Bayesian Analysis

Isabel Cañette

Associate Director of Technical Services and Principal Mathematician & Statistician StataCorp LLC

2022 Colombian Stata Conference 6-8 September 2022

Bayesian vs classical statistics

In classical statistical analysis, we assume fixed unknown parameters, a dataset generated with a distribution based on them, and we use the data to construct an estimate of those underlying parameters.

In Bayesian statistic, parameters are considered random, according to a distribution, and our aim is to use previous knowledge of this distribution to estimate an updated version of it conditional on the observed data.

Stata commands for Bayesian estimation

- bayes: prefix provides a simple way to fit bayesian regression models. For example:
 - bayes: regress y x1 x2

It supports a wide range of commands including regressions for continous, binary, ordinal, categorical, count or fractional outcomes, survival analysis, sample selection, panel data, multilevel, time series, and dynamic stochastic general equilibrium models. Type help bayes estimation to see the complete list.

• bayesmh allows us to fit customized Bayesian regressions by choosing among a set of available prior and likelihood functions, or with evaluators provided by the user. It can be used for linear and/or non-linear, one-level or multilevel, and one or multiple-equations models.

Stata Graphical User Interface

Stata/MP17.0 File Edit View Data Graphics	Statistics User Window Help	•				୍ ର୍ ଓ		د ا	ESE:	÷	Q,	S St
Stata/MP 17.0	Summaries, tables, and tests	>	1 1 1	0 -	🙆 📿 Search							
	Linear models and related	>	Data Editor	More E	ireak	Search	Help					
Results	Binary outcomes	>		Q,		E 📀	E5					
	Ordinal outcomes	>			Variables							
	Categorical outcomes	>			Name		Label					
	Count outcomes	>										
	Fractional outcomes	>										
	Generalized linear models	>										
	Choice models	>										
	Time series	>										
	Multivariate time series	>								_		
	Spatial autoregressive models											
	Longitudinal/panel data	>										
	Multilevel mixed-effects models	>									_	
	Survival analysis	>										
	Epidemiology and related	>										
	Endogenous covariates	>										
	Sample-selection models	>										
	Treatment effects	>										
	SEM (structural equation modeling)	>						Continuous	outcom	es		
	LCA (latent class analysis)	>					E	Sinary outo	omes			
	FMM (finite mixture models)	>					(Ordinal out	comes			
Command	IRT (item response theory)						0	Categorica	outcom	es		
	Multivariate analysis	>					(Count outo	omes			
	Survey data analysis	>	Regression mo		>	ractional	utcome	8				
	Lasso	>	General estima	tion and re	gression		0	Seneralize	dlinear	nodel (GLM)	
	Meta-analysis		Graphical summ	naries			5	iurvival m	dels			
	Multiple imputation		Gelman-Rubin	convergen	ce diagnostics		5	election n	odels			
	Nonparametric analysis	>	Effective sample	le sizes			0	Censored a	nd trun	ated m	odels	
	Exact statistics	>	Summary statis	stics			2	tero-inflat	ed count	models	5	
(Users/isabe/canette/stata/users/edward	Resampling	>	Information crit	teria				onaitudin	l/panel	data		
	Power, precision, and sample size		Hypothesis tes	ting using I	nodel posterior prol	pabilities	,	Aultilevel r	nodels			
	Bayesian analysis	>	Interval hypoth	esis testing				August and an and an and an and an and an				
			Predictions Destesies establis	ation or sould	100		1	Authoriot	time se	640		
	~		Posterior preda	cove b-vali	100			an anananan	10008 35	1100		· ·

Isabel Cañette (StataCorp)

Stata Graphical User Interface

Stata/MP 17.0	ile E	Edit	View	Data	Graphics	Statisti	cs User	Window	v Help					۹	•	-	L *	6/2	Ŷ
••• Stata	/MP 17	7.0				· ·	۰ ا	$\ _{h} \ \leq$		1 12	•	0	Q~ Search						
						Log	Viewer				More			St	arch Hel				
Results											Q			Ξ.	08				
												Var	iables						-
	6			Ray	esian Regr	ossion M	odels Sele	otor					Name		Lal	iel			
	-			Du)	restant tegi														
	Ba	ayesian	regress	ion mode	ls:														
	ř	Contir Line	ar regre	ssion					Launch										
		Het Inte Tob	erosked erval regi it regres	astic line ression ssion	ar regression						bayes:	: regre	ess - Bayesian I	inear re	gressio	n			
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Trui Hec Pan Mul Mul Binary Ordina Categ Count Fractio Gener Surviv	ncated r ckman si tele-data itilevel in tilevel in tilevel in tilevel in tilevel in tilevel in tilevel in tilevel in tilevel or orical out orical out contcom onal out ralized lin rali mode turinal/node	egression election n linear regn bbit regressions regressions utcomes utcomes res comes near mod ils applications	n nodel ression ssion ssion gression on els (GLM) a models				Depen	lel itjin Weight dent variable:	Independ	Simulat lent var	tion Blocking II	ltalization	Adapt	tion I	Reporting	Advant	ed
Command	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Multik Select Censo Zero-i Multiv Multiv DSGE	evel mod tion mod ored and inflated i ariate m ariate tin models	dels lels truncate models iodels me-serier	d models s models														
	l								C										
			le	abol	Cañot	to (1	Stata	(orn)						F /	24				

Stata's Bayesian suite consists of the following commands

Description
Bayesian regression models using the bayes prefix
General Bayesian models using MH
User-defined Bayesian models using MH
Graphical convergence diagnostics
diapinear convergence diagnostics
Effective sample sizes and more
Gelman–Rubin convergence diagnostics
Summary statistics
Information criteria and Bayes factors
Model posterior probabilities
Interval hypothesis testing
Bayesian predictions (available only after bayesmh)
Bayesian predictive <i>p</i> -values (available only after bayesmh)

Bayes' Theorem:

$$p(\theta|y) = rac{f(y|\theta)\pi(\theta)}{m(y)}$$

- Assume that we know $\pi(\theta)$ ("prior")
- We have already assumed that we know $f(Y|\theta) = L(y;\theta)$
- We observe the data, Y

Bayes' theorem tell us that we can obtain the "posterior" distribution of the parameter, $p(\theta|y)$

 $p(\theta|y) \propto L(y;\theta) \times \pi(\theta)$

In theory, we don't need the constant because densities integrate to 1. In practice, we won't need the constant to simulate a sample for $p(\theta|y)$.

Example: weight of sugar packets.

Let's assume we have a random sample $y_1, \ldots y_{70} \sim N(\mu, \sigma^2)$ and we are interested in estimating the mean, μ . This can be estimated as the constant of a regression without covariates.

. use sugar, clear (Weights of Domino sugar packets, Triola, Elementary Statistics.)

weight	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
_cons	3.586043	.0088481	405.29	0.000	3.568391	3.603694

. regress weight , noheader

The Bayesian version would be:

. bayes, rseed(3876): regress weight ,vsquish

```
Burn-in ...
Simulation ...
```

Model summary

Likelihood:
<pre>weight ~ regress({weight:_cons},{sigma2})</pre>
Priors:
<pre>{weight:_cons} ~ normal(0,10000)</pre>
{sigma2} ~ igamma(.01,.01)

Bayesian linear regression	MCMC iteration	s =	12,500
Random-walk Metropolis-Hastings sam	npling Burn-in	=	2,500
	MCMC sample si	ze =	10,000
	Number of obs	=	70
	Acceptance rat	e =	.4382
	Efficiency: m	in =	.1988
	а	vg =	.2231
Log marginal-likelihood = 66.95073	33 m	ax =	.2475

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
weight _cons	3.586146	.009181	.000185	3.586458	3.567973	3.604502
sigma2	.0059266	.0010415	.000023	.0057973	.0042246	.0083358

Note: Default priors are used for model parameters.

Isabel Cañette (StataCorp)

Model summary:

. bayes, rseed(3876): regress weight ,vsquish notable

Burn-in ... Simulation ...

Model summary

```
Likelihood:
  weight ~ regress({weight:_cons},{sigma2})
Priors:
  {weight:_cons} ~ normal(0,10000)
```

{sigma2} ~ igamma(.01,.01)

Bayesian linear regression	MCMC iterations	= 12,500
Random-walk Metropolis-Hastings sampling	Burn-in	= 2,500
	MCMC sample size	= 10,000
	Number of obs	= 70
	Acceptance rate	= .4382
	Efficiency: min	= .1988
	avg	= .2231
Log marginal-likelihood = 66.950733	max	= .2475
Why are we using this prior by default?		

|--|

The less "informative" the prior, the more we rely on the data.

The table

. bayes, rseed(3876) : regress weight ,vsquish noheader

Burn-in ... Simulation ...

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
weight _cons	3.586146	.009181	.000185	3.586458	3.567973	3.604502
sigma2	.0059266	.0010415	.000023	.0057973	.0042246	.0083358

- Mean, median and std. dev. are estimates of the mean, the median and the standard deviation of the posterior distribution.
- A 95% credibility interval is interpreted as an interval such us the probability of the parameter being there is 0.95.

Isabel Cañette (StataCorp)

How is this density estimated? Because there is, in most cases, not a closed form for the posterior distribution, this is estimated via simulation (i.e., generating a large random sample of this distribution rather than having a functional form). We use MCMC, i.e. create an ergodic Markov Chain whose limit (stationary) distribution is theoretically proven to be the posterior we are looking for.

Stata implements two methods: Gibbs sampling and Metropolis-Hastings algorithm.

Metropolis-Hasting algorithm.

We choose a "proposal" distribution q(.) (unrelated with our prior or our posterior, we actually use a Gaussian distribution) and start with θ_0 in the domain of the posterior p. Then, for each iteration t:

- Generate a proposal state $heta_* \sim q(.| heta)$
- Compute the acceptance probability

$$r(\theta_*| heta_{t-1}) = rac{p(heta_*|y)}{p(heta_{t-1}|y)}$$

- We accept θ_* with probability $r(\theta_*|\theta_{t-1})$ (or with probability 1 if $r(\theta_*|\theta_{t-1}) > 1$).
- Accepting means $\theta_t = \theta_*$; otherwise $\theta_t = \theta_{t-1}$

Trace plots: converge is achieved if the simulated values reach stationarity.

Autocorrelation plots: we expect the correlation to be negligible after a few lags. High autocorrelations imply low efficiency, so reaching stationarity will take more iterations than for more efficient problems.

Isabel Cañette (StataCorp)

16 / 34

Example: b	oikes renta	ls vs weat	her								
. use bikes, clear (Bike sharing dataset, Hadi Fanaee-T) . describe											
Contains dat Observation Variable	ca from bike ns: es:	es.dta 731 4		Bike sharing dataset, H. Fanaee-T 4 Sep 2022 16:08							
Variable name	Storage type	Display format	Value label	Variable label							
precip ntemp count100 temp	byte float float float	%15.0g %9.0g %9.0g %9.0g	preclab	Precipitation Normalized Temperature (Celsius) Hundreds of bikes rented Temperature (Celsius)							

We fit a Bayesian linear model to the rental counts ($\times 0.01$) vs temperature and indicators of levels of precipitations (we set a seed for reproducibility).

. bayes, rseed(1357): regress count100 temp i.precip

Isabel Cañette (StataCorp)

Introduction to Bayesian Analysis with Stata

Regression example: bike rentals vs weather

Burn-in		
Simulation		
Model summary		
Likelihood: count100 ~ regress(xb_count100,{sigma2})		
Priors:		
<pre>{count100:temp i.precip _cons} ~ normal(0,100 {sigma2} ~ igamma(.01,.</pre>	00) 01)	(1)
(1) Parameters are elements of the linear form	xb_count100.	
Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	731
	Acceptance rate =	.3475
	Efficiency: min =	.051
	avg =	.09622
Log marginal-likelihood = -3008.9227	max =	.2236

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
count100						
temp	1.347828	.0626141	.002614	1.346385	1.233055	1.469331
precip						
Mist	-5.802201	1.160169	.047753	-5.785858	-8.105655	-3.573989
Light rain/snow	-25.8168	3.281888	.109326	-25.84465	-32.31738	-19.29535
_cons	27.13917	1.198321	.053062	27.12183	24.85218	29.45991
sigma2	206.305	10.80463	.228511	206.0586	185.9393	228.7717

Isabel Cañette (StataCorp)

The header is:

. bayes, rseed(1357) nomodelsummary:regress count100 temp i.precip, vsquish

Burn-in		
Simulation		
Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	731
	Acceptance rate =	.3758
	Efficiency: min =	.02825
	avg =	.07818
Log marginal-likelihood = -3013.5765	max =	.2101

- Marginal log-likelihood m(y) = p(Y = y|(θ ~ M)) = ∫(p(y|θ, M)p(θ|M) dθ. (i.e., integrate p(y|θ) over the distribution M of θ), evaluated at the observed data y.
- MCMC iterations total number of iterations
- Burn-in discarded iteration to eliminate influence of the initial values
- MCMC sample size iterations used for estimation
- Acceptance rate fraction of proposal values accepted. We expected it to be neither too small nor too large optimal value for multivariate posteriors and proposal: 0.234; for univariate posteriors:0.45
- Efficiency Indicator of the mixing quality of the chain

The table:

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
count100						
temp	.0135365	.0006187	.000034	.0135331	.0122963	.01472
precip						
Mist	-5.747835	1.143186	.042002	-5.774701	-7.882743	-3.509883
Light rain/snow	-25.65604	3.173647	.149708	-25.59269	-31.96759	-19.44203
_cons	27.00479	1.169644	.069591	27.02894	24.73269	29.2549
sigma2	206.1646	10.93242	.238485	205.9812	185.4657	228.1383

Note: Default priors are used for model parameters.

- Mean $(\hat{\theta})$, median and standard deviation (\hat{s}) are the mean, the median and the standard deviation of the posterior sample. Estimate respectively the mean $(E(\theta_t))$, the median and the standard deviation $\sqrt{Var(\theta_t)}$ of the posterior distribution.
- A 95% credibility interval an interval such us the probability of the parameter being there is 0.95.
- MCSE Monte Carlo standard error an indicator of the precision of the sample posterior mean ("Mean" in the table). $MCSE(\hat{\theta})=\hat{s}/\sqrt{ESS}$

Convergence is attained when the chain achieves stationarity (and therefore the sample is drawn from the posterior distribution).

- Inspecting mixing and time trends within the chains of individual parameters
 - bayesgraph diagnostics, trace, ac, histogram, kdensity
 - bayesgraph csum
 - bayesstats ess
- Inspecting multiple chains for each parameter
 - bayesgraph diagnostics, trace, ac, histogram, kdensity
 - bayesgraph rubin

bayesgraph diagnostics - it needs to be run for each parameter

- The trace doesn't show convergence problems
- Correlation becomes negligible after 20 lags
- Density estimates with first and second half look similar

Isabel Cañette (StataCorp)

. bayesstats ess

Efficiency	summaries	MCMC sample	size	=	10,000
		Efficiency:	min	=	.02825
			avg	=	.07818
			max	=	.2101

	ESS	Corr. time	Efficiency
count100			
temp precip	334.69	29.88	0.0335
Mist	740.79	13.50	0.0741
Light rain/snow	449.39	22.25	0.0449
_cons	282.49	35.40	0.0282
sigma2	2101.42	4.76	0.2101

- ESS -Effective sample size Number of i.i.d observations that would contain the same information as in our MCMC sample.
- Corr time T/ESS Number of iterations where autocorrelation becomes negligible (T=MCMC sample size).
- Efficiency ESS/T Indicator of the the mixing quality of the MCMC procedure. The higher the better.
 - Efficiencies over 10% are considered good for MH.
 - Efficiencies under 1% would be a source of concern.

See Methods and Formulas section in manual entry for [BAYES] bayesstats ess for details.

Bayesian predictions: bayespredict

We started with a prior distribution, $\pi(\theta)$, and updated that prior with the information in our dataset, y, obtaining the posterior distribution, $p(\theta)$.

Now we can consider that the data we have already observed are fixed, and the actual distribution of θ is our posterior p. Under this assumption, we can predict the distribution of future outcomes, y^{new} .

Assuming that $\theta \sim p$, and we can use this (posterior) distribution and the likelihood $(f(y|\theta))$ to compute the predictive posterior distribution for a new value y^{new} of Y:

$$p(y^{new}) = \int f(y|\theta)p(\theta) d\theta.$$

We can see it as:

$$p(y^{new}|y^{obs}) = \int f(y|\theta)p(\theta|y^{obs}) d\theta.$$
Isabel Cañette (StataCorp) 27 / 34

To obtain predictions, first we fit our model with bayesmh.

bayesmh count100 temp i.precip, ///
likelihood(normal({sigma2})) ///
prior({count100:}, normal(0, 10000)) ///
prior({sigma2}, igamma(.01, .01)) rseed(2476) ///
saving(bikespost, replace)

We saved the simulated values for the posterior distribution of the parameters in a new file (bikepost). This file will be needed to perform predictions.

Burn-in		
Simulation		
Model summary		
Likelihood:		
<pre>count100 ~ normal(xb_count100,{sigma2})</pre>		
Priors:		
{count100:temp i.precip _cons} ~ normal(0,100	00)	(1)
{sigma2} ~ igamma(.01,.0	01)	
(1) Parameters are elements of the linear form :	xb_count100.	
Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	731
	Acceptance rate =	.1968
	Efficiency: min =	.02171
	avg =	.03907
Log marginal-likelihood = -3009.1647	max =	.05898

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
count100						
temp	1.357601	.0627935	.002586	1.358048	1.237237	1.480288
precip						
Mist	-5.637735	1.121772	.058148	-5.604706	-7.831796	-3.528415
Light rain/snow	-25.61719	3.111537	.156311	-25.54275	-31.87835	-19.8676
_cons	26.90482	1.178267	.060584	26.87755	24.60462	29.20782
sigma2	204.306	10.741	.72906	203.9492	184.8968	226.2071
	Isabel Cañ	ette (Stata	Corp)			29 / 34

. estimates s . use bikespos . describe	. estimates store bmh_bikes // store estimates . use bikespost, clear . describe							
Contains data	from bike	spost.dta						
Ubservations: Variables		2,737		31 Aug 2022 16:21				
Valiables.		11		51 Aug 2022 10.21				
Variable	Storage	Display	Value					
name	type	format	label	Variable label				
_chain	int	%8.0g		Chain identifier				
_index	int	%8.0g		Iteration number				
_loglikelihood	double	%10.0g		Log likelihood				
_logposterior	double	%10.0g		Log posterior				
eq1_p1	double	%10.0g		{count100:temp}				
eq1_p2	double	%10.0g		{count100:1b.precip}				
eq1_p3	double	%10.0g		{count100:2.precip}				
eq1_p4	double	%10.0g		{count100:3.precip}				
eq1_p5	double	%10.0g		{count100:_cons}				
eq0_p1	double	%10.0g		{sigma2}				
_frequency	int	%8.0g		Frequency weight				

Variables containing the simulated values are named eqj_pi, where j is the equation and i distinguishes the parameters. _freq contains the frequency.

Those simulated values can be used to plot the posterior density, as we did with bayesgraph kdensity.

```
. histogram eq1_p1 [fw=_freq], addplot(kdensity eq1_p1 [fw=_freq]) ///
> title("Posterior density for coefficient for temp")
(bin=40, start=52.637679, width=.58229688)
```



```
Out of sample predictions: bayespredict
Now, let's assume that the weather forecast for tomorrow is no
precipitacions (precip=1) and a temperature of 20°Celsius
(temp=20); given this weather, how do we predict the number of
bikes to be rented?
```

```
use bikes, clear
estimates restore bmh_bikes
local N1 = _N + 1
set obs `N1´
replace precip = 1 in `N1´
replace temp = 20 in `N1´
global N1 = `N1´
* _ysim represents the outcome
bayespredict {_ysim} if _n == `N1´, rseed(1357) saving(ypred, replace)
```

We can use bayesstats summary to display statistics for the prediction.

. bayesstats summary _ysim_\$N1 using ypred

Posterior summary statistics

MCMC sample size = 10,000

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
_ysim1_732	54.20513	14.37852	.143785	54.23792	26.1864	82.50352

There is 95% probability of renting between 2618 and 8250 bikes.

Final remarks:

- Bayesian analysis can be used to answer questions about unknown parameters in terms of probability statements, using prior information on such probability.
- Stata provides a suite of commands for Bayesian estimation, diagnostics, visualization and prediction. Today we have just described a few of them. Please see the [Bayes] manual for a complete reference.