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Canonical DiD Setup: 2X2

e Two groups: Treatment (G; = 1) and Control (G; = 0)
e Two time periods: Pre (t = 0) and Post (t = 1)
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Key ldentifying Assumptions

@ Parallel trends/Conditional Parallel trends assumption
(Roth et al., 2022)

@ No anticipation/strong exogeneity (De Chaisemartin and
d'Haultfoeuille, 2020a; Abadie, 2005)

©® Homogeneous Treatment Effect across both time and units
(Roth et al., 2022)

@ No staggered adoption (De Chaisemartin and
d'Haultfoeuille, 2020a; Callaway and Sant'Anna, 2021)

@ Single isolationed treatment (de Chaisemartin and
D'Haultfeeuille, 2020b)

@ The data is poolable
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Conventional Estimate

o Conventional Estimation with repeated cross sectional data:

Yit = Bo+pPitreati+PBapost+PBstreatix posty+LFaXi+e; ¢ (1)

@ Estimate of the ATT:

ATT —[E[Ylfci =1, Xi] — E[Yo|G; = I’Xf]}

(2)
— [E[Y1|Gi = O,X,'] — E[Y0|Gi = O,Xi]:|
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What is 537
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Figure 2: 3 from the conventional estimate
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Why is data unpoolable?

@ Prevalent problem in Health Economics
@ Administrate Health Data is unpoolable
o legal restrictions in data sharing (siloed data)
e In Canada, separate provincial health insurers
@ Data cannot be combined together to do DiD analysis using
traditional methods
@ Missed opportunity for research

e CIHR’s Institute of Health Services and Policy Research
labelled Canada as a “policy laboratory”
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Proposed estimation with Unpoolable data
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Unpooled Regressions with covariates

e Forj={T, C}
Y = N pre; + Xypost, + A X!, + v, (3)

Or alternatively:

Yij,'t =X+ )\Jiposti + Aéxl{t t 77{»t @

o ATT = (M —M\) = (A$ —A8) = XT — X¢
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is the ATT?
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Figure 3: ATT from the unpooled regressions
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Standard Errors and p values

e Standard Error = \/(SE)\AT)2 + (SEyr + (SEc)? + (SE)?
1 2 1 2

@ This will be equivalent to:

e Standard Error = \/(SE),)? + (SE, )2

ATT

@ t-stats for inference = Standard Error
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Data Generating Process (DGP)

@ 3 Cases

@ No covariates
@ Single time invariant covariate and homogeneous effect of X
© Single time invariant covariate with heterogeneous effect of X

@ Done with both equal and unequal sample sizes

@ True ATT =0.1
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Monte Carlo Simulations
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Figure 4: ATT from the unpooled regressions
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Results

Kernel density estimate
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methods value
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Unpooldid Program
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Unpooldid commands

@ Stage 1: Initializes the program, creates scripts for remaining
calls (Server)

Command: unpooldid depvars [indepvars] [if] [in] [weight] ,
siloinfo() stage(1) names() [ options |

@ Stage 2: Called once for each silo, output necessary statistics
(Silo specific client)
Command: unpooldid depvars [indepvars] [if] [in] [weight] ,
stage(2) names() siloinfo() [ options |

© Stage 3: Uses the output from Stage 2 and produces the
analysis (Server)

Command: unpooldid depvars [indepvars] [if] [in] [weight] ,
stage(3) names() siloinfo() [ options |
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Unpooldid Inputs and options

@ siloinfo -
o will be entered as a string
o (begin period, period first treated, end period)

e period first treated will be 0 for the control silo

@ names - labels for the silos

@ stage - 1 (init), 2 (silo), 3 (analysis)

@ sample - to restrict sample for analysis, i.e. by age, gender, etc
@ nograph - do not produce parallel trends figures

@ cluster
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Unpooldid example

@ Stage 1:
unpooldid y x w, siloinfo(2001,2003,2006\2001,0,2006) stage(1)
names(Ontario Quebec) nograph cluster(group) sample(w=0)

@ Stage 2:
unpooldid y x w , stage(2) names(Ontario) siloinfo(2001, 2003,
2006) nograph cluster(group) sample(w=0)
unpooldid y x w , stage(2) names(Quebec) siloinfo(2001, 0, 2006)
nograph cluster(group) sample(w=0)

© Stage 3:

unpooldid y x w , stage(3) siloinfo(2001,2003,200612001,0,2006)
names(Ontario Quebec) nograph cluster(group) sample(w=0)
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Pre-test for Parallel trends

@ In Stage 2, both unconditional and conditional means for each
period will be collected in the csv file

@ In Stage 3, the server will use these means to plot two figures:
an unconditional figure, and a conditional figure for the
evolution of outcome

@ In the output, the server will display both a unconditional and
a conditional parallel trends figure
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Questions?
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STATA program

Feedback welcome
Please Email:
SunnyKarim@cmail.carleton.ca
for any suggestions
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Appendix

Proof: We know that prel = (1 — postl). Substituting this into
Equation (4):

Y/, = Xo + M1post] + MpX!, + 1,
= Y,Jt = )\{(1 — post]) + )\épost{ + I/ft

Y = M+ (N — M)post] + v/, (5)
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