 -0.056 -0.015

N = 500, p = 100

0.226 0.313 0.542 0.351 0.243

X1 = −1 -0.079 -0.552 -1.083 0.195 0.201
0.353 0.732 2.635 0.470 0.486

X1 = 0 0.063 0.110 -0.118 0.035 0.006
0.188 0.190 0.474 0.216 0.234

X1 = 0.5 0.054 0.071 -0.318 -0.038 -0.032
0.188 0.215 0.526 0.235 0.211

X1 = 1 -0.010 -0.200 -0.622 -0.172 -0.065
0.205 0.392 0.826 0.368 0.278

ACR 0.043 -0.172 0.574 0.068 0.072

N = 500, p = 200

0.186 0.264 7.626 0.489 0.230

X1 = −1 -0.070 -0.665 -1.459 0.231 0.280
0.371 0.846 2.319 0.513 0.554

X1 = 0 0.071 0.074 0.007 0.087 0.044
0.181 0.150 0.391 0.212 0.199

X1 = 0.5 0.073 0.086 -0.260 -0.005 0.008
0.191 0.196 0.496 0.215 0.169

X1 = 1 0.030 -0.129 -0.701 -0.136 -0.029
0.222 0.352 0.890 0.335 0.273

ACR -0.019 -0.214 0.061 -0.022 -0.001

N = 2000, p = 100

0.109 0.241 1.986 0.356 0.105

X1 = −1 -0.062 -0.220 -0.319 0.038 0.077
0.187 0.336 0.475 0.227 0.206

X1 = 0 0.042 0.111 0.118 0.021 -0.016
0.093 0.151 0.234 0.107 0.084

X1 = 0.5 0.023 -0.025 -0.273 -0.038 -0.022
0.101 0.126 0.353 0.135 0.102

X1 = 1 -0.042 -0.358 -0.735 -0.132 -0.043
0.129 0.395 0.794 0.220 0.140

ACR -0.010 -0.229 0.056 0.178 0.008

N = 2000, p = 200

0.105 0.251 1.253 2.364 0.095

X1 = −1 -0.068 -0.311 -0.450 0.027 0.080
0.180 0.376 0.592 0.221 0.216

X1 = 0 0.048 0.115 0.115 0.026 -0.001
0.094 0.160 0.242 0.105 0.088

X1 = 0.5 0.037 -0.002 -0.244 -0.033 -0.015
0.107 0.115 0.329 0.129 0.112

X1 = 1 -0.019 -0.337 -0.687 -0.118 -0.042
0.124 0.368 0.751 0.203 0.137
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Simulation Results for DGP 2
Table: ACRF with High Dimension Sample Selection Model by DGP 2

NPIV-oracle NPIV-lasso HDSS-nonorth HDSS HDSS-series
ACR 0.039 -0.218 -0.366 -0.074 -0.034

N = 500, p = 100

0.474 0.321 0.597 0.349 0.250

X1 = −1 -0.098 -0.552 -1.014 0.166 0.152
0.776 0.729 2.488 0.455 0.482

X1 = 0 0.038 0.133 -0.101 0.028 0.018
0.442 0.223 0.485 0.241 0.227

X1 = 0.5 0.096 0.090 -0.327 -0.042 -0.034
0.531 0.234 0.529 0.239 0.233

X1 = 1 0.147 -0.193 -0.681 -0.176 -0.083
0.641 0.394 0.871 0.386 0.316

ACR 0.098 -0.175 0.349 0.046 0.066

N = 500, p = 200

0.459 0.270 5.903 0.409 0.251

X1 = −1 -0.287 -0.674 -1.532 0.178 0.216
0.957 0.852 2.596 0.512 0.529

X1 = 0 -0.013 0.100 0.038 0.094 0.055
0.419 0.182 0.378 0.218 0.211

X1 = 0.5 0.121 0.107 -0.245 0.010 0.016
0.508 0.207 0.510 0.223 0.181

X1 = 1 0.253 -0.127 -0.741 -0.134 -0.035
0.680 0.351 0.925 0.352 0.295

ACR -0.017 -0.220 0.048 -0.044 -0.020

N = 2000, p = 100

0.226 0.247 2.052 0.349 0.108

X1 = −1 -0.055 -0.219 -0.283 0.037 0.075
0.406 0.335 0.453 0.227 0.205

X1 = 0 -0.042 0.137 0.142 0.017 -0.019
0.202 0.174 0.247 0.106 0.085

X1 = 0.5 -0.018 -0.004 -0.273 -0.037 -0.026
0.244 0.129 0.354 0.134 0.104

X1 = 1 0.017 -0.354 -0.795 -0.138 -0.046
0.312 0.392 0.852 0.225 0.152

ACR 0.017 -0.208 0.033 0.200 0.011

N = 2000, p = 100

0.207 0.233 1.389 2.490 0.096

X1 = −1 -0.130 -0.311 -0.408 0.021 0.072
0.473 0.377 0.567 0.226 0.218

X1 = 0 -0.047 0.145 0.137 0.027 -0.000
0.196 0.186 0.255 0.113 0.092

X1 = 0.5 0.009 0.025 -0.248 -0.034 -0.015
0.229 0.125 0.333 0.132 0.113

X1 = 1 0.075 -0.325 -0.731 -0.117 -0.040
0.307 0.360 0.790 0.205 0.149
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Simulation Results for DGP 3
Table: ACRF with High Dimension Sample Selection Model by DGP 3

θ(X1) NPIV-oracle NPIV-lasso HDSS-nonorth HDSS HDSS-series
ACR -0.035 -0.378 -1.827 0.174 -0.019

N = 500, p = 100

0.292 0.456 11.126 4.911 0.457

X1 = −1 -0.023 -0.365 -5.223 0.200 0.010
0.361 0.565 21.627 0.676 0.534

X1 = 0 0.050 0.036 -0.881 0.008 0.111
0.238 0.091 1.457 0.278 0.332

X1 = 0.5 0.025 -0.129 -0.988 -0.113 0.028
0.307 0.253 1.304 0.459 0.446

X1 = 1 -0.042 -0.533 -0.666 -0.060 -0.126
0.408 0.695 1.718 0.978 0.852

ACR 0.042 -0.321 0.140 -9.360 0.036

N = 500, p = 200

0.262 0.406 4.558 102.737 0.458

X1 = −1 -0.003 -0.530 -42.147 0.203 0.059
0.421 0.776 361.237 0.611 0.638

X1 = 0 0.075 0.052 -0.086 0.074 0.177
0.235 0.127 17.385 0.316 0.376

X1 = 0.5 0.065 -0.051 -1.026 -0.057 0.111
0.287 0.217 1.468 0.405 0.362

X1 = 1 0.021 -0.411 -1.006 -0.046 -0.095
0.385 0.600 1.645 0.865 0.617

ACR -0.044 -0.365 0.211 -0.315 -0.021

N = 2000, p = 100

0.169 0.401 6.848 2.138 0.234

X1 = −1 0.042 0.029 -0.610 0.051 0.035
0.191 0.204 0.918 0.282 0.234

X1 = 0 0.034 0.027 -0.171 0.007 0.010
0.126 0.068 0.536 0.164 0.150

X1 = 0.5 -0.021 -0.239 -0.806 -0.096 -0.020
0.169 0.269 0.982 0.212 0.150

X1 = 1 -0.110 -0.679 -1.029 -0.172 -0.074
0.251 0.732 1.471 0.389 0.364

ACR 0.006 -0.305 0.373 -0.060 0.088

N = 2000, p = 200

0.151 0.347 3.443 2.765 0.243

X1 = −1 0.019 -0.038 -0.900 0.033 0.043
0.173 0.199 1.179 0.243 0.249

X1 = 0 0.058 0.020 -0.228 0.025 0.006
0.127 0.050 0.542 0.175 0.146

X1 = 0.5 0.024 -0.192 -0.797 -0.069 0.031
0.154 0.229 0.976 0.250 0.184

X1 = 1 -0.045 -0.564 -1.032 -0.059 0.085
0.205 0.632 1.364 0.445 0.334
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Simulation: HDSS(Trimmed) v.s. HDSS(Not trimmed)

Table: Estimation ACR based on HDSS with Trimming

Design Sample Size X2 dim (p) HDSS HDSS-trimmed
Bias RMSE Bias RMSE

DGP1
500 100 -0.049 0.350 -0.078 0.226
500 200 0.078 0.491 0.001 0.232
2000 100 -0.052 0.359 -0.062 0.132
2000 200 0.192 2.365 -0.020 0.100

DGP2
500 100 -0.074 0.349 -0.104 0.244
500 200 0.046 0.409 -0.017 0.237
2000 100 -0.044 0.349 -0.051 0.128
2000 200 0.200 2.490 -0.028 0.105

DGP3
500 100 0.179 4.911 -0.209 0.493
500 200 -9.357 102.737 -0.136 0.447
2000 100 -0.305 2.137 -0.138 0.302
2000 200 -1.093 13.825 -0.073 0.265

Notes: The construction of trimmed estimator is as follow:
if the Non-trimmed HDSS estimator = mean (Ai/Bi), then
the trimming level is defined as mean(Bi) ∗ h2 ∗ n−1/2, and we
dropped the observations with |Bi | < trimming level. Replicate
100 times.
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Simulation Results for DGP 4
Table: ACRF with High Dimension Sample Selection Model by DGP 4

θ(X1) NPIV-oracle NPIV-lasso HDSS-nonorth HDSS HDSS-series
ACR -0.027 0.119 -0.979 -0.011 -0.011

N = 500, p = 100

0.214 0.319 1.006 0.232 0.232

X1 = 0 0.019 0.059 -4.907 0.158 0.158
0.218 0.146 5.093 0.315 0.315

X1 = 1 -0.049 0.348 0.951 -0.027 -0.027
0.209 0.443 1.006 0.194 0.194

X1 = 2 0.016 -0.065 -1.061 -0.086 -0.086
0.280 0.560 1.197 0.361 0.361

ACR 0.025 0.223 -0.992 0.015 0.015

N = 500, p = 200

0.196 0.352 1.018 0.212 0.212

X1 = 0 0.003 0.081 -5.983 0.181 0.181
0.224 0.188 6.288 0.317 0.317

X1 = 1 -0.008 0.414 1.152 -0.023 -0.023
0.216 0.489 1.227 0.246 0.246

X1 = 2 0.007 0.037 -1.002 -0.160 -0.160
0.287 0.539 1.162 0.397 0.397

ACR -0.008 0.092 -0.609 0.012 0.012

N = 2000, p = 100

0.112 0.162 0.622 0.106 0.106

X1 = 0 0.034 0.090 -1.712 0.082 0.082
0.116 0.132 1.727 0.137 0.137

X1 = 1 -0.018 0.211 0.368 0.008 0.008
0.101 0.241 0.386 0.095 0.095

X1 = 2 -0.012 -0.033 -0.503 -0.024 -0.024
0.154 0.226 0.573 0.139 0.139

ACR -0.007 0.100 -0.673 0.013 0.013

N = 2000, p = 200

0.105 0.163 0.683 0.109 0.109

X1 = 0 0.015 0.068 -2.155 0.082 0.082
0.116 0.121 2.178 0.132 0.132

X1 = 1 -0.018 0.234 0.448 -0.003 -0.003
0.108 0.264 0.469 0.093 0.093

X1 = 2 -0.019 -0.045 -0.508 -0.033 -0.033
0.139 0.224 0.579 0.164 0.164
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Application: Residential Component in Job Corps Program

▶ We apply the proposed methods to explore the average causal
effect of residential component and its heterogeneity within
the Job Corps program (JC) in US using the National Job
Corps Study (NJCS) data.

▶ After enrolling in JC (i.e., S=1), participants are provided a
residential choice based on their preferences. Enrollees can
choose to reside in the training center or to live at home and
commute to the training center every day (i.e., D=0 or 1).

▶ We use the prediction of residence choice as IV for the
self-selected residential component, and include
high-dimensional controls following Schochet and Burghardt
(2007).

▶ About 13 percent of participants chose to be nonresidential
and resided at home (Schochet et al., 2008).
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Application: Heterogeneous Effects by Age
We investigate the ACRF with continuous covariate X1, i.e., age,
of earning at 16th quarter and cigarette occurrence at 48th month
after randomization.

Figure: ACRF of Earnings at 16th Quarter by Age
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Application: Heterogeneous Effects by Age

Figure: ACRF of Cigarette Occurrence at 48th Month by Age
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Application: Heterogeneous Effects by Gender
We investigate the ACRF with binary covariate X1, i.e., gender, of
earning at 16th quarter and cigarette occurrence at 48th month
after randomization.

Table: ACRF Estimates by Gender

Gender Earnq16 Cigarm48

Female -19.1 0.080∗∗

[-51.6,13.5] [0.007,0.153]
Male -18.4 0.059∗

[-61.6,24.7] [-0.036,0.154]

ACR -18.7 (14.5) 0.068∗∗∗(0.032)

Notes: The point-wise 95% confidence in-
tervals are in brackets and standard errors
in parentheses for ACR. ∗ ∗ ∗ = p < 0.01;
∗∗ = p < 0.05; ∗ = p < 0.10.
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Application: Heterogeneous Effects by Ethnicity
We also investigate the ACRF with discrete covariate X1, i.e.,
ethnicity, of earning at 16th quarter and cigarette occurrence at
48th month after randomization.

Table: ACRF Estimates by Ethnicity

Ethnicity Earnq16 Cigarm48

White -31.7 0.041
[21.9,-85.3] [0.156,-0.074]

Black −23.5∗ 0.070∗∗

[2.6,-49.6] [0.129,0.106]
Hispanic -15.3 0.099∗

[29.5,-60.1] [0.201,-0.003]

Notes: The point-wise 95% confidence in-
tervals are reported in the brackets. Stan-
dard errors are reported in parentheses for
ACR. ∗ ∗ ∗ = p < 0.01; ∗∗ = p < 0.05;
∗ = p < 0.10.
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Application: Residential Component in Job Corps Program

▶ The residential component has a negative but insignificant
effects on the earnings; however, a positive (detrimental) and
significant effect on the risky behavior outcome.

▶ The significant detrimental effect on the the cigarette
occurrence varies by age, gender and ethnicity. Younger
female group and Black youth are more vulnerable to this
detrimental effect.

▶ Overall, the ACR of residential component is negligible on
earnings but significant and detrimental on risky behavior
outcomes such as cigarette occurrence.
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Partial identification when D affects sample selection
D is also allowed to enter S, which yields a partial identi result:

S = S(X1, X2, D, ε) = Se(X1, X2, X3, V , ε).

Theorem 5
If the selection equation in Eq.(4) is replaced by S = S(X1, X2, D, ε), Assumption 1 and 3 hold, Y = supp(Y ∗) is
bounded with ymin = miny∈Y y and ymax = maxy∈Y y, and p(X1, X2, X3) = P(S = 1|X1, X2, X3) ≥ Ce > 0
with probability one, then θ(x1) is partially identified by outer region
[θLB (x1), θUB (x1)] = [θm(x1) − v(x1), θm(x1) + v(x1)] with

θm(x1) =
E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)(

Y − h(X1, X2)
)∣∣X1 = x1, S = 1

]
E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)(

D − µ̃(X1, X2)
)∣∣X1 = x1, S = 1

] ,

v(x1) =
E
[∣∣µ(X1, X2, X3) − µ̃(X1, X2)

∣∣ · BD(X1, X2, X3)
∣∣X1 = x1, S = 1

]
E
[(

µ(X1, X2, X3) − µ̃(X1, X2)
)(

D − µ̃(X1, X2)
)∣∣X1 = x1, S = 1

] ,

BD(X1, X2, X3) = min
{

1,
1 − p̃(X1, X2)p(X1, X2, X3)

p̃(X1, X2)p(X1, X2, X3)

}
· (ymax − ymin),

where p̃(X1, X2) = P(S = 1|X1, X2).
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Conclusion
▶ This paper identifies and estimates a semiparametric ACR,

first proposed by Angrist and Imbens (1995) and
Abadie(2003), with sample selection in a high-dimensional
covariate environment.

▶ The proposed ACRF is shown to be consistent and
asymptotically normal. Monte Carlo simulations demonstrate
that ACRF performs better than the existing IV estimators
(such as NPIV-lasso).

▶ The empirical study evaluates the heterogeneous effect of the
residential component in US Job Corps program with
proposed ACRF and ACR, and yields new insights with a large
set of controls.

▶ We also relax the selection-on-observables assump on
selection process, and derive bounds on the proposed ACRF
with one single IV with selection-on-unobservables (i.e., D
affects the selection process).
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Thank You!
yahong.zhou@mail.shufe.edu.cn
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