Survey Data Analysis in Stata

Jeff Pitblado

Associate Director, Statistical Software StataCorp LP

2009 Canadian Stata Users Group Meeting

Outline

- Types of data
- Survey data characteristics
- Variance estimation
- Estimation for subpopulations
- Summary

Why survey data?

- Collecting data can be expensive and time consuming.
- Consider how you would collect the following data:
 - Smoking habits of teenagers
 - Birth weights for expectant mothers with high blood pressure
- Using stages of clustered sampling can help cut down on the expense and time.

Simple random sample (SRS) data

Observations are "independently" sampled from a data generating process.

- Typical assumption: independent and identically distributed (iid)
- Make inferences about the data generating process
- Sample variability is explained by the statistical model attributed to the data generating process

Standard data

We'll use this term to distinguish this data from survey data.

Correlated data

Individuals are assumed not independent.

Cause:

- Observations are taken over time
- Random effects assumptions
- Cluster sampling

Treatment:

- Time-series models
- Longitudinal/panel data models
- cluster() option

Survey data

Individuals are sampled from a fixed population according to a survey design.

Distinguishing characteristics:

- Complex nature under which individuals are sampled
- Make inferences about the fixed population
- Sample variability is attributed to the survey design

Standard data

- Estimation commands for standard data:
 - proportion
 - regress
- We'll refer to these as standard estimation commands.

Survey data

- Survey estimation commands are governed by the svy prefix.
 - svy: proportion
 - svy: regress
- svy requires that the data is svyset.

Single-stage syntax

```
svyset [psu] [weight] [, strata(varname) fpc(varname)]
```

- Primary sampling units (PSU)
- Sampling weights pweight
- Strata
- Finite population correction (FPC)

Sampling unit

An individual or collection of individuals from the population that can be selected for observation.

- Sampling groups of individuals is synonymous with cluster sampling.
- Cluster sampling usually results in inflated variance estimates compared to SRS.

Sampling weight

The reciprocal of the probability for an individual to be sampled.

- Probabilities are derived from the survey design.
 - Sampling units
 - Strata
- Typically considered to be the number of individuals in the population that a sampled individual represents.
- Reduces bias induced by the sampling design.

Strata

In stratified designs, the population is partitioned into well-defined groups, called strata.

- Sampling units are independently sampled from within each stratum.
- Stratification usually results in smaller variance estimates compared to SRS.

Finite population correction (FPC)

An adjustment applied to the variance due to sampling without replacement.

 Sampling without replacement from a finite population reduces sampling variability.

Example: svyset for single-stage designs

Canada 2009

Cluster sample 20 (208 obs)

Stratified sample 198

Stratified-cluster sample 20 (215 obs)

Multistage syntax

```
svyset psu [weight][, strata(varname) fpc(varname)]
  [|| ssu [, strata(varname) fpc(varname)]]
  [|| ssu [, strata(varname) fpc(varname)]] ...
```

- Stages are delimited by "II"
- SSU secondary/subsequent sampling units
- FPC is required at stage s for stage s + 1 to play a role in the linearized variance estimator

Poststratification

A method for adjusting sampling weights, usually to account for underrepresented groups in the population.

- Adjusts weights to sum to the poststratum sizes in the population
- Reduces bias due to nonresponse and underrepresented groups
- Can result in smaller variance estimates

Syntax

svyset ... poststrata(varname) postweight(varname)

Example: svyset for poststratification

Canada 2009

Strata with a single sampling unit

Big problem for variance estimation

- Consider a sample with only 1 observation
- svy reports missing standard error estimates by default

Finding these lonely sampling units

Use svydes:

- Describes the strata and sampling units
- Helps find strata with a single sampling unit

Strata with a single sampling unit

Example: svydes

Canada 2009

Strata with a single sampling unit

Handling lonely sampling units

- Orop them from the estimation sample.
- svyset one of the ad-hoc adjustments in the singleunit () option.
- 3 Somehow combine them with other strata.

Certainty units

- Sampling units that are guaranteed to be chosen by the design.
- Certainty units are handled by treating each one as its own stratum with an FPC of 1.

Stata has three variance estimation methods for survey data:

- Linearization
- Balanced repeated replication
- The jackknife

Linearization

A method for deriving a variance estimator using a first order Taylor approximation of the point estimator of interest.

Foundation: Variance of the total estimator

Syntax

```
svyset ... [vce(linearized)]
```

- Delta method
- Huber/White/robust/sandwich estimator

Total estimator – Stratified two-stage design

y_{hijk} – observed value from a sampled individual

• Strata: h = 1, ..., L

• PSU: $i = 1, ..., n_h$

• SSU: $j = 1, ..., m_{hi}$

• Individual: $k = 1, ..., m_{hij}$

$$\widehat{Y} = \sum_{h} w_{hijk} y_{hijk}$$

$$\widehat{V}(\widehat{Y}) = \sum_{h} (1 - f_h) \frac{n_h}{n_h - 1} \sum_{i} (y_{hi} - \overline{y}_h)^2 + \sum_{h} f_h \sum_{i} (1 - f_{hi}) \frac{m_{hi}}{m_{hi} - 1} \sum_{j} (y_{hij} - \overline{y}_{hi})^2$$

Total estimator – Stratified two-stage design

y_{hijk} – observed value from a sampled individual

• Strata: h = 1, ..., L

• PSU: $i = 1, ..., n_h$

• SSU: $j = 1, ..., m_{hi}$

• Individual: $k = 1, ..., m_{hij}$

$$\widehat{Y} = \sum_{h} w_{hijk} y_{hijk}
\widehat{V}(\widehat{Y}) = \sum_{h} (1 - f_h) \frac{n_h}{n_h - 1} \sum_{i} (y_{hi} - \overline{y}_h)^2 +
\sum_{h} f_h \sum_{i} (1 - f_{hi}) \frac{m_{hi}}{m_{hi} - 1} \sum_{j} (y_{hij} - \overline{y}_{hi})^2$$

Total estimator – Stratified two-stage design

y_{hijk} – observed value from a sampled individual

• Strata:
$$h = 1, ..., L$$

• PSU:
$$i = 1, ..., n_h$$

• SSU:
$$j = 1, ..., m_{hi}$$

• Individual: $k = 1, ..., m_{hij}$

$$\widehat{Y} = \sum_{h} w_{hijk} y_{hijk}
\widehat{V}(\widehat{Y}) = \sum_{h} (1 - f_h) \frac{n_h}{n_h - 1} \sum_{i} (y_{hi} - \overline{y}_h)^2 +
\sum_{h} f_h \sum_{i} (1 - f_{hi}) \frac{m_{hi}}{m_{hi} - 1} \sum_{j} (y_{hij} - \overline{y}_{hi})^2$$

Example: svy: total

Linearized variance for regression models

- Model is fit using estimating equations.
- $\widehat{G}()$ is a total estimator, use Taylor expansion to get $\widehat{V}(\widehat{\beta})$.

$$\widehat{G}(\beta) = \sum_{j} w_{j} s_{j} \mathbf{x}_{j} = \mathbf{0}$$

$$\widehat{V}(\widehat{\beta}) = D\widehat{V}\{\widehat{G}(\beta)\}|_{\beta=\widehat{\beta}}D^{\alpha}$$

Linearized variance for regression models

- Model is fit using estimating equations.
- $\widehat{G}()$ is a total estimator, use Taylor expansion to get $\widehat{V}(\widehat{\beta})$.

$$\widehat{G}(\beta) = \sum_{j} w_{j} s_{j} \mathbf{x}_{j} = \mathbf{0}$$

$$\widehat{V}(\widehat{\boldsymbol{\beta}}) = D\widehat{V}\{\widehat{\boldsymbol{G}}(\boldsymbol{\beta})\}|_{\boldsymbol{\beta}=\widehat{\boldsymbol{\beta}}}D'$$

Example: svy: logit

Balanced repeated replication

For designs with two PSUs in each of *L* strata.

- Compute replicates by dropping a PSU from each stratum.
- Find a balanced subset of the 2^L replicates. $L \le r < L + 4$
- The replicates are used to estimate the variance.

Syntax

```
svyset ... vce(brr) [mse]
```


BRR variance formulas

- $\widehat{\theta}$ point estimates
- $\hat{\theta}_{(i)}$ *i*th replicate of the point estimates
- $\overline{\theta}_{(.)}$ average of the replicates

Default variance formula:

$$\widehat{V}(\widehat{\boldsymbol{\theta}}) = \frac{1}{r} \sum_{i=1}^{r} \{\widehat{\boldsymbol{\theta}}_{(i)} - \overline{\boldsymbol{\theta}}_{(.)}\} \{\widehat{\boldsymbol{\theta}}_{(i)} - \overline{\boldsymbol{\theta}}_{(.)}\}'$$

Mean squared error (MSE) formula:

$$\widehat{V}(\widehat{\theta}) = \frac{1}{r} \sum_{i=1}^{r} \{\widehat{\theta}_{(i)} - \widehat{\theta}\} \{\widehat{\theta}_{(i)} - \widehat{\theta}\}'$$

Example: svy brr: logit

The jackknife

A replication method for variance estimation. Not restricted to a specific survey design.

- Delete-1 jackknife: drop 1 PSU
- Delete-k jackknife: drop k PSUs within a stratum

Syntax

```
svyset ... vce(jackknife) [mse]
```


Jackknife variance formulas

- $\hat{\theta}_{(h,i)}$ replicate of the point estimates from stratum h, PSU i
- $\overline{\theta}_h$ average of the replicates from stratum h
- $m_h = (n_h 1)/n_h$ delete-1 multiplier for stratum h

Default variance formula:

$$\widehat{V}(\widehat{\boldsymbol{\theta}}) = \sum_{h=1}^{L} (1 - f_h) \, m_h \, \sum_{i=1}^{n_h} \{\widehat{\boldsymbol{\theta}}_{(h,i)} - \overline{\boldsymbol{\theta}}_h\} \{\widehat{\boldsymbol{\theta}}_{(h,i)} - \overline{\boldsymbol{\theta}}_h\}'$$

Mean squared error (MSE) formula:

$$\widehat{V}(\widehat{\boldsymbol{\theta}}) = \sum_{h=1}^{L} (1 - f_h) \, m_h \, \sum_{i=1}^{n_h} \{\widehat{\boldsymbol{\theta}}_{(h,i)} - \widehat{\boldsymbol{\theta}}\} \{\widehat{\boldsymbol{\theta}}_{(h,i)} - \widehat{\boldsymbol{\theta}}\}'$$

Canada 2009

Example: svy jackknife: logit

Replicate weight variable

A variable in the dataset that contains sampling weight values that were adjusted for resampling the data using BRR or the jackknife.

- Typically used to protect the privacy of the survey participants.
- Eliminate the need to svyset the strata and PSU variables.

Syntax

```
svyset ... brrweight(varlist)
svyset ... jkrweight(varlist [, ... multiplier(#)])
```


Focus on a subset of the population

- Subpopulation variance estimation:
 - Assumes the same survey design for subsequent data collection.
 - The subpop () option.
- Restricted-sample variance estimation:
 - Assumes the identified subset for subsequent data collection.
 - Ignores the fact that the sample size is a random quantity.
 - The if and in restrictions.

Total from SRS data

• Data is y_1, \ldots, y_n and S is the subset of observations.

$$\delta_j(\mathcal{S}) = \left\{ egin{array}{ll} 1, ext{if } j \in \mathcal{S} \ 0, ext{otherwise} \end{array}
ight.$$

Subpopulation (or restricted-sample) total:

$$\widehat{Y}_{S} = \sum_{j=1}^{n} \delta_{j}(S) w_{j} y_{j}$$

Sampling weight and subpopulation size:

$$w_j = \frac{N}{n}, \qquad N_S = \sum_{j=1}^n \delta_j(S) w_j = \frac{N}{n} n_S$$

Variance of a subpopulation total

Sample n without replacement from a population comprised of the N_S subpopulation values with $N-N_S$ additional zeroes.

$$\widehat{V}(\widehat{Y}_{S}) = \left(1 - \frac{n}{N}\right) \frac{n}{n-1} \sum_{j=1}^{n} \left\{ \delta_{j}(S) y_{j} - \frac{1}{n} \widehat{Y}_{S} \right\}^{2}$$

Variance of a restricted-sample total

Sample n_S without replacement from the subpopulation of N_S values.

$$\widetilde{V}(\widehat{Y}_S) = \left(1 - \frac{n_S}{\widehat{N}_S}\right) \frac{n_S}{n_S - 1} \sum_{j=1}^n \delta_j(S) \left\{ y_j - \frac{1}{n_S} \widehat{Y}_S \right\}^2$$

Example: svy, subpop()

Summary

- Use svyset to specify the survey design for your data.
- Use svydes to find strata with a single PSU.
- Choose your variance estimation method; you can svyset it.
- Use the svy prefix with estimation commands.
- Use subpop() instead of if and in.

References

Levy, P. and S. Lemeshow. 1999. Sampling of Populations. 3rd ed. New York: Wiley.

StataCorp. 2009.

Survey Data Reference Manual: Release 11.

College Station, TX: StataCorp LP.

